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“The goal of education is to make people wiser, more knowledgeable, 

better informed, ethical, responsible, critical and capable of continuing 

to learn. Education also served society by providing a critical reflection 

on the world, especially its failings and injustices, and by promoting 

greater consciousness and awareness, exploring new visions and 

concepts, and inventing new techniques and tools. Education is also the 

means for disseminating knowledge and developing skills, for bringing 

about desired changes in behaviours, values and lifestyles, and for 

promoting public support for the continuing and fundamental changes 

that will be required if humanity is to alter its course, leaving the 

familiar path that is leading towards growing difficulties, and starting 

the uphill climb towards sustainability. Education, in short, is 

humanity’s best hope and most effective means to the quest to achieve 

sustainable development”  

 

United Nations Education, Scientific and Cultural Organization  
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Abstract 

Burkholderia phytofirmans strain PsJN has been well characterized as a Plant Growth 

Promoting Rhizobacteria (PGPR) that triggers induced resistance in grapevine against 

fungal pathogens. Recently, it has been demonstrated that B. phytofirmans may also 

enhance resistance to stress in low non-freezing temperatures. To better understand 

the interaction between grapevine and B. phytofirmans strain PsJN, changes in the 

expression pattern of different defence related genes were investigated in Chardonnay 

grapevine leaves after root inoculation with PsJN strain. B. phytofirmans induced a 

systemic spread of a signal from roots to leaves after root inoculation with bacteria, a 

phenomenon referred to as Induced Systemic Resistance (ISR). The expression 

pattern of well-characterized grapevine defence genes was also monitored in 

grapevine plantlets bacterized four weeks earlier, and subjected to low non-freezing 

temperature. Results report that PsJN induces earlier and/or higher transcript 

accumulation of defence genes in bacterized plantlets upon low non-freezing 

temperatures according to the phenomenon of priming. Further investigation of 

several biochemical parameters reveals that bacterized grapevine plantlets are in a 

primed physiological state able to increase their sugar, starch and proline levels upon 

low non-freezing temperatures while the analysis of membrane lipid peroxidation 

markers indicates a faster degradation of aldehydes, malonaldehyde and hydrogen 

peroxide beyond one week, addressing the better adaptation of bacterized plantlets 

than non-bacterized plantlets to low non-freezing temperature. In addition, nine 

combinations of non-radioactive digoxigenine labelled-PstI and MseI primers were 

used to generate differentially expressed genes by cDNA-AFLP technology for 

further investigation of primed physiological state induced by PsJN and isolation of 

over-expressed genes upon low non-freezing temperatures. In conclusion, it is 

suggested that PsJN strain is an ISR-inducing PGPR able to stimulate grapevine 

defence mechanism by priming physiological responses critical to acclimation under 

low non-freezing temperatures. 
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Résumé 

Burkholderia phytofirmans souche PsJN a été caractérisée comme une rhizobactérie 

promotrice de la croissance des plantes (PGPR,  pour Plant Growth Promoting 

Rhizobacteria) capable d’induire la résistance de la vigne contre certains champignons 

pathogènes. Récemment, il a été démontré que B. phytofirmans pouvait également 

améliorer la résistance de la vigne aux basses températures. Pour mieux comprendre 

l’interaction entre la vigne et B. phytofirmans souche PsJN, le profil de l’expression 

de différents gènes de défenses a été analysé au niveau des feuilles de vitroplants de 

vigne (Chardonnay) après l’inoculation des racines par la bactérie. Les résultats 

obtenus montrent que la souche PsJN induit la propagation d’un signal systémique, 

des racines vers les feuilles, caractéristique d’une résistance systémique induite (ISR). 

L’expression de gènes de défenses préalablement caractérisés chez la vigne a 

également été analysée au niveau des vitroplants de vignes bactérisés 4 semaines 

avant leur traitement par les basses températures. Les résultats obtenus montrent une 

accumulation précoce et/ou intense des transcrits de gènes de défenses au niveau des 

vitroplants bactérisés et soumis aux basses températures selon le phénomène de 

potentialisation. Une analyse de différents paramètres biochimiques a révélé que cet 

état de potentialisation permet aux vitroplants bactérisés d’augmenter la teneur en 

sucres solubles, amidon et proline après le stress thermique. Parallèlement, l’analyse 

des marqueurs de peroxydation membranaire a montré une dégradation plus rapide 

des aldéhydes, du malondialdéhyde et du peroxyde d’hydrogène, une semaine après le 

début du stress froid, indiquant ainsi une meilleure adaptation des vitroplants 

bactérisés aux basses températures. 

En complément, neuf paires d’amorces digoxigénine non radioactives marquées PstI 

et MseI ont été utilisées pour générer les gènes exprimés différemment par la 

technique cDNA-AFLP (polymorphisme de longueur des fragments amplifiés) pour 

mieux comprendre l’état de potentialisation induit par la souche PsJN et d’identifier 

les gènes surexprimés lorsque la plante est soumise aux basses températures. 

En conclusion, nous avons suggéré que B. phytofirmans souche PsJN est une PGPR 

inductrice de l’ISR qui est capable de stimuler les mécanismes de défense de la vigne 

via un état de potentialisation qui lui permettrait une acclimatation en condition de 

basses températures.  
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1.1 General introduction  

Sustainable development is a pattern of resource use that aims to meet human needs 

while preserving the environment so that these needs can be met not only in the 

present, but in the indefinite future (IISD, 1997). Sustainable development is both a 

goal and a concept (Kates et al., 2005). As a goal, it is an idea of a world where 

people protect the environment as they carry out their day-to-day activities. As a 

concept, sustainable development calls for conceptual probing about limits on natural 

resources, capacities of ecosystems, and interactions among social, economic, 

political and environmental systems. The central theme underlying this concept is 

working towards a sustainable quality of life, now and in the future. Sustainable 

development supports principles of equity and social responsibility. This includes 

equity among nations, equity within nations, equity between humans and other 

species, as well as equity between present and future generations. The concept of 

sustainable development also calls for particular skills, knowledge, values and 

attitudes regarding the environment, the economy and the well-being of people. 

Consequently, the nature of sustainable development is a decision-making process, a 

way of thinking, a philosophy, and an ethic (Williams, 1994). 

 

1.1.1 Sustainability in agriculture 

Sustainable agriculture is a model of social and economic organization based on an 

equitable and participatory vision of development that recognizes the environment 

and natural resources as the foundation of economic activity (ATTRA, 2003). 

Agriculture is sustainable when it is ecologically sound, economically viable, socially 

just, culturally appropriate and based on a holistic scientific approach. According to 

ATTRA (2003; 2005), sustainable agriculture preserves biodiversity, maintains soil 
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fertility and water purity, conserves and improves the chemical, physical and 

biological qualities of the soil, recycles natural resources and conserves energy, uses 

locally available renewable resources, appropriate and affordable technologies. 

Further, sustainable agriculture minimizes the use of external and purchased inputs, 

thereby increasing local independence and self sufficiency and insuring a source of 

stable income for farmer communities (ATTRA, 2005). 

 

1.1.2 Beneficial microorganisms in sustainable agriculture  

To significantly increase food production during the last decades according to 

sustainable concepts, it was essential to develop mainly crop cultivars with improved 

genetic capabilities (i.e. greater yield potential, disease resistance, and nutritional 

quality) and with a higher level of environmental competitiveness, particularly under 

stress conditions (i.e. low rainfall, high or low temperatures, nutrient deficiencies, and 

aggressive weed growth). Nowadays, it is well understood that crop growth and 

development are closely related to the nature of the soil microflora, especially those in 

close proximity to plant roots, i.e. the rhizosphere (Lynch & Whipps, 1991; Higa & 

Parr, 1994). Most biological activities are influenced by the state of these microscopic 

units of life. An area that appears to hold the greatest promises for technological 

advances in crop production, crop protection, and natural resource conservation is that 

of beneficial and effective microorganisms and their interaction with plants (Glick, 

1995; van Loon, 2007). It is recognized that the best soil and crop management 

practices to achieve a more sustainable agriculture will also enhance the growth, 

numbers and activities of beneficial soil microorganisms that, in turn, can improve the 

growth, yield and quality of crops (Kloepper et al., 2004a,b). In essence, increased 
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activity of beneficial microorganisms in soil is the very foundation of a more 

sustainable agriculture (Parr et al., 1994).  

Plant Growth Promoting Rhizobacteria (PGPR) are usually a group 

saprophytic bacterial microorganisms that live in the plant rhizosphere, able to 

colonize the root system. They are studied as plant growth-promoters for increasing 

agricultural production and as biocontrol agents against plant diseases (Kloepper et 

al., 1992; Chen et al., 2000; Saravanakumar et al., 2007a,b). Among them the genus 

of Burkholderia, probably the most diverse and environmentally adaptable plant-

associated bacteria, contains species and strains that are beneficial to plants (Compant 

et al., 2008a). Burkholderia phytofirmans strain PsJN was subsequently shown to be a 

highly effective plant-beneficial rhizobacterium, although originally isolated as a 

contaminant from Glomus vesiculiferum-infected onion roots (Nowak, 1998; Nowak 

& Shulaev, 2003). It is a non-sporulating, rod-shaped, motile bacterium, with a single 

polar flagellum strain PsJN (Frommel et al., 1991). Based on various biochemical and 

physiological studies, strain PsJN was originally classified as beneficial 

microorganism representing non-fluorescent Pseudomonas sp. (Frommel et al., 1991). 

However, subsequent studies revealed that in fact it represents a member of the genus 

Burkholderia (Sessitch et al., 2005). Nowadays, it is known that the strain is able to 

establish rhizosphere and endophytic populations associated with various plants, 

where it stimulates plant growth and induces developmental changes leading to (i) 

better water management (Frommel et al., 1991; Nowak et al., 1995; Pillay & Nowak, 

1997),  (ii) increase in the resistance to heat (Bensalim et al., 1998) and cold stress 

(Ait Barka et al., 2006),  and (iii) increased resistance of plants against  pathogens 

(Nowak et al., 1995; Sharma & Nowak, 1998; Ait Barka et al., 2000; 2002).  
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1.1.3 Sustainable viticulture in cool climate 

Vitis vinifera L. and other species of genus Vitis, are among the oldest cultures 

in the world (Box 1). Vitis vinifera, cultivated for premium quality wine production, is 

frequently exposed to low temperature (Gladstones, 1992). Although, it is a 

temperate-zone plant, it is not well-adapted to the cooler parts of the temperate zone, 

where growing seasons may be too short to allow the fruit to reach maturity, or where 

low winter or spring temperatures may damage its tissues and organs (Goffinet, 

2004). In Europe, such cold events can exist in the important viticultural areas of 

Champagne in France, Chianti in Italy, and the Rhinegau in Germany (Pool, 2000). 

The minimum temperature for normal physiological activity for grapevine has been 

commonly estimated at 10°C (Winkler et al., 1974). Studies on grapevine physiology 

by Buttrose (1969) have revealed that grape shoot and root growth and fruiting yields 

are significantly reduced by exposure to low non- freezing temperatures. Grace (1988) 

states that in the absence of other limiting factors, a decrease of temperature by 1°C 

can decrease plant productivity by approximately 10% and that this correlation is 

strengthened as the altitudinal and latitudinal temperature limits of a species are 

approached.  

Sustainable viticulture in cool climate requires the accommodation of those 

climatic factors near the limits of commercial grape production (Howell, 1988). 

Common viticultural practices have been related with specific selection of appropriate 

mesoclimate and development of specific microclimate, and the use of resistant 

cultivars to cold (Pool, 2000). In addition, the management of physiological functions, 

like bud initiation and differentiation, crop ripening, carbohydrate storage, wood and 

bud maturation, and acclimation to freezing temperature and maintenance of vine cold 

hardiness can protect grapevine productivity from low temperatures  (Howell, 1988). 
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Box 1:  

Taxonomy and origin of most important species of genus Vitis  

Vitis is a genus of about 60 species of vining plants in the plant family Vitaceae (Galet, 

1967). The genus is made up of species predominantly from the Northern hemisphere. Most Vitis 

species are found in the temperate regions of the Northern Hemisphere in Europe, North America 

and Asia with a few in the tropics. Most grapes come from cultivars of Vitis vinifera L., the 

European grapevine native to the Mediterranean and Central Asia (Galet, 2000). Minor amounts 

of fruit and wine come from American and Asian species (Mullins et al., 1992) such as: 

• Vitis aestivalis,  native to eastern North America 

• Vitis rupestris,  native to North America 

• Vitis riparia,  the "river bank grape", native to north-eastern North America 

• Vitis amurensis, the Asiatic grape variety, native to Siberia, and China 

• Vitis rotundifolia,  the muscadines,  native to the southern half of the United States 

• Vitis labrusca,  native to northeastern North America  

 

These species occur in widely different geographical areas and show a great diversity of 

form. However they are sufficiently closely related to allow easy interbreeding and the resultant 

interspecific hybrids between V. vinifera and one or more of V. labrusca, V. riparia or V. 

aestivalis better known as French hybrids (Galet, 1979). 

 

Vitis vinifera 
Over 9,600 cultivars are listed as Vitis vinifera, most of them having been selected for a 

specific region and purpose (Galet, 2000). Subsp. vinifera (ssp. sativa Hegi) has hermaphoditic 

flowers, and fruits 6–22 mm, ellipsoid to globose, green, yellow, red or purple-black, sweet, with -

2 seeds which are pyriform with a rather long beak. Cultivated for wine making and for edible 

fruit in southern and central Europe and widely naturalized. In general, grapes are unsuitable to 

humid, steamy, hot tropics, as they need a cold period for resting and a dry sunshine climate for 

ripening fruit. The wild grape is often classified as V. vinifera ssp. sylvestris (in some 

classifications considered Vitis sylvestris), with V. vinifera ssp. vinifera restricted to cultivated 

forms. Domesticated vines have hermaphrodite flowers, but ssp. sylvestris is dioecious (male and 

female flowers on separate plants) and pollination is required for fruit to develop (Mullins et al., 

1992). 
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1.1.4 The “terroir” of northern European vineyard 

Champagne wine region is a province in the northeast of France, famous for the   

history and the production of Champagne wines (Box 2). The distinctive natural 

components of the terroir in Champagne is a unique combination of soil (including 

microorganisms), subsoil, cool climate and grape varieties are the underlying factors 

which account for the uniqueness of the wines of the region (Dominé, 2001). The 

exceptional nature of the soil on which the Champagne vine is planted determines the 

unique flavour characterizing the wine of Champagne. Most vineyards in Champagne 

area are situated halfway up layer of limestone. This chalky subsoil provides the vine 

with nutrients and ensures perfect drainage, allowing excess water to seep through, 

yet preserving sufficient humidity in the soil. Furthermore, the chalk stores up and 

gently redistributes warmth, thus regulating the elements to the benefit of the ripening 

plants (Domine, 2001).  

The climate of the Champagne area also plays a major role as far as the 

formation of top quality grapes is concerned. The vines must adapt to an annual 

average temperature of 10oC (below an average of 9 oC, the grape cannot ripen) and 

live through the dangers of frost in spring time and poor weather during the flowering 

period. Although varieties like Pinot Noir, Pinot Meunier and Chardonnay, which 

grow in this region, have been specially selected to overcome these harsh weather 

conditions, low temperatures affect grapevine biology resulting to many physiological 

and biochemical changes. 

 

1.2. The biology of plants in cold 

Among various environmental stresses, a low temperature is one of the most 

important factors limiting the  productivity  and  distribution  of  plants.  Chilling  and  
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Box 2:  

The Champagne area  

 The region of Champagne lies at a crossroads of northern Europe – the river valleys leading 

south to the Mediterranean and north to Paris, the English Channel and Western Germany – and 

thus has been the setting of many dramatic events in the history of the French nation. As a 

convenient access point, it has been for hundreds of years, the chosen path of many invaders. The 

Hundred Years' War and the Thirty Years' War brought repeated destruction to the region as armies 

marched back and forth across its landscape. By the 17th century, the city of Reims has seen 

destruction seven times and Epernay no less than twenty-five times (Kladstrup & Kladstrup, 2005). 

  

The history of Champagne wine 

  For centuries (and before the mid-1600’s) the wines had still the typical style and were held 

in high regard by the nobility of Europe. But the cool climate of the region and its effect on the 

wine making process was to play an important part in changing all of that. Although Champagne 

was only about 10% of the region's output in the 18th century, it was enjoyed increasingly as the 

wine of English and French royalty and the lubricant of preference at aristocratic gatherings. Its 

popularity continued to grow until, in the 1800's, the sparkling wine industry was well established. 

By 1853 total sales of champagne reached 20 million bottles up from just 300,000 bottles at the 

turn of the century World War I again brought devastation to the region. The early months of the 

war saw a rapid German advance into northern France and during the fall of 1914, they were 

camped south of the river Marne. By 1915 they were driven back just north of the city of Reims. 

The enormous caves – Roman chalk quarries – beneath Reims that were used for the storage and 

production of champagne, now became shelters from the 1000 days of bombardment the city 

endured from 1914 to 1918. After the war, the city had to be completely rebuilt. The years after the 

Great War were difficult. The Bolshevik Revolution in Russia, Prohibition in the United States, 

and then the Great Depression saw the champagne market dry up. The champagne houses stopped 

buying grapes, so the growers formed the first champagne cooperatives at this time. With the 

ending of Prohibition in 1934, the industry began to turn around. The influential head of Moët & 

Chandon, Robert-Jean de Vougë, was most instrumental in securing its future. He proposed that the 

purchase price of champagne grapes be set at a level that ensured a decent living for the growers, 

and in 1941, during the German occupation of France, became the driving force in persuading the 

Germans to establish the very successful Comité Interprofessionel du Vin de Champagne – 

C.I.V.C. Since World War II champagne sales have climbed upwards, nearly quadrupling between 

1945 and 1966. Champagne has trickled down the social scale and is no longer considered just a 

luxury (Kladstrup & Kladstrup, 2005).  



 

 

19

cold, referring to low but not freezing temperatures (0°C - 15°C) frequently occurring 

in nature, damage many species of plants (Lyons, 1973; Wang, 1990). Plants of 

tropical and subtropical origin are sensitive to chilling stress and usually lack the 

capacity to survive in low non-freezing temperatures (Levitt, 1980). Many chilling 

sensitive crops such as rice, maize, and tomato are only marginally low temperature-

adapted in regions, withstanding hardly to low non-freezing temperatures (Lyons, 

1973). On the other hand, plants originating from temperate zones can continue to 

grow and develop at temperatures in the chilling range, but could not normally 

complete their life cycle if maintained continuously near temperatures above 0°C 

(Fig. 1.1). This might occur because some critical phase of the growth cycle, which in 

perennial plants is usually seasonally related, is susceptible to chilling damage with 

negative and unforeseeable effects on plant biomass and productivity (Raison & 

Lyons, 1986). These plants, however, should be generally classified as ‘chilling-

insensitive’ unless the study is specifically directed toward the phase of the plant that 

is susceptible to chilling (Raison & Lyons, 1986). The main characteristic of the 

majority of insensitive plants is that they can increase freezing tolerance by being 

exposed to low non-freezing temperatures, a process that is known as cold 

acclimation (Tomashow, 1999). 

Over the last decade, studies on plant responses to cold stress have been 

focused on the mechanisms of cold acclimation rather than how insensitive plants can 

resist to chilling temperatures. Nevertheless, recent evidence indicates that some of 

the molecular changes that occur during cold acclimation are also important for plant 

chilling tolerance (Gong et al., 2002; Hsieh et al., 2002; Dong et al., 2006). 

According to this approach, it is concluded that chilling resistance exhibited by 

chilling insensitive plants is not entirely constitutive and at least part of it is developed  
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Plant sensitivity in low temperatures (0°C - 15 °C )

Insensitive plantsSensitive plants
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Fig. 1.1: Characterization of plants according to sensitivity in low non-freezing 

temperatures (adapted from Lyons, 1973; Raison & Lyons, 1986; Wang, 1990; 

Tomashow, 1999). 

 

 

during exposure to low non-freezing  temperatures. The changes in plant metabolism 

induced by the effects of low temperatures are a complex phenomenon.  Plant 

response to cold temperatures appears to be both species- and tissue-specific. In 

addition, several parameters like the  severity and the duration of stress, the rate of the 

cooling, and the concomitant presence of the other environmental conditions like air 

humidity, water soil availability, wind presence (causing dehydration), and the light 

intensity (causing photoinhibition), have a critical effect in plant sensitivity (Bracale 

& Coraggio, 2003). In spite of the complexity of the matter, different approaches in 
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genetics and genetic engineering and countless physiological, biochemical and 

molecular studies contribute a global view and a comprehension of the physiological 

changes developed in plants upon low non-freezing temperature. The phenomenon 

has experienced a burst of knowledge during the last decades due to the study of gene 

expression, the analysis of specific signal transduction factors, and the study of 

changes in proteins and enzymes in plants responding to low non-freezing 

temperatures. 

 

1.2.1 How sensitive plants perceive cold 

The term "chilling sensitivity" has been used to describe many types of physiological 

damage resulting from low, but non freezing temperatures (Raison & Lyons, 1986). 

Many physiological and biochemical cell dysfunctions have been correlated with 

visible (wilting, chlorosis, or necrosis) or not, symptoms in chilling sensitive plants 

(Lyons, 1973). These physiological and biochemical dysfunctions occurring upon 

chilling frequently include changes in cell membrane structure and lipid composition 

(Lyons & Raison, 1970), leakage of ions through cell membranes (Lyons & Raison, 

1970), cellular leakage of electrolytes and amino acids,  a diversion of electron flow 

to alternate pathways (Leopold & Musgrave, 1979), alteration in protoplasmic 

streaming (Lewis, 1956), redistribution of intracellular calcium ions (Bush, 1995), and 

phosphorylation of thylakoid proteins (Bannett, 1991). They also include several 

metabolic modifications (Sochanowicz & Kaniuga, 1979; Levitt, 1980; Trevanion et 

al., 1995), changes in protein content (Marmiroli et al., 1986; Bredenkamp & Baker, 

1994) and enzyme activities (Byrd et al., 1995; Kumar & Triphathy, 1998), and 

ultrastructural changes in a wide range of cell components like plastids, thylakoid 

membranes and mitochondria (Wise et al., 1983; Ishikawa 1996; Kratsch & Wise, 

2000). 
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For more precise characterization of these plant dysfunctions, Raison and 

Lyons (1986) proposed distinction of primary and secondary stages of chilling injury. 

The primary stages might be a change in membrane lipid structure (Raison, 1974), a 

conformational change in some regulatory enzyme or structural protein (Graham & 

Patterson, 1982) or an alteration in the cytoskeletal structure of the cell (Patterson et 

al., 1979). Such event is more or less instantaneous and occurs at some critical or 

threshold temperature which correlates with the onset of chilling injury, and in the 

short term, it is reversible (Fig. 1.2). Secondary events, which follow, can incude loss 

of turgor, leakage of cytoplasmic solutes, lack of energy metabolism, disruption of the 

photosystems, accumulation of active oxygen species (AOS) or similar events that 

lead to visible symptoms of injury (Raison & Lyons, 1970). The secondary stages are 

both time and temperature dependent. In the short term they are reversible if the 

chilling stress is removed (Fig. 1.2). However, if the stress is maintained, the 

imbalance and/or loss of cellular integrity become excessive and the process turns 

irreversible. After this stage, warming to non-chilling temperatures exacerbates the 

symptoms of injury. The rate of development and magnitude of the visible symptom 

of injury depend, to a large extent, on the metabolic status of the tissue at the time the 

chilling stress is imposed (Lyons, 1973). 

 

1.2.1.1 Chilling injuries to cell membrane  

There is a strong correlation between plant chilling sensitivity by membrane damage 

and the degree of unsaturation of fatty acids (Nishida & Murata, 1996). A high degree 

of saturated fatty acids in phosphatidylglycerol in membranes has been observed in 

chilling sensitive plants (Lee et al., 2005).   
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Fig. 1.2: An elegant model to explain many symptoms of chilling injury in chilling 

sensitive plants adapted from Raison and Lyons (1970) and in detail by Lyons (1973).  

 

Since saturated fatty acids have a high melting point, membranes isolated from 

chilling sensitive plants can undergo a phase transition from the liquid crystalline 

phase to the gel phase even at room temperature (Fig. 1.2). The gel phase domains 

represent lipids with low kinetic motion and tight, rigid packing of the acyl chains. 

The presence of a gel phase domain in the membrane bilayer prevents proper 

functioning of integral membrane proteins, and will not maintain an effective 

permeability barrier (Murata et al., 1992; Kodama et al., 1994). Another factor of cold 

injury by membrane damage is the decrease in membrane fluidity and loss of function 

due to lipid peroxidation (Barclay & McKersie, 1994). Chilling enhances production 

of free radicals and peroxidized membranes. This causes the loss of unsaturated fatty 

acids, an increase in membrane rigidity due to the formation of covalent bonds among 
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lipid radicals, a higher lipid phase-transition temperature, and membrane degradation 

(Alonso et al., 1997). Through this primary effect on the phase properties of 

membrane lipids, low temperature was proposed to cause a cascade of the secondary 

events. On the contrary, chilling plants that contain high proportions of unsaturated 

fatty acids keep the phase transition temperature below the applied chilling 

temperature, avoiding the phase transition of the membrane (Murata et al., 1992; 

Kodama et al., 1994). 

 

1.2.1.2 Increase in free cytosolic Ca2+ and AOS in cells upon chilling  

The two recent hypotheses that have attracted attention of researchers about chilling 

are the induction of injury by a rapid increase in the concentration of free (ionized) 

cytosolic Ca2+ (Minorsky 1985; Jian et al., 1999; Holdaway-Clarke et al., 2000), and 

by development of oxidative stress upon cooling of chilling-sensitive tissues 

(Hariyadi et al., 1993; Prasad et al., 1994).  

Cytosolic Ca2+ regulates numerous physiological processes, like 

phytohormone signal transduction, protoplasmic streaming, changes in membrane 

potential, and transport of cations (Poovaiah & Reddy, 1987). The activation of Ca2+-

dependent proteins and enzymes (protein kinases, phosphatases) affects protein 

phosphorylation and protein functioning, as well as operation of transcription and 

translation systems (Saijo et al., 2001) (Fig. 1.3). According to Lieberman and Wang 

(1982), the chilling-induced increase in cytosolic Ca 2+ in cells of chilling-sensitive 

plants leads to a fast (within several minutes) cessation of cytoplasm streaming and to  
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Fig. 1.3: Ca2+ and activated oxygen species (AOS) responses to chilling by sensitive 

plants (adapted from Raison & Lyons, 1986; McKersie & Lesham, 1994; Asada & 

Takahashi, 1987; Pei et al., 2000). 

 

changes in cytoplasm viscosity resulting to several physiological changes, such as 

inhibition  of  ethylene  biosynthesis,  inhibition  of  photosynthesis  and  activation or 

repression of phosphatase activity leading to a change in the phosphorylation stature 

of another protein. These processes provide further signal transduction pathways for 

chilling responses (Fig. 1.3) (Hughes & Dunn, 1996).  

Changes in cytosolic Ca2+ are intimately related to oxidative stress which also 

contributes significantly to chilling damage (Omran, 1980; Wise & Naylor, 1987; 

Prasad et al., 1994). Oxidative stress occurs in situations where the formation of 

activated oxygen species (AOS) exceeds their destruction and they begin to 

accumulate. Lyons (1973) proposed that altered membrane properties during chilling 
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stress, and following increased activation energy of membrane-bound enzymes, may 

lead to metabolic imbalance and accumulation of toxic metabolites. Activated oxygen 

species may form a significant proportion of these toxic molecules and it has been 

proposed that secondary chilling injuries in particular are mediated by them (Raison 

& Lyons, 1986). Prolonged presence of high levels of AOS, by activated formation of 

superoxide, singlet oxygen, hydrogen peroxide or hydroxyl radicals (McKersie & 

Lesham, 1994), is detrimental since they are highly reactive and may cause 

inactivation of enzymes, lipid peroxidation, protein degradation and damage to DNA 

(Asada & Takahashi, 1987). Several sites for subcellular production of AOS have 

been documented, the most well known being light reactions of photosystems I and II 

(PSI and PSII) in the chloroplast and mitochondrial electron transport (Elstner, 1991). 

In addition to spontaneous formation of AOS as a side-product of metabolic activities, 

active production of AOS takes place through NADPH oxidases in plasma 

membranes (McKersie & Lesham, 1994). Therefore, more serious damage is 

observed by AOS when plants are exposed to low temperature in combination with 

high light intensities (Inzé & van Montagu, 1995). Further evidence indicates that 

H2O2 and Ca2+ are both involved in a signaling cascade leading to the closure of 

stomata in Arabidopsis (Pei et al., 2000). 

 

1.2.1.3 Photosynthesis and Chilling Temperatures 

When low temperature events physically and metabolically restrict the demand for 

carbon, supply exceeds demand and photosynthesis is down regulated to correct this 

balance. This down regulation is affected by reduced RuBPC activity or reduced rate 

of RuBPC regeneration. The photosystems are the primary targets for chilling-

induced photoinhibition (Cavaco et al., 2003). Slower enzymatic reactions of the 
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thylakoid and carbon metabolism at cool temperatures can lead to a down-regulation 

of the efficiency of PSII electron transport as a result of increased quenching of 

excitation energy by the xanthophyll cycle and other processes in the antennae (Allen 

& Ort, 2001). In some chilling-sensitive plant species inhibition of photosynthetic 

electron transport may occur, despite relatively minimal reductions in variable to 

maximal fluorescence ratio (Fv/Fm1) due to photoinactivation of PSI rather than PSII 

(Sonoike, 1999; Hendrickson et al., 2004) when leaf temperature drops to around 

10°C. High light and low temperature may increase the net damage of PSII as well as 

slow down the repair processes responsible for recycling non-functional reaction 

centres (Krause, 1994; Long et al., 1994). Under most circumstances, the aggregate 

effect of these and other protective processes, coupled with a considerable capacity for 

repair, actually prevents chronic photoinhibition by excess irradiance. However, 

photoinhibition is frequently exacerbated by low temperature in plant species 

evolutionarily adapted for growth in warm climates (Long et al., 1994). In addition, 

highly chilling-sensitive herbaceous species such as tomato (Lycopersicon 

esculentum) experience dysfunction that is not attributable to PSII damage. The 

persistence of an inhibition of net CO2 assimilation rate following the chill in tomato 

arises from the inability of the chilled plants to light-activate fructose 1,6-

bisphosphatase and sedoheptulose 1,7-bisphosphatase, two key enzymes of the 

photosynthetic carbon reduction cycle (Hutchison et al., 2000). In addition to 

photosystems, chilling temperatures can limit photosynthesis via stomatal closure, 

inhibition of thylakoid electron transport and photophosphorylation, RuBPC 

inactivation, inhibition of key enzymes in sucrose and starch biosynthesis, and 

phloem loading (Allen & Ort, 2001; Huang & Guo, 2005). 

                                                 
1 Fv/Fm is a parameter widely used to indicate the maximum quantum efficiency of PS II. Fv/Fm is presented as a 
ratio of variable fluorescence (Fv) over the maximum fluorescence value (Fm). 
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Low temperature-induced stress also limits the growth of grapevine (Buttrose, 

1969). However grapevine leaves in the field remain relatively resistant to low 

temperature-induced net photoinactivation of PSII based on sustained, high variable 

chlorophyll fluorescence (Flexas et al., 2001; Hendrickson et al., 2003; 2004). This 

implies that one or more highly efficient energy dissipation mechanism(s) are induced 

in grapevine leaves by the combination of low temperature and high irradiance. 

 

1.2.2 Mechanisms of acclimation to low non-freezing temperatures 

Exposure of plants to low non-freezing temperatures leads to a number of transient 

biochemical processes, any of which could act as perception points for initiation of 

the signalling cascades also to elicit the stable developmental responses to chilling or 

freezing temperatures (Smallwood & Bowles, 2002; Zhu et al., 2007). This 

phenomenon is known as acclimation. By chilling acclimation, plants of tropical or 

subtropical origin may increase chilling resistance by exposure to a moderate 

temperature such as 14°C for several days (Cabané et al., 1993; Prasad et al., 1994; 

Chang et al., 2001) (Fig. 1.4). Similarly, by cold acclimation, insensitive plants to low 

non-freezing temperatures may induce freezing tolerance after exposure at 4°C 

(Steponkus, 1984; Thomashow, 1999; Xin & Browse, 2000; Browse & Xin, 2001). 

Although it was suggested that chilling and cold acclimation are mechanisms with 

quantitative and temporal differences (Provart et al., 2003), a few similarities can be 

observed. 

The main mechanisms that have been extremely involved in the phenomenon 

of chilling or cold acclimation are related to physiological and molecular 

modifications in plant membranes, accumulation of cytosolic Ca2+, accumulation of  



 

 

29

Accumulation of AOS and 
activation of scavenge system

Modification in plant 
membranes

Accumulation of 
[Ca2+

cyt]

Accumulation of sugars
and  prolines

Photosynthetic 
acclimation

Change in gene 
expression and protein 

synthesis

Acclimation 
to cold

Change in lipid 
composition

Increase in desaturated 
fatty acids

Increase fluidity of the 
cold acclimated 

membranes

Lower threshold 
temperature of 

membrane damage in 
acclimated plants

 

Fig. 1.4: Acclimation to cold induces changes in many different cellular processes 

(adapted from Hellergren et al., 1983; Cabané et al., 1993; Prasad et al., 1994; 

Uemura & Steponkus, 1999; Thomashow, 1999; Xin & Browse, 2000; Chang et al., 

2001; Browse & Xin, 2001). 

 

AOS and activation of scavenge system, sugars and proline accumulation, 

biochemical alteration in photosynthesis, changes in cold related genes, transcription 

factors and alteration in protein synthesis (Fig. 1.4). 

 

1.2.2.1 Modifications in plant cell membranes  

During periods of chilling/cold acclimation, plant membranes undergo both 

qualitative and quantitative modifications (Uemura & Steponkus, 1999; Xin & 

Browse, 2000) (Fig. 1.4). The lipid composition of the plasma membranes and 

chloroplast envelopes changes in a way that the threshold temperature of membrane 

damage is lowered when compared to non-acclimated plants (Uemura & Steponkus, 
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1999). This is due to the increasing fluidity of the cold-adapted membranes, which 

results from a change in lipid composition towards an increase in desaturated fatty 

acids (Vogg et al., 1998). Due to alterations in lipid membrane components, the 

protein fraction in these membanes also changes. The lipid-protein ratio of thylakoid 

membranes increases during adaptation to low temperatures (Vogg et al., 1998), as 

well as the activity of plasma membrane H+-ATPase (Hellergren et al., 1983). Lipid 

composition strongly influences the stability of the membrane in cold and the effect 

can be explained from the viewpoint of alterations in the lyotropic characteristics of 

the membrane (Steponkus et al., 1993). 

Stability of the plasma membrane is also affected by cytosolic and other 

membranous factors. For example because the occurrence of some of the freeze-

induced lesions associated with the plasma membrane requires the participation of 

some endomembranes (Webb et al., 1994), it is expected that the stability of the 

endomembranes also influence the stability of the plasma membrane in cold. In 

addition, since many studies have demonstrated a protective effect of sugars on the 

stability of membranes or lipid bilayers during freezing or dehydration (Heber et al., 

1981; Strauss & Hauser, 1986; Crowe et al., 1988; Crowe & Crowe, 1993), it is 

suggested that an accumulation of cytosolic sugars during cold acclimation may act to 

increase the cryostability of the plasma membrane in situ. Furthermore COR genes, 

such as COR15a (see chapter 1.2.2.4.1), that are regulated by low temperatures and 

directly affect the freezing tolerance of plants may increase the cryostability of the 

plasma membrane (Artus et al., 1996). 
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1.2.2.2 Role of Cytosolic Ca2+ and AOS in acclimation to low temperatures 

Cold stress evokes transient increases in intracellular Ca2+ level in plants (Knight et 

al., 1996; Polisensky & Braam, 1996; Lewis et al., 1997). These findings suggested 

that Ca2+ influx plays a major role in the cold stress response and also that an 

intracellular Ca2+ source might be involved in cold acclimation process. In addition, 

H2O2- activated Ca2+ channels mediated both the influx of Ca2+ in protoplasts and 

increases in cytosolic Ca2+ in intact guard cells (Pei et al., 2000). Recent studies on 

the regulation of cold responsive genes have investigated the role of Ca2+ in the signal 

transduction cascade. At the incidence of low temperature or oxidative stress, a 

mobilization of intracellular Ca2+ has been recorded (Price et al., 1994). Cytosolic 

Ca2+ signalling is also required for the induction of cold related genes during cold 

acclimation (Monroy & Dhindsa, 1995; Tähtiharju et al., 1997). In addition to serving 

as a link in a signalling cascade, the fluctuation of cytosolic Ca2+ could be one of the 

mechanisms that leads plants to remember what they have suffered (Knight et al., 

1996). This inference comes from the observation that Arabidopsis treated with either 

sublethal cold or H2O2 modifies its calcium signature in response to subsequent cold 

stress (Knight et al., 1996) (Fig 1.5).  

Over the last decades, it has become evident that exposure of plants to low 

non-freezing temperatures increases tolerance in plants with an increase in antioxidant 

enzymes, protecting cellular membranes and organelles from damaging effects of 

AOS (Foyer et al., 1991; Anderson et al., 1995; Scebba et al., 1998; 1999; Lee & Lee, 

2000; Kuk et al., 2003). The role of AOS in abiotic stress management has become a 

subject of considerable interest, given that relatively low levels have been implicated 

in processes leading to plant stress acclimation (Prasad et al., 1994; Doke et al., 1994; 

Foyer et al., 1997; Lopez-Delgado et al., 1998; Dat et al., 1998; Karpinski et al.,  
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Fig. 1.5: Role of [Ca2+
cyt] and H2O2 in acclimation to low temperatures (adapted from 

Price et al., 1994; Monroy & Dhindsa 1995; Tähtiharju et al., 1997; Pei et al., 2000). 

 

 

1999; Dat et al., 2000). This finding means that AOS are not simply toxic by-products 

of metabolism but also function as signalling molecules (Foyer et al., 1997; van Camp 

et al., 1998).  Among AOS, H2O2 seems best suited to play the role of signalling 

molecule due to its higher stability and longer half-life. If H2O2 serves as a stress 

signal, the fluctuation of H2O2 levels in plants should spatially and temporally reflect 

changes in the environment. Indeed, an oxidative burst is a common response to both 

biotic and abiotic stresses (Desikan et al., 2004). AOS levels peaked during chilling of  

non-acclimated maize seedlings, while it is further reported that maize seedlings 

pretreated with H2O2 acquire additional chilling tolerance as compared with control 
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plants (Prasad et al., 1994). These results suggest that chilling-induced AOS appears 

as a message to induce antioxidative systems in cells. Nowadays, increasing 

evidences support the idea that AOS also function as signalling molecules that 

modulate the expression of various genes, including those encoding antioxidant 

enzymes and modulators of H2O2 production (Neill et al., 2002). 

 

 1.2.2.3 Accumulation of cryoprotectants  

During exposure to low non-freezing temperatures, accumulation of low molecular 

weight compounds is observed in numerous species and their distribution is species 

specific (Kushad & Yelenosky, 1987; Salerno & Pontis, 1989; Hekneby et al., 2005; 

Patton et al., 2007). Such compounds include the following: 

 

a) proline 

The accumulation of free proline is often associated with resistance of plants to 

numerous stresses and particularly low temperature (Ait-Barka & Audran, 1997; 

Dörffling et al., 1997; Wang et al., 2008). Proline has been suggested to play multiple 

roles in plant stress tolerance, as a mediator of osmotic adjustment (Yoshiba et al., 

1997), a stabilizer of proteins and membranes (Chen & Li, 2002), and inducer of 

osmotic stress-related genes (Iyer & Caplan, 1998). Proline also acts as a scavenger of 

AOS (Saradhi et al., 1995), a readily available source of nitrogen and carbon 

(Brugière et al., 1999), and a source of reduction equivalents during recovery from 

stress (Hare & Cress, 1997). The positive correlations between the accumulation of 

endogenous proline and improved cold tolerance have been found mostly in chilling-

insensitive plants, such as barley (Chu et al., 1978), rye (Koster & Lynch, 1992), 

winter wheat (Dörffling et al., 1997), grapevine (Ait-Barka & Audran, 1997), potato 
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(Swaaij et al., 1985; 1986) and Arabidopsis thaliana (Xin & Browse, 1998; Nanjo et 

al., 1999). Most chilling-sensitive plants, which also accumulate proline under 

chilling, did not acquire improved cold tolerance (Chu et al., 1978; Kushad & 

Yelenosky, 1987) unless a high concentration of proline was applied prior to stress 

(Duncan & Widholm, 1987; Xin & Li, 1993). It appears that proline may have the 

potential for alleviating chilling injury in chilling-sensitive plants, but for some reason 

this system fails under natural conditions.  

Proline accumulation during osmotic stress like cold, is mainly due to 

increased synthesis and reduced degradation. Although proline transport certainly 

plays an important role in proline distribution, its role during stress has been poorly 

studied (Rentsch et al., 1996). In plants, there are two different precursors for proline. 

The first pathway is from glutamate, which is converted to proline by two successive 

reductions catalyzed by pyrroline-5- carboxylate synthase (P5CS) and pyrroline-5-

carboxylate reductase (P5CR), respectively (Hu et al., 1992). An alternative precursor 

for proline biosynthesis is ornithine (Orn), which can be transaminated to P5C by 

Orn-d-aminotransferase (OAT), a mitochondrial located enzyme (Kavi Kishor et al., 

2005). The proline degradation is the reverse process of proline biosynthesis and 

catalyzed by Pro dehydrogenase (PDH) and P5C dehydrogenase (P5CDH). Proline 

biosynthesis occurs in the cytosol and in the plastids (like chloroplasts in green 

tissues) while proline degradation takes place in mitochondria (Elthon & Stewart, 

1981; Rayapati et al., 1989; Szoke et al., 1992). 

 

b) carbohydrates 

According to several studies, carbohydrate content also influences chilling sensitivity. 

For example, the decrease of sugars by dark treatment of cotton seedlings (Rikin et 
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al., 1981) and other chilling-sensitive species (King et al., 1982) prior to chilling 

increased the severity of chilling injury. Also, the reducing sugar content in grapefruit 

peel correlated with decreased chilling sensitivity of the fruits (Purvis et al., 1979; 

Purvis & Grierson 1982). Treatment of rice seedlings with fructose or glucose prior to 

chilling increased their resistance to chilling injury (Tajima & Kabaki, 1981), while 

cotton cotyledon discs floated on a sucrose solution in the dark were less injured by 

chilling temperatures (Rikin et al., 1981). On the other hand, chilling resistance of 

tomato seedlings decreased when starch and sugar content fell markedly during the 

dark period (King et al., 1988). According to the authors, increased concentrations of 

sugars were detected 15 min after the start of the light period, suggesting that changes 

in chilling sensitivity over the diurnal period are regulated by the light cycle. It also 

suggests that increased sensitivity at the end of the dark period could be due to 

carbohydrate depletion, and that chilling tolerance following light exposure is likely 

due to carbohydrate accumulation or closely related events. 

Carbohydrates are also easily detectable in cold tolerant species (Pollock & 

Lloyd, 1987). Among them, carbohydrates like sucrose, sorbitol and raffinose were 

the first protective substances described in plants (Levitt, 1980). The oligosaccharides 

raffinose and stachyose are especially associated with cold hardiness, low temperature 

and dormancy, but sucrose also enhances cold hardiness and desiccation tolerance of 

buds in woody plants (Stushnoff et al., 1997). Sucrose is the most easily detectable 

sugar in cold-tolerant species, increasing several folds during exposure to low 

temperature (Salerno & Pontis, 1989). If its accumulation is impeded, cold tolerance 

is lost (Guy et al., 1980). The soluble carbohydrate content of grasses for example can 

undergo a 10-fold increase within 8 h of transfer from a warm to a cold environment 

(Pollock, 1984).  
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Fig. 1.6: Time scale of carbohydrates and transcript accumulations in cold acclimated 

plants (adapted from Fischer & Höll, 1991; Sasaki et al., 1996; Ögren et al., 1997; 

Greer et al., 2000). 

 

 

In temperate perennials and many herbaceous species, when starch 

concentrations decrease, the concentrations of soluble sugars increase in cold 

acclimating tissues (Fischer & Höll, 1991; Ögren et al., 1997; Greer et al., 2000). 

During exposure to low-temperatures, starch content typically declines by hydrolysis, 

and free saccharides exhibit a direct quantitative increase (Sakai &Yoshida, 1968; 
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Pollock & Lloyd, 1987). Although some of these responses to low temperature could 

be viewed as incidental consequences that lead to shifts in carbohydrate status, the 

breakdown of starch in many species at precisely the same time with soluble sugars 

accumulation suggests a more important purpose. 

However, an increase in both soluble sugars and starch has been observed 

during cold acclimation (Fig. 1.6). For example, in cabbage seedlings exposed to non-

freezing low temperature (5°C), starch and all soluble sugars in leaves (except myo-

inositol) increased gradually during cold acclimation (Sasaki et al., 1996). However, 

the induced freezing tolerance was lost after only 1 d of acclimation at control 

temperatures, and this change was associated with a large reduction in sugar content. 

In grapevine, with the onset of cool autumn temperatures, carbohydrate 

metabolism shifts from production of disaccharides (sucrose) to monosaccharides 

(fructose and glucose) and raffinose (Hamman et al., 1996; Ait Barka & Audran, 

1996). The peak of raffinose production in the dormant vine occurs at midwinter, 

precisely when the vine is at its peak of cold acclimatization (Ait Barka & Audran, 

1996). It appears that raffinose in water solution acts as a cryoprotectant or natural 

antifreeze inside the cell. It lowers the freezing point of the cellular water and 

prevents it from freezing at all but extreme temperatures (Hamman et al., 1996). In 

addition to their role as cryoprotective components for plants, carbohydrates may 

have a nutritional role during acclimation to low non-freezing temperatures (Trunova, 

1982) and also during recovery from freezing-stress (Eagles et al., 1993).  

Carbohydrate accumulation at low temperatures may be explained through the 

photosynthesis process (Fig. 1.6). At low temperatures, the photosynthetic energy 

capture is reduced to a lesser degree than the metabolic utilization processes and this 

leads to surplus-reducing potential in the form of pyridine nucleotides (NADH, 



 

 

38

NADPH), and ATP production (Levitt, 1980), which can be channelled into CO2 

fixation processes. In this case, active growth is almost always reduced or suspended 

resulting in decreased demand for the products of photosynthesis and finally their 

accumulation. Alternatively, carbohydrate accumulation at low temperatures may be 

explained through the activation of specific enzymes (Hurry et al., 1995). According 

to this, even if low temperatures lead to the inhibition of sucrose synthesis and 

photosynthesis, the biochemical and physiological adaptation to low temperatures 

include the post-translational activation and increased expression of enzymes of the 

sucrose synthesis pathways and the changed expression of enhanced activities of 

Calvin cycle enzymes (Savitch et al., 1997; Stitt & Hurry, 2002) and, in particular, 

with enhanced activities of the cytosolic fructose-1,6-bisphosphatase, sucrose 

phosphate synthase and sucrose synthase (Hurry et al., 1994). 

The time-scale of increase in freezing tolerance and stress-gene-expression in 

plants is much longer (Dunn et al., 1994; Pearce et al., 1996), indicating that changes 

in sugar supply may precede acclimation and cold-induced gene expression. In 

Arabidopsis thaliana, which acclimates much more rapidly than barley, sugar 

accumulation is detectable within 2 h from transfer to cold, when the increase in 

stress-gene expression is only just detectable (Fig. 1.6), and precedes measured 

increase in freezing tolerance (Wanner & Juntilla, 1999).  

There could be a causal connection between the accumulation of sugars and 

freezing-tolerance, because providing soluble carbohydrates to plants or cultured cells 

induces freezing tolerance (Steponkus & Lanphear, 1967; Tumanov et al., 1968; 

Leborgne et al., 1995; Travert et al., 1997). Soluble carbohydrates could function 

directly to confer freezing tolerance through colligate and non-colligate effects; even 
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if it does not necessary indicate that they have a regulatory role (Levitt, 1980; Crowe 

et al., 1992; Travert et al., 1997).  

 

1.2.2.4 Expression of cold/chilling related genes and the role of CBF 

transcription factors 

Plant acclimation to low temperatures causes changes in the function of several 

cold/chilling related genes and proteins (Thomashow, 1999; 2001). The process can 

involve the modification of pre-existing proteins and the up- and down-regulation of 

gene expression or protein synthesis. New gene expression and protein synthesis has 

also been observed during acclimation. Many cold-induced proteins and genes have 

been studied in several plant species (Guy, 1990; Howarth & Ougham 1993; Hughes 

& Dunn 1996; Thomashow, 1999). According to these studies, it is suggested that 

cold/chilling induced gene activity may aid in the metabolic adjustment to low non-

freezing temperatures or confer freezing tolerance to tissues (Guy, 1990). Stress-

induced genes may also be involved in the signal transduction of the stress-response 

(Ingram & Bartels, 1996; Thomashow, 1999).  

 

1.2.2.4.1 Changes in cold/chilling related gene expression  

Nowadays, a wide variety of cold regulated genes (COR) has been isolated from cold-

acclimated plants (Svensson et al., 2006). The cloned genes can be classified into 

those whose protein products function directly in protecting against environmental 

cold/chilling stress and in those which regulate gene expression during adaptation 

response (Shinozaki & Yamaguchi-Shinozaki 1996; Fowler & Thomashow, 2002) 

(Fig. 1.7). Further classification divides gene products into those which mediate  
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Fig. 1.7: Classification of cloned genes in chilling/cold acclimation (adapted from 

Shinozaki & Yamaguchi-Shinozaki, 1996; Thomashow, 2001; Fowler & Thomashow, 

2002). 

 

 

biochemical and physiological changes required for growth and development at low 

temperatures and those whose gene products have a direct role in chilling and freezing 

tolerance (Thomashow, 1998). During cold acclimation, the battery of COR gene 

products accumulates simultaneously with increased freezing tolerance. A common 

characteristic that these products share, is the property of being very hydrophilic and 

remaining soluble upon boiling (Thomashow, 1998). They also have relatively simple 

amino acid compositions and sequence motifs that are repeated several times. 
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However, the role of COR products in cold acclimation has been clarified only for a 

few genes. One of the most intensively studied cold-responsive genes is COR15a, the 

gene product (a small, plastid-targeted polypeptide that is processed to a mature form 

called COR15am) which is targeted to chloroplasts during cold acclimation 

(Thomashow, 1994). Over-expression of COR15a in transgenic plants resulted in 

increased cryostability of plasma membranes (Artus et al., 1996) but had no effect on 

the freezing survival of whole plants (Jaglo-Ottosen et al., 1998). 

In contrast to cold-acclimation and freezing tolerance, much less is known 

about molecular changes affecting regulatory and biochemical mechanisms triggered 

to optimize growth at low but above-freezing temperatures. Transcriptome of 

Arabidopsis under normal (22°C) and chilling (13°C) conditions by Provart et al. 

(2003) have surveyed the molecular responses of a chilling-resistant plant to 

acclimate to a moderate reduction in temperature. The mRNA accumulation of 

approximately 20% of about 8,000 genes analyzed was affected by chilling. In 

particular, a highly significant number of genes involved in protein biosynthesis 

displayed an increase in transcript abundance. The mRNA accumulation profiles for 

the chilling-lethal mutants were highly similar and included extensive chilling-

induced and mutant-specific alterations in gene expression. The expression pattern of 

the mutants upon chilling suggests that the normal function of the mutated loci 

prevents a damaging widespread effect of chilling on transcriptional regulation. This 

reference gene list, including genes related to lipid metabolism, chloroplast function, 

carbohydrate metabolism and free radical detoxification, represents a potential source 

for genes with a critical role in plant acclimation to suboptimal temperatures (Provart 

et al., 2003). 
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1.2.2.4.2 Role of CBF trascription factors in cold acclimation 

The signal transduction pathways leading to expression of COR involves a regulatory 

network, where a few regulatory genes control genes involved in the cold response 

(Shinozaki & Yamaguchi-Shinozaki, 2000; Fowler & Thomashow, 2002) (Fig. 1.8). 

An attempt to isolate a regulatory element responsible for the initiation of the COR-

gene transcription at low temperatures has been performed mainly in Arabidopsis 

(Heather et al., 2006). COR genes are also expressed at warm temperature with the 

influence of the CBF (C-repeat Binding Factor) family of transcriptional activators 

(Stockinger et al., 1997; Gilmour et al., 1998; Skinner et al., 2005), also known as 

DREB1 (Dehydration Response Element Binding) proteins (Liu et al., 1998; Shinwari 

et al., 1998). CBF /DREB-regulated COR genes contain in their promoters a cold- and 

dehydration-responsive DNA regulatory element known as the CBF/DRE (Baker et 

al., 1994; Shinozaki &Yamaguchi-Shinozaki, 1996). The genes CBF1, CBF2, and 

CBF3 (also known as DREB1b, DREB1c, and DREB1a, respectively), are located in 

tandem on chromosome 4 (Gilmour et al., 1998; Shinwari et al., 1998). 

Overexpression of CBF1 in Arabidopsis was subsequently shown to activate 

expression of the entire battery of known CBF/DREB regulated COR genes and to 

enhance whole plant freezing survival without a low temperature stimulus (Jaglo-

Ottosen et al., 1998). Additional studies have shown that CBF1 is a member of a 

small gene family encoding nearly identical   proteins (Gilmour et al., 1998; Shinwari 

et al., 1998). Overexpression of CBF3 in Arabidopsis, like overexpression of CBF1, 

activates COR gene expression and enhances freezing tolerance at warm 

nonacclimating temperatures (Liu et al., 1998; Kasuga et al., 1999). Furthermore, the 

homolog of the CBF/DREB1 proteins CBF4 (up-regulated by drought stress, but not 

by low  temperature),  overexpressed in transgenic Arabidopsis plants results   
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Fig. 1.8: Role of CBF trascription factors in cold/chilling acclimation (adapted from 

Liu et al., 1998; Gilmour et al., 1998; Shinwari et al., 1998; Kasuga et al., 1999; 

Shinozaki & Yamaguchi -Shinozaki, 2000; Fowler & Thomashow, 2002). 

 

 

in the activation of C-repeat/dehydration-responsive element containing downstream 

genes that are involved in cold acclimation (Haake et al., 2002).  

Although, it is currently unknown whether molecular mechanisms for cold 

acclimation and acclimation to chilling temperature are related, current data suggest 

that heterologous CBF1 expression can also increase the resistance of plants to 

chilling (Hsieh et al., 2002). All three CBF genes are cold-induced. Indeed, CBF 
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transcript levels increase within 15 min after transferring plants to low temperature 

followed at approximately 2 h by accumulation of transcripts for the target CBF/DRE-

regulated COR genes (Mantyla et al., 1995). The accurate mechanism whereby the 

CBF genes are activated by low temperatures does not involve autoregulation 

(Gilmour et al., 1998). A few years ago, it was shown that cold induction of the three 

CBF genes is controlled by a set of redundant and interacting transcription factors 

(Zarka et al., 2003; Chinnusamy et al., 2003). Some of these transcription factors 

cross-regulate each other (Novillo et al., 2004; Agarwal et al., 2006). The cold-

induction of CBFs is also controlled by circadian clock (Fowler et al., 2005).  

Many of these genes are also induced by abscisic  acid  (Knight et al, 2004) or 

by dehydration (Shinozaki & Yamaguchi-Shinozaki, 2000), which is consistent with 

the fact that these two processes may increase freezing tolerance  when overexpressed 

in transgenic plants (Jaglo-Ottosen et al., 1998; Liu et al., 1998) (Fig. 1.8). However, 

the existence of CBF-parallel pathways involved in cold-acclimation has been 

supported by transcription profiling of plants overexpressing the three members of the 

CBF family (Fowler & Thomashow, 2002). On the other hand, the Arabidopsis 

mutant eskimo1 displays freezing tolerance in the absence of cold treatments without 

changes in expression of the components of the CBF-pathway but with high level of 

accumulated proline suggesting that distinct signalling pathways activate different 

aspects of cold acclimation and that activation of one pathway can result in 

considerable freezing tolerance without activation of other pathways (Xin & Browse, 

1998). 

Although all these studies have increased the knowledge of the molecular 

basis of cold acclimation and CBF pathway in herbaceous species, very little is known 

concerning woody plants. Published information on a CBF gene from woody plants 
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are the functional analysis of PaCBF from Prunus avium (Kitashiba et al., 2004) and 

the EguCBF1a and EguCBF1b isolated from Eucalyptus gunnii (El Kayal et al., 

2006).  

Three CBF/DREB1-like genes, CBF 1-3, have also been isolated from both 

freezing-tolerant wild grape (V. riparia) and freezing-sensitive cultivated grape (V. 

vinifera) (Xiao et al., 2006). Expression of the endogenous CBF genes was low at 

ambient temperature and enhanced upon low temperature (4°C) treatment, first for 

CBF1, followed by CBF2, and about 2 d later by CBF3. No obvious significant 

difference was observed between V. riparia and V. vinifera genes. The expression 

levels of all three CBF genes were higher in young tissues than in older tissues. 

CBF1, 2 and 3 transcripts also accumulated in response to drought and exogenous 

abscisic acid (ABA) treatment. More recently, the isolation of another CBF/DREB1-

like gene has been reported. CBF4 has been isolated from both freezing-tolerant wild 

grape (V. riparia) and freezing-sensitive cultivated grape (V. vinifera) (Xiao et al., 

2008). Expression of the endogenous Vitis CBF4 genes was low at ambient 

temperature, but enhanced upon exposure to low temperature (4°C). Uncommon for 

CBF genes, this expression was maintained for several days. No significant difference 

in expression pattern was observed between V. riparia and V. vinifera. Vitis CBF4 

was expressed in both young and mature tissue, in contrast to the previously described 

Vitis CBF1-3. Altogether, these results suggest that CBF4 represents a second type of 

CBF in grape that might be more important for the over-wintering of grapevine plants. 

A question thus raised is whether the CBF transcription factors are limited to 

activating the expression of COR genes encoding cryoprotective polypeptides, or 

alternatively, have a role in activating multiple components of the cold acclimation 

response. Overexpression of CBF3 in Arabidopsis results in multiple biochemical 
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changes associated with elevation of level of proline and total soluble sugars, 

including sucrose, raffinose, glucose, and fructose (Gilmour et al., 2000). 

Accumulation of proline and soluble sugars also occurred in non-acclimated 

transgenic plants that overexpressed the CBF-1 and CBF-2 (Gilmour et al., 2004). 

These results lead to conclusion that CBF integrates the activation of multiple 

components of the cold acclimation response.  

 

1.2.2.5 Expression of homology to pathogenesis-related (PR) genes and synthesis 

of antifreeze proteins (AFPs) 

Several cold-induced genes have been studied in several plant species encoding 

several proteins like cryoprotective proteins (Hincha et al., 1990). In the last decades, 

research has been focused on specific proteins with antifreeze activity that accumulate 

in apoplast upon cold acclimation, offering plant resistance against freezing (Griffith 

et al. 1992; Yaish et al., 2006) (Fig. 1.9). These proteins have been found in many 

overwintering vascular plants (Urrutia et al., 1992; Duman & Olsen, 1993; Doucet et 

al., 2000; Zamani et al., 2003). Antifreeze activity is present in overwintering plants 

only after they have been exposed to low temperatures and only in plants that tolerate 

the presence of ice in their tissues (Griffith & Yaish, 2004).  

AFPs have been isolated and characterized from the apoplast of winter rye 

leaves (Huang & Duman, 2001). These proteins were identified as β-1,3-glucanase-

like proteins, chitinase-like proteins, and thaumatin-like proteins (Hon et al., 1995) 

and as polygalacturonase inhibitor proteins (Meyer et al., 1999; Worrall et al., 1998). 

Antifreeze activity has been observed in different parts of overwintering plants 

(Urrutia et al., 1992; Duman & Olsen, 1993; Doucet et al., 2000). AFPs are localized 
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Fig. 1.9: Accumulation of antifreeze proteins (AFPs) in cold-acclimated plants with 

antifungal activity (adapted from Griffith et al., 1992; Urrutia et al., 1992; Hon et al., 

1995; Yeh et al., 2000; Huang & Duman, 2001; Yaish et al., 2006). 

 

in the epidermis and in cells surrounding intercellular spaces in cold-acclimated 

plants. Although they were present in non-acclimated plants, they were found in 

different locations and did not exhibit antifreeze activity, which suggests that different 

isoforms of pathogenesis-related proteins are produced at low temperature 

(Antikainen et al., 1996). Until now, no plant has been reported to have constitutive 

antifreeze activity. Rather all studies have shown that transcripts and translation 

products of AFP genes accumulate during cold acclimation (Griffith et al. 1992; 

Urrutia et al., 1992; Hon et al., 1995; Yeh et al., 2000; Huang & Duman, 2001). The 
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conditions used for cold acclimation mimic autumn when days become shorter and 

colder. Therefore, low temperature and day length are important environmental cues 

for AFP production (Marentes et al., 1993). 

Similar proteins are known to be related to the mechanism of plant disease 

resistance and are therefore classified as PR proteins (Stintzi et al., 1993; Ryals et al., 

1996) (Fig 1.9). PR proteins are released into the apoplast in response to pathogen 

infection and act together to degrade fungal cell walls enzymatically and inhibit 

fungal enzymes. Psychrophilic pathogens such as snow molds prosper under snow 

cover where the temperatures are nearly constant, the humidity is high (Gaudet et al., 

2000; Snider et al., 2000), and it is difficult for host plants to mount a de novo defence 

at subzero temperatures. By accumulating PR proteins during cold acclimation, 

overwintering grasses and cereals acquire a systemic, nonspecific, pre-emptive 

defence against these pathogens and exhibit greater disease resistance (Gaudet et al., 

2000; Tronsmo, 1993a,b; Hiilovaara-Teijo et al., 1999). In winter rye, the AFPs 

exhibit antifungal, hydrolytic activities and ice-binding activity (Hiilovaara-Teijo et 

al. 1999). Therefore, cold-acclimated plants are more resistant to injury caused either 

by snow molds or by freezing (Hiilovaara-Teijo et al., 1999). Genetic studies have 

shown that there is genotypic correlation between freezing tolerance and snow mold 

resistance indicating that the same genetic traits are involved in these two 

physiological processes (Tronsmo, 1993b). Although, the PR proteins induced in 

winter rye plants infected by pathogens or treated with salicylic acid or abscisic acid 

in warm climate, lack antifreeze activity (Hiilovaara-Teijo et al., 1999; Yu & Griffith, 

2001), the analysis of plant-microbe interaction could further clarify not only the 

phenomena about the responses of plants to cold, but also how this symbiotic relation 

could be beneficial for plant resistance to low temperatures.  
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1.3 Plant-microbe Interaction 

In the field, plants interact with a large and diverse community of beneficial and 

deleterious microorganisms. This plant-microbe relationship very often leads to the 

establisment of a mutualistic or pathogenic interaction (Schippers et al., 1987). In 

general, plant-microbe interaction involves complex coordinated cellular processes 

that determine the beneficial or negative outcomes of this relationship. During the 

early stages of this association, there is a considerable communication between plant 

and microbe in which signal molecules play an essential role (Pozo et al., 2005).  

In plants, 40% of carbon- and nitrogen-containing compounds produced by 

photosynthesis are released into the surrounding soil of roots (Lynch & Whipps, 

1991). Microorganisms attracted by this nutritious environment, use the plant 

exudates and lysates for their growth and multiplication on the root surface and in 

adjacent rhizosphere soil (Lynch & Whipps, 1991). Many pathogenic fungi and 

bacteria can damage the plants, causing diseases that significantly contribute to the 

overall loss in crop yield worldwide (Strange & Scott, 2005; Savary et al., 2006; 

Montesinos, 2007). On the other hand, beneficial microorganisms such as mycorrhizal 

fungi and many plant growth-promoting rhizobacteria (PGPR) can protect the plants 

against several adverse environmental stresses (Waller et al., 2005; Chandanie et al., 

2006). In this extremely diverse rhizosphere microflora, a dynamic interplay exists 

between microorganisms mediated by synergistic and antagonistic interaction 

(Garbeva et al., 2004). These many different regulatory signals that are exchanged 

between fungi, bacteria and plant roots form effectively a highly dynamic below 

ground communication network (Hirsch et al., 2003).  
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1.3.1 Plant-Pathogen Interaction  

The large variety of sophisticated mechanisms involved in plant responses upon 

pathogen attack, can be divided in three classes according to distinct temporal and 

spatial expression patterns of different reactions observed in several systems 

(Kombrink & Somssich, 1995). The immediate response of plants occurring at the site 

of pathogen penetration is known as hypersensitive response (HR) (Kombrink & 

Schmelzer, 2001). The HR in directly invaded plant cells starts with recognition and 

transduction leading frequently to rapid cell death (Goodman & Novaky, 1994). 

Accompanied by a large set of biochemical changes (Atkinson, 1993), HR stimulates 

secondary metabolic pathways (Stoessl et al., 1976, Legrand, 1983), producing 

phytoalexins and phenolics, some of which are incorporated into the cell wall for its 

reinforcement (Dixon & Lamb, 1990). Many of these defence responses have been 

shown to result from transcriptional activation of defence genes (Lamb et al., 1989).  

HR is accompanied by biochemical changes not only at the site of infection 

but also at distant sites in the plant (Madamanchi & Kuc, 1991; Sticher et al., 1997). 

The biochemical changes in the close vicinity of infection sites result in direct/indirect 

inhibition of pathogens. Indeed, the synthesis of numerous secondary products 

(Kombrink & Somssich, 1995) and the production of a broad range of defence related 

proteins with antimicrobial activity can be highly synthesized in the zone surrounding 

the pathogen infection (Stintzi et al., 1993). The phenomenon of induced resistance 

bordering pathogen infection zone is known as local acquired resistance (LAR) (Ross, 

1961a).  

In addition to HR and LAR, a systemic activation of genes encoding 

pathogenesis-related (PR) proteins is associated with a resistance beyond the LAR 

zone. This acquired resistance was called systemic acquired resistance (SAR) (Ryals 
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et al., 1996). Several studies have shown that SAR provides a significant level of 

resistance against a broad range of pathogens (Ryals et al., 1996; Jackson & Taylor, 

1996; Durrant & Dong, 2004). Many of these plant defense responses have been 

extensively studied in elicitor-treated, cultured plant cells and have been found to be 

essentially the same in such simplified systems as in true plant/pathogen interaction 

(Hahlbrock et al., 1995; Somssich & Hahlbrock, 1998; Cordelier et al., 2003). A 

model in which pathogen restriction is achieved by the combined effects of HR, LAR 

and SAR, has been proposed by Dorey et al. (1997) under elicitation of tobacco 

leaves with glycoprotein elicitor (Fig. 1.10). According to the authors, the perception 

by plant cells of a pathogenic signal inducing an HR, leads to the death of those cells 

by accumulation of salicylic acid accumulating also the transcripts of early expressed 

genes but not those encoding PR proteins. SA production also occurs in zones 

surrounding HR cells. Because death is not induced in these cells, SA originated from 

the HR can accumulate high amounts of gene products, including PR proteins 

(Cordelier et al., 2003). This endogenous signalling triggers the strong defense 

responses resulting in production of defense proteins and metabolites (LAR) (Dorey 

et al., 1998). This signal spreads systemically throughout the plant according to SAR. 

The synergistic reaction of HR, LAR and SAR induced in plant as defense reaction 

against pathogens are sufficiently effective to protect plants in many cases from 

deleterious organisms. 
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Fig. 1.10: Proposed spatio-temporal scheme of signaling events and metabolic 

alteration of hypersensitive reaction in tobacco leaves elicitated by glycoprotein 

(adapted from Dorey et al., 1997). The perception by plant cells of a pathogenic 

signal inducing an HR leads to the death of those cells. HR cells express defense 

genes leading to accumulation of SA. However, due to the timing of gene expression 

and cell death, sustained transcription and translation have time to proceed to some 

extent for early defense genes but not for others, such as PR genes. A similar 

sequence of defense gene induction and SA production also occurs in a narrow zone 

of cells surrounding the HR cells. Because cell death is not induced in narrow zone, 

the defense gene products can accumulate in high amounts. An endogenous signaling 

would originate from the HR cells and trigger the strong defense responses found in 

this zone: the resulting defense proteins and metabolites would contribute to LAR. 

According to the author, it is not clear whether LAR and SAR are mediated by 

different signals or different signal mechanisms. Indeed, a rapid decay of a single 

signal along the way of translocation could explain the occurrence of LAR and SAR. 

By this study, it is observed that elicitation by glycoprotein can stimulate the 

resistance of tobacco leaves with similar way as induced by infection with tobacco 

mosaic virus (TMV), proposing  that a high degree of resistance occurred similarly in 

a zone surrounding to pathogen-induced HR, and that SAR occurs immediately 

beyond the LAR tissue (Ross, 1961a,b). 
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1.3.1.1 Systemic Acquired Resistance (SAR) 

According to SAR, the infection of plants by pathogenic bacteria, viruses or fungi 

results in synthesis of a signal at the site of infection, that spreads systemically 

throughout the plant, leading to the expression of a broad-spectrum long lasting 

immunity in both infected and non-infected plant parts (Ryals et al., 1994; Jackson & 

Taylor, 1996). Initially, SAR was thought to be equally effective against many 

different pathogens, but few studies suggested intra-and interspecific variability about 

the type, the amount and the time course of the responses (Schneider & Ullrich, 1994; 

Botha et al., 1994; Schneider et al., 1996). SAR gene expression for example, was 

first detected in tobacco about six days after inoculation (Ryals et al., 1994), but as 

early as seven hours after a primary infection in cucumber (Schneider et al., 1996). 

In both species, patterns in the activity of the various hydrolytic enzymes 

depended on the inducer showing that the response by SAR depends on the precise 

identity of both partners (Schneider & Ullrich, 1994). Variation in several ecotypes 

occurs particularly with respect to the efficacy of defense against pathogens. In 

Arabidopsis thaliana, accessions vary in their resistance to cauliflower mosaic virus 

(Callaway et al., 1996), while some lines of barley differ in their ability to produce 

chitinases and glucanases (Ignatius et al., 1994). Recent studies showed that SAR 

responses in Arabidospis can be age-dependent (Kus et al., 2000; Zeier, 2005), while 

several environmental parameters like light can influence the establishement of SAR 

(Zeier et al., 2004). 

The unrelatedness between the induced defense and the inducing pathogens is 

another characteristic of SAR. Inoculation for example, of tomato plants with tobacco 

necrosis virus, can induce resistance against Phytophthora infestans (Anfoka & 

Buchenauer, 1997). 
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 1.3.1.2 The Signal of SAR 

The efficacy of SAR against a variety of pathogenic microorganisms has been 

convincingly demonstrated (Hoffland et al. 1996; Anfoka & Buchenauer, 1997; Jeum 

et al., 2000; Block et al., 2005). A characteristic of SAR is the accumulation of SA 

(Kessmann et al., 1994; Ryals et al., 1996; Kubota & Nishia, 2006). Since SA can 

indeed be synthesized in one leaf and translocated to the next (Shualev et al., 1995; 

Molders et al., 1996), this accumulation occurs both locally and at lower levels 

systemically. The reverse phenomenon occurs, with exogenous application of SA to 

induce SAR in several plant species (van Loon et al., 1982; Gaffney et al., 1993; 

Thulke & Conrath, 1998). Both pathogen- and SA-induced resistance are associated 

with the accompanying induction of several families of PR proteins. The induction of 

PR proteins is an important marker of SAR since they are invariably linked to the 

systemic induced state upon necrotizing infections (Ward et al., 1991; Kessmann et 

al., 1994; Nawrath & Métraux, 1999). According to Maleck et al. (2000), SAR 

involves the induction of genes encoding PR proteins, and the accumulation of PR 

proteins such as chitinase, 1,3-β-glucanases, lysozymes and permatins which may 

protect against further infections (Ryals et al., 1996). Therefore, the important 

contribution of these proteins to the increased defensive capacity of induced tissues 

has been extensively suggested.  

The pathways leading from a first and locally restricted infection to induction 

of chitinase and 1,3-β-glucanases is not well understood but SA seems to be involved 

in this transduction (Malamy et al., 1990; Métraux et al., 1990; Delaney et al., 1994; 

Thulke & Conrath, 1998). The specific role of SA in SAR induction was shown using 

transgenic plants that expressed the bacterial salicylate hydroxylase (NahG) gene and 

thus, cannot accumulate SA. Transgenic NahG plants were incapable of developing 
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SAR and PR gene activation upon pathogen infection, indicating that SA is a 

necessary intermediate factor in signalling pathways of SAR (Gaffney et al., 1993; 

Delaney et al., 1994; Kachroo et al., 2000). Thus, SA is an important regulator of 

basal resistance against a wide spectrum of pathogens (Wildermuth et al., 2001; 

Jagadeeswaran et al., 2007). On the other hand, grafting studies between wild-type 

tobacco plants and plants that are unable to accumulate significant amounts of SA 

have shown that the large increase in SA accumulation in inoculated leaves is not 

necessary for SAR induction, suggesting that SA is not the primary systemic signal 

(Rasmussen et al., 1991; Willits & Ryals, 1998). Vernooij et al. (1994) suggested that 

most likely SA is not the distant signal that leads to induction of resistance in leaves 

systemically but instead, SA is required for the transduction of the perceived long-

distance signal leading to the onset of SAR. Furthermore, SAR is dependent on the 

level and activity of NPR1, a protein that interacts with transcription factors that 

regulate the expression of defense-related genes (Zhang et al., 1999; Fan & Dong 

2002; Wang et al., 2005). PR proteins produced in response to pathogens can also be 

induced by the plant hormone ethylene (Boller et al., 1983; Vierheilig et al., 1994; 

Verbeme, 2003). Although the induction of chitinase and 1,3-β-glucanases by the 

stress hormone ethylene has been shown in several plant species, non-responsive to 

ethylene plants showed normal sensitivity to the SAR-inducing chemicals SA and 2,6-

dichloroisonicotinic acid with respect to SAR gene induction and pathogen resistance 

(Lawton et al., 1994). In addition to pathogen infection, SAR can be induced 

experimentally by certain chemicals, i.e. benzothiadiazole (Friedrich et al., 1996; 

Lawton et al., 1996; Yu & Muehlbauer, 2001), and by mechanical wounding (Ignatius 

et al., 1994; Kim et al., 2003).  
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1.3.1.3 Stimulation of grapevine defense mechanisms against pathogens 

Grapevine has multiple defense systems against pathogenic microorganisms. A 

common defense system is the block of entrance door to pathogens, by stomata 

closure and/or secretion of substances such as callose (Donofrio & Delaney 2001; 

Gindro et al., 2003). The productions of toxic compounds, like phytoalexins, (Jeandet 

et al., 1991; Adrian et al., 1997; Bais et al., 2000) that accumulate at sites of 

successful infection can also slow down or stop the pathogen development. Responses 

to pathogen infection have been associated also with an expression of distinct reaction 

such as the accumulation of phenolic compounds (Kortekamp & Zyprian, 2003), and 

the deposition of lignins (Dai et al., 1995).   

In addition, grapevines fight fungal infection by the synthesis of a number of 

PR proteins. In grapevine, PR proteins have been detected, analyzed and/ or cloned 

(cDNA), namely chitinases (Derkel et al.,1996; Busam et al., 1997; Robinson et al., 

1997; Derkel et al., 1998; Bézier et al., 2002), 1,3-β-glucanases (Bézier et al., 2002; 

Kraeva et al., 1998; Derkel et al., 1998; 1999) and thaumatin-like proteins (Tattersall 

et al., 1997; Salzman et al., 1998). Derckel et al. (1996) have reported that six of the 

13 chitinase isoforms detected in grapevine tissues were found in untreated leaves and 

four new acidic isoforms appeared in wounded leaves or leaves treated with SA. The 

mRNA accumulation of genes encoding chitinases, which may hydrolyze chitin in 

pathogen cell walls, has also been shown to be differentially regulated in grapevine 

when challenged with pathogens like Erysiphe necator, Plasmopara viticola, Botrytis 

cinerea, and Pseudomonas syringae pv. pisi (Busam et al., 1997; Jacobs et al. 1999; 

Robert et al. 2002). Basic class I (CHIT1b), acidic class III (CHIT3), and acidic class 

IV (CHIT4c) chitinase cDNA were cloned from grapevine cells (Busam et al., 1997) 

and in grapevine leaves and berries infected with Botrytis cinerea (Bézier et al., 
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2002). The specific role of chitinases has also been analyzed in selected line of in-

vitro V. vinifera ‘Chardonnay’ with resistance to Elsinoe ampelina (Jayasankar et al., 

2000). According to the authors, chitinase proteins were expressed in differentiated 

somatic embryos and also in the intercellular fluids of resistant plants regenarated 

from the selected lines. 

The class I 1,3-β-glucanases are antifungal vacuolar proteins involved in plant 

defense which exhibit pathogenesis-related regulation. The antifungal activity of plant 

1,3-β-glucanases is thought to hydrolyze the structural 1,3-β-glucanases glucan 

present in some fungal cell wall. cDNA clones corresponding to different 1,3-β-

glucanase genes have been characterized in grapevine (Jacobs et al., 1999; Bézier et 

al., 2002). 

Inhibitors of serine proteases (PIN) have emerged as a class of antifungal PR-6 

proteins which have potent activity against plant and animal pathogens and are 

thought to interfere with fungal penetration by inhibiting the degradation of the plant 

cell wall by fungal endopolygalacturonases (PG) (van Loon & van Strien, 1999). 

Grapevine defenses were further characterized by cloning a polygalacturonase 

inhibitor protein (PGIP) gene, while investigating the grapevine defense responses 

against B. cinerea (Bézier et al., 2002). An increase of the expression of these genes 

was also monitored in detached leaves and grapevine cell after elicitation by laminarin 

elicitor (Aziz et al., 2003).  

 

1.3.2 Plant interaction with plant growth-promoting rhizobacteria (PGPR) 

The beneficial interaction between plants and microbes occurs frequently in nature 

(Lynch & Whipps, 1991). In many cases, this typical symbiosis can improve plant 

nutrition and help plants to resist biotic and abiotic stresses (De Weger et al., 1995; 
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Gerhardson, 2002; Postma et al., 2003; Welbaum et al., 2004; Mayak et al., 2004a,b; 

Waller et al., 2005). In particular, microbial activity in the rhizospere is a major factor 

for availability of nutrients to plants and has a significant role on plant health and 

productivity (Rovira, 1965).  

Beneficial bacteria that colonize the plant roots have been characterized as 

plant growth-promoting bacteria (PGPR) by Kloepper and Schroth (1981). Bacteria 

that colonize the root system of plants are referred to as ‘rhizobacteria’. Except for the 

ones that remain confined to the root surface (rhizoplan), some enter the root interior 

and behave as endophytes (Sturz et al., 2000). Since it has been extensively shown 

that PGPR can facilitate the growth of plants, they are increasingly used as inoculants 

for biocontrol, biofertilization and phytostimulation (Fig. 1.11). PGPR enhance plant 

growth by direct and indirect means (Glick, 1995; Hallman et al., 1997; Sturz et al., 

2000; Bloemberg & Lugtenberg, 2001; Lodewyckx et al., 2002; Dobbelaere et al., 

2003; Bakker et al., 2003; Compant et al., 2005a; Ait Barka et al., 2006). Although, 

the specific mechanisms involved in plant-PGPR interaction are not well-

characterized (Kloepper et al., 1993; Glick, 1995), many PGPR have been reported to 

enhance plant growth by a variety of mechanisms like fixation of atmospheric 

nitrogen that is transferred to the plant (Hansen, 1994; Schultze & Kondorosi, 1998; 

Gualtieri & Bisseling, 2000; Sessitsch et al., 2002), production of siderophores that 

chelate iron and make it available to the plant root (Bar-Ness et al., 1991; Wang et al., 

1993), solubilization of minerals such as phosphorus (Richardson, 2001), and 

synthesis of phytohormones (Glick, 1995). Enhancement of mineral uptake due to 

increases in specific ion fluxes at the root surface in the presence of PGPR has also 

been reported. PGPR strains may use one or more of these mechanisms in the 

rhizosphere. Molecular approaches using microbial and plant mutants altered in their 
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Fig. 1.11: Plant interaction with plant growth-promoting rhizobacteria (PGPR). 

Beneficial effects on plant growth promotion and help in management of 

environmental stresses (adapted from Koch et al., 1992; Schneider & Ullrich, 1994; 

van Loon, 1997; van Loon & Bakker, 2005; 2006). 

 
 
ability to synthesize or respond to specific phytohormones, have increased our 

understanding of the role of phytohormone synthesis as a mechanism of plant growth 

enhancement by PGPR (Glick 1995, Cartieaux et al, 2003a). PGPR that synthesize 

auxins and cytokinins or that interfere with plant ethylene synthesis have been 

identified (Glick, 1995; Garcia de Salamone et al., 2001; Cartieaux et al, 2003a). 

PGPR help in management of abiotic stresses by showing high 1-aminocyclopropane-

1-carboxylate (ACC) deaminase activity and is therefore able to lower the ethylene 

level in stressed plants. PGPR enhance plant growth also via suppression of 
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include (i) the ability to produce siderophores that chelate iron making it unavailable 

to   pathogens; (ii) the ability to synthesize anti-fungal metabolites such as antibiotics, 

fungal cell wall-lysing enzymes, or hydrogen cyanide, which suppress the growth of 

fungal pathogens; (iii) the ability to successfully compete with pathogens for nutrients 

or specific niches on the root (Glick et al., 1998; Glick, 2005; Compant et al., 2005a; 

Saleem et al., 2007). Indirect mechanisms stimulated by PGPR are the ability of 

plants to induce systemic resistance (Bloemberg & Lugtenberg, 2001, Cartieaux et al., 

2003a). Biochemical and molecular approaches provided new insight in the genetic 

basis of these traits, the biosynthetic pathways involved, their regulation, and 

importance of biological control in laboratory and field studies (Glick, 1995; Bowen, 

& Rovira, 1999; Bloemberg & Lugtenberg, 2001, Cartieaux et al, 2003b). 

 

1.3.2.1 Plant Induced Systemic Resistance (ISR) by PGPR 

Induced systemic resistance (ISR) has been defined by van Loon et al. (1997; 1998) 

as a state of increased defensive capacity developed by the plant upon appropriate 

stimulation by diverse agents, including rhizobacteria, through activation of latent 

resistance mechanisms. The nature of systemically induced resistance in plants has 

been characterized by van Loon (2007) according to the following criteria: 

• the defensive capacity of the plant is enhanced through microbial 

stimulation or similar stresses, 

• induced systemic resistance is active against fungi, bacteria viruses 

and, sometimes, nematodes and insects, 

• the enhanced defensive capacity is expressed systemically throughout 

the plant, 

• once induced systemic resistance is maintained for prolonged periods. 



 

 

61

The PGPR-elicitation of ISR in plants has been shown in many studies (De 

Vleesschauwer et al., 2006; Saravanakumar et al. 2007a,b). Colonization of roots by 

Pseudomonas sp. strain WCS 417r can protect plants systemically against Fusarium 

oxysporum f. sp. dianthi, which is responsible for Fusarium wilt in carnation (van 

Peer et al., 1991). In another case, anthracnose disease caused by Colletotrichum 

orbiculare in cucumber can be reduced after treatment of seeds with PGPR (Wei et 

al., 1991; 1996). PGPR as seed-treatment alone or as seed-treatment plus soil-

drenching can protect cucumber plants against anthracnose disease (Wei et al., 1996). 

Similarly, P. putida strain 89B-27 and Serratia marcencens strain 90-166 are PGPR 

that can reduce Fusarium wilt of cucumber incited by F. oxysporum f. sp. 

cucumerinum (Liu et al., 1995). In addition, application of P. fluorescens strains PF1 

and and FP7 by seed-treatment followed by root dipping and a foliar spray in rice 

showed higher induction of ISR against the sheath blight pathogen, Rhizoctonia solani 

(Vidhyasekaran & Muthamilan, 1999). 

PGPR can induce systemic protection agaisnt bacterial and viral diseases. 

Seed-treatment by P. fluorescens strain 97 can protect beans against halo blight 

disease caused by P. syringae pv. phaseolicola (Alstrom, 1991). Similarly, treated 

seeds with PGPR can decrease the incidence of bacterial wilt disease (Kloepper et al., 

1993). Hoffland et al. (1996) confirmed the non specificity of ISR, after applying a 

rhizobacterial isolate to radish seeds, where they observed a reduced incidence of wilt 

plants by F.  oxysporum f. sp. raphani as well as a reduction in the severity of attack 

by Alternaria brassicicola and P. syringae pv. tomato. The reduction of cucumber 

mosaic virus (CMV) infection in infected plants and the delay of development of 

symptoms in cucumber and tomato have been reported by seed-treatment with P. 

fluorescens strain 89B-27 and Serattia marcescens strain 90-166 (Raupach et al., 
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1996). In another case, ISR has been established by application of P. fluorescens 

strain CHAO protecting against tobacco necrosis virus (TNV) in tobacco (Maurhofer 

et al., 1994; 1998). These experiments showed that PGPR strains initiate ISR against 

a wide array of plant pathogens causing fungal, bacterial and viral diseases.  

The non-specificity against pathogenic fungi, bacteria, and viruses is one of 

the main characteristics of protection induced by PGPR.  This non-specificity is an 

important advantage of ISR in comparison with classical methods of biological 

control of pathogens, in which the antagonist selected is normally active against only 

one or a few pathogens but not against a broad number of pathogens. The interaction 

of plants with rhizobacteria-mediated ISR has been documented in at least 15 species 

(van Loon & Bakker, 2006) involving the activation of different physiological 

mechanisms (van Loon, 2007). Non-pathogenic rhizobacteria may activate sometimes 

the plant defense mechanisms in a similar way to pathogenic microorganisms. ISR 

has been associated with a large number of enzymes, including peroxidase, 

phenylalanine amonia-lyase, lipoxygenase, 1,3-β-glucanases, and chitinase (Ye et al., 

1990; Koch et al, 1992; Schneider & Ullrich, 1994; van Loon, 1997; van Loon & 

Bakker, 2005; 2006).  

The development of molecular techniques has allowed the reaction of plants to 

rhizobacteria to be determined at the transcriptional level by analyzing differential 

gene expression in ISR. Timmusk and Wagner (1999) analyzed the changes in gene 

expression induced by inoculation with PGPR Paenibacillus polymyxa by RNA 

differential display. Cartieux et al. (2003) monitored gene expression by cDNA 

microarrays in both leaves and roots of axenic Arabidopsis plants infected by 

resistance-inducing Pseudomonas thivervalensis strain MLG45. Recently, the up and 

down regulated genes were also estimated by cDNA-AFLP in leaves of cucumber and 
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tomato plants, respectively, in response to root colonization by Bacillus subtilis strain 

M4 (Ongena et al., 2005). Several other studies have been performed in the last 

decade analyzing the induced systemic responses of bacterized plants by changes in 

gene expression (Park & Kloepper, 2000; Wang et al., 2005; Sanchez et al., 2005; 

Shuhegger et al., 2006).  

 

1.3.2.2 Signalling pathways of systemically induced resistance 

There are distinguished differences between ISR and systemic resistance elicited by 

avirulent pathogens that induce the hypersensitive resistance (HR) and the systemic 

acquired resistance (SAR). Expression analysis using Arabidopsis as a model plant 

showed that the mechanism is highly dependent on the bacteria partners. P. flurescens 

WCS417r elicits via a salicylic acid (SA)-independent pathways and PR gene 

activation (Pieterse et al., 1996; van Wees et al., 1997), since SA-non accumulating 

NahG plants developed normal levels of ISR against Pst DC3000 after root 

colonization (Pieterse et al., 1996; van Wees et al., 1997). Downstream of NPR1, PR 

genes are activated in the SAR pathways but not in the ISR pathways (Cao et al., 

1994; Pieterse et al., 1998). Evidently, NPR1 differentially regulates ISR- and SAR-

related gene expression, depending on the pathway that is activated upstream of it. 

Interestingly, ISR-inducing WCS417r bacteria elicited a substantial change in the 

expression of almost 100 genes (Verhagen et al., 2004; Léon-Kloosterziel et al., 

2005), but no consistent alteration in gene expression was observed in systemic leaves 

(Verhagen et al., 2004). No alteration in the production of either JA or ET have also  

been  detected in plants,  suggesting that the  mechanism of induced resistance is 

based on an enhanced sensitivity to these plant hormones than on an increase of their 

production (Pieterse et al., 2000). 
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SA and JA are two signalling molecules which play an important role in 

induced disease resistance pathways (Jayaraj et al., 2004).  Between these defense 

signalling pathways the phenomenon of cross-talk has been demonstrated. On the one 

hand, signalling molecules such as JA and ethylene can act in conjunction to activate 

defense responses. On the other hand, SA can suppress JA-dependent responses 

(Reymond & Farmer, 1998; Pieterse & van Loon, 1999). Even if ISR and SAR are 

related to separated signalling pathways (Fig. 1.12), the two systemic systems share 

the regulatory factor NPR1 showing an interaction between JA-dependent ISR 

pathways and the SA-dependent SAR as referred by van Wees et al. (2000). 

According to the authors the activation of both pathways simultaneously resulted in 

an additive effect on the level of induced protection against Pst DC3000. However, 

such additive effect of both pathways was not evident in Arabidopsis. Furthermore, 

the level of PR-1 gene expression, as SAR marker, was not altered in plants 

expressing both ISR and SAR compared to plants expressing solely SAR. This means 

that SAR and ISR pathways are compatible and that there is no significant cross-talk 

between these signaling pathways. Since plants expressing ISR and SAR 

simultaneously, did not show elevated levels of NPR1 transcripts, it seems that the 

constitutive level of NPR1 is sufficient to facilitate simultaneous expression of both 

types of induced resistance.  

Apart from the SA-independent pathway, a second SAR-type defense response 

associated with endogenous free SA accumulation and/or PR protein expression has 

been induced by nonpathogenic rhizobacteria. Pseudomonas aeruginosa 7NSK2 

induced systemic resistance in beans  in  a  SA-dependent  manner  (De Meyer et al.,  
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Fig. 1.12: A pictorial comparison of the three characterized forms of induced 

resistance in plants. (a,b) Systemic acquired resistance, induced by the exposure of 

root or foliar tissues to abiotic or biotic elicitors, is dependent of the phytohormone 

salicylate (salicylic acid), and associated with the accumulation of pathogenesis-

related (PR) proteins. Induced systemic resistance, induced by the exposure of roots to 

specific strains of plant growth-promoting rhizobacteria, is dependent of the 

phytohormones ethylene and jasmonate (jasmonic acid), independent of salicylate, 

and is not associated with the accumulation of PR proteins (or transcripts). However, 

both responses are intertwined molecularly, as demonstrated by their reliance on a 

functional version of the gene NPR1 in Arabidopsis thaliana ((Pieterse & van Loon, 

1999; Vallad & Goodman, 2004). (c) Systemic resistance, induced by the exposure of 

roots to specific strains of plant growth-promoting rhizobacteria, is dependent of the 

phytohormones ethylene and jasmonate (jasmonic acid), dependent of salicylate, and 

associated with the accumulation of PR proteins or transcripts (De Meyer et al., 

1999a; Timmusk & Wagner, 1999; Park & Kloepper, 2000; Tjamos et al., 2005; 

Magnin-Robert et al., 2007). 
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1999a). Resistance-inducing strain Paenibacillus polymyxa was associated with up-

regulation of SA-, JA- and ET-responsive genes, including PR-1, in leaves, indicating 

an involvement of signalling through SA-, JA-, and ET in P. polymyxa- mediated 

systemic resistance (Timmusk & Wagner, 1999). Induction of PR-1 gene activity was 

assessed using transgenic tobacco plants expressing the β-glucuronidase (GUS) gene 

fused to the PR-1 gene promoter (Park & Kloepper, 2000). The results of this study 

support the conclusion that induction of PR-1a promoter activity and PGPR-mediated 

induced systemic disease resistance are linked events for the used PGPR strains. 

Other indications that some PGPR or rhizosphere bacteria may induce PR proteins 

have been reported. Maurhofer et al. (1994) indicated that induced tobacco protection 

against tobacco necrosis virus by PGPR strain P. fluorescens CHAO was associated 

with the induction of multiple PR proteins, including PR-1a, PR-1-b, and PR-1-c (Fig. 

1.12). Similarly, Schneider and Ullrich (1991) reported that induction of tobacco 

protection against P. syringae pv. tabaci induced by culture filtrates of a P. 

fluorescens strain was associated with induction of chitinase, 1,3-β-glucanases, 

peroxidase, and lysozyme. These resistance-inducing PGPR induced defense reactions 

commonly associated with pathogen infection. Recently, it was shown by Magnin-

Robert et al. (2007) that grapevine-associated bacteria can stimulate grapevine 

defense mechanisms. This was correlated to an accumulation of chitinase and 1,3-β-

glucanase activities under field conditions in both leaves and berries. 

 
1.3.2.3 Plant interaction with Burkholderia phytofirmans strain PsJN  

As previously referred (paragraph 1.1.2), Burkholderia phytofirmans strain PsJN, is a 

well-characterized PGPR able to establish rhizosphere and endophytic populations 

associated with various plants, where it stimulates plant growth and induces 

developmental changes leading to better adaptation in several environmental stress 
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continions. Usually, the plants inoculated with strain PsJN are characterized by a 

larger root system, with enhanced secondary roots and more root hairs, sturdier stems, 

and greater lignin deposition around the vascular system (Nowak, 1998). In addition, 

inoculated plants by strain PsJN were found to contain larger amounts of phenolics 

and chlorophyll (Nowak et al., 1997), as well as increased levels of cytokinins 

(Lazarovits & Nowak, 1997) and enhanced activity of phenylalanine ammonia lyase 

(Nowak et al., 1997). Isolated PsJN showed high 1-aminocyclopropane-1-carboxylate 

deaminase activity and is therefore able to lower the ethylene level in developing or 

stressed plants (Sessitsch et al., 2005).  

During the interaction between strain PsJN and grapevine, it was shown that 

grapevine plantlets V. vinifera co-cultured with bacteria grew faster and had 

significantly more secondary roots and root and leaf hairs. These effects were not 

observed when plantlets were inoculated with dead bacteria before their culture, 

meaning that the observed effect was not related to a fertility effect from lysed cells 

(Ait Barka et al. 2000). The response of plant towards bacterization was maintained 

and amplified after the second generation. Indeed, the PsJN bacterium is capable of 

establishing endophytic and epiphytic populations, allowing clonal multiplication of 

plantlets by nodal explants in perpetuum without the need for re-inoculation (Ait 

Barka et al. 2002). In addition, grapevine plantlets bacterized by PsJN appeared 

healthy and exhibited only small leaf surface necroses, when inoculated with B. 

cinerea, in contrast to control that they produced characteristic gray mold symptoms 

within 7 days (Ait Barka et al. 2000; 2002). Using in vitro grapevine plantlets, 

Compant et al. (2005b) showed that wild-type strain PsJN and genetically engineered 

derivatives of this strain tagged with gfp (PsJN::gfp2x) or gusA (PsJN::gusA11) genes  
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Fig. 1.13: Beneficial effects of Burkholderia phytofirmans strain PsJN in interaction 

with (a) plants and (b) grapevine (adapted from Nowak et al., 1997; Lazarovits & 

Nowak, 1997; Nowak, 1998; Sessitsch et al., 2005; Ait Barka et al., 2000; 2002; 

Compant et al., 2005b; Ait Barka et al., 2006; Compant et al., 2008b). 
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colonized the root surface and subsequently entered the endorhiza mainly through the 

‘root tip way’, lateral root cracks or between rhizodermal cells via cell-wall-degrading 

enzyme secretions. Strain PsJN colonized stem and leaves through xylem vessels, 

before thriving as an endophyte inside substomatal chambers of leaves after using the 

plant transpiration stream. The colonization pattern of V. vinifera by strain PsJN::gfp 

2x was also determined using grapevine fruiting cuttings with emphasis on putative 

inflorescence colonization under nonsterile conditions. Strain PsJN was 

chronologically detected on the root surfaces, in the endorhiza, inside grape 

inflorescence stalks, not inside preflower buds and flowers but rather as an endophyte 

inside young berries. Microscopic analysis revealed PsJN as a thriving endophyte in 

inflorescence organs after the colonization process. Strain PsJN was visualized 

colonizing the root surface, entering the endorhiza and spreading to grape 

inflorescence stalks, pedicels and then to immature berries through xylem vessels 

(Compant et al., 2008b). Data demonstrated low endophytic populations of strain 

PsJN in inflorescence organs, i.e. grape stalks and immature berries with 

inconsistency among plants for bacterial colonization of inflorescences. Nevertheless, 

endophytic colonization of inflorescences by strain PsJN was substantial for some 

plants.  

Further investigation of grapevine-PsJN interaction and analysis of 

physiological responses of grapevine plantlets to chilling, showed that inoculated 

Chardonnay explants with strain PsJN, increased grapevine growth and physiological 

activity at low temperature. According to Ait Barka et al. (2006), there was a 

relationship between endophytic bacterial colonization of the grapevine plantlets, their 

growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to 

chilling with the major benefits of bacterization to be observed on root growth and 
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plantlet biomass. In this study, it was demonstrated for the first time that plant 

growth-promoting bacteria colonizing grape plantlets could significantly influence 

plantlets’ resistance to chilling. Plantlet bacterization had a pronounced effect on 

grapevine growth, development, and responses to low temperatures, i.e. diminished 

rates of biomass reduction and electrolyte leakage during chilling and stimulated 

postchilling recovery. Bacterization significantly elevated also the level of proline and 

phenolics and enhanced the rate of photosynthesis and starch deposition. The 

inoculation with PsJN also significantly improved plantlet cold tolerance compared to 

that of the nonbacterized control, as indicated by their abilities to significantly 

increase starch content, proline accumulation and phenolic compound upon chilling.  

 

1.3.3 The phenomenon of priming in plant-micobe interaction 

There has been increasing evidence that activation of defense-related mechanisms by 

SAR- and ISR-stimulators has been related with a more efficient activation of plant 

cellular defense responses upon several biotic and abiotic stresses. This enhanced 

capacity of plants to express defense mechanism is known as priming, sensitization or 

potentiation, and has been related with an ability for rapid defense responses of plants 

to biotic and abiotic stresses (Conrath et al., 2002; 2006; Goellner & Conrath, 2008). 

Upon inoculation with necrosis-inducing pathogens, or various nonpathogenic root-

colonizing rhizobacteria, and treatment with natural and synthetic compounds, plants 

react to biotic and abiotic stresses (Fig. 1.14). These reactions include the HR (Mittler 

et al., 1996), cell-wall strengthening (Hammerschmidt et al., 1982; Stumm & Gessler, 

1986; Schmele & Kauss, 1990), the oxidative burst (Doke, 1996) and potentiated 

expression of various defense- related genes (Ryals et al., 1996; Sticher et al., 1997). 

Although the priming phenomenon has been known for years as a part of induced- 
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Fig. 1.14: Pictorial presentation of plant cellular defense responses induced according 

to priming (Schmele & Kauss, 1990; Mittler et al., 1996; Ryals et al., 1996; Doke, 

1996; Sticher et al., 1997; Conrath et al., 2002; 2006; Goellner & Conrath, 2008). 

 

 

resistance phenomenon (Hammerschmidt  &  Kuc, 1982;  Stumm  &  Gessler, 1986; 

Kuc, 1987), it has mostly been overlooked in studies dealing with induced disease 

resistance of plants, because it only becomes apparent after challenge on the primed 

tissue. The molecular mechanism and genetic basis of priming and its role in induced 

disease resistance are still poorly understood. Hypothetically, the primed state is 

based on the accumulation, or post-translational modification of one or more 

signalling proteins that, after being expressed and/or modified, still remain inactive. 

Upon perception of a second pathogen-derived stress signal this enhanced defense 
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signalling capacity would enable a faster and stronger defense reaction (van der Ent, 

2007).  

 

1.3.3.1 Priming in resistance to pathogen 

Since the potentiated induction of defense responses to pathogens seems discernible 

only after the challenge, the phenomenon of priming became apparent when studying 

SAR by accumulation of large set of PR genes (Cameron et al., 1999; van Wees et al., 

1999; Kohler et al., 2002). Low doses of the SAR-inducer BTH (Benzothiadiazole) 

can prime the physiological state of Arabidopsis by potentiating the expression of 

PAL mRNA after inoculation with virulent Pseudomonas syringae pv. tomato 

DC3000 (Kohler et al., 2002).  The ability of BABA (β -aminobutyric acid) to 

increase plant resistance against pathogens by priming has also been shown in 

Arabidopsis. Arabidopsis pretreated with BABA presented a rapid and high 

deposition of callose-containing papillae at the site of infection by Peronospora 

paracitica and potentiate mRNA accumulation of the SA-associated PR-1 (Zimmerli 

et al., 2000). Moreover, BABA potentiated accumulation of PR-1 transcripts, 

contributing thus to restrict B. cinerea infection in Arabidopsis (Zimmerli et al., 

2001). Additionally, Arabidopsis infection with avirulent P. syringae pv. tomato 

DC3000 induces the potentiated activation of defense-related PAL, PR-1, PR-2, and 

PR-5 genes, while tobacco plants which are SA-primed transgenic and carry the 

chimeric Asparagus officinalis PR-1::uidA and PR-3::uidA genes, displayed the 

potentiated activation of PR-1 and PAL genes, after pathogen attack (Mur et al., 

1996).  
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Fig. 1.15: The three steps of ‘priming’ phenomenon in plants (adapted from Conrath 

et al., 2002; 2006; Goellner & Conrath, 2008). In plants, a pretreatment with natural 

and synthetic compounds, or pre-infection with pathogens, or pre-inoculation by 

PGPR primes the cells to react more quickly and efficiently to subsequent elicitor 

treatment or pathogen attack or several abiotic stresses. (1st step) Priming step; (2nd 

step) Challenge with biotic or abiotic stress; (3rd step) Potentiated response.  

 

 

In grapevine, Aziz et al. (2003) reported that the laminarin was an efficient elicitor of 

defense response in grapevine cells and plants against Botrytis cinerea and 

Plasmopara viticola and it acted through priming by over-expression of several PR 

genes. The non-protein amino acid BABA can prime also the cells to react more 

quickly and efficiently to P. viticola either by priming of callose deposition and 

lignification and by potentiated expression patterns of markers genes for SA and JA 

pathways (Hamiduzzaman et al., 2005), or by higher accumulation of stilbenes & 
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specific phytoalexins and the rapid increase in transcript levels of three genes 

involved in the phenylpropanoid pathway (Slaughter et al. 2008) (Fig. 1.16). 

 

1.3.3.2 Priming in plant-beneficial microbe interaction 

Priming is a common feature of the resistance responses induced by beneficial 

microorganisms (Conrath et al., 2002, 2006; Goellner & Conrath, 2008). Colonized 

roots by mycorrhizal fungi for example, can systemically protect the plants of tomato 

against Phytophthora parasitica infection. Non-direct accumulation of PR proteins 

exists under colonization; however upon pathogen attack, mycorrhized plants 

accumulate more PR-1a and basic BGL proteins than nonmycorrhized plants (Cordier 

et al., 1998; Pozo et al., 1999, 2002). Similarly to plant-mycorrhizal fungi association, 

plant growth-promoting fungi (PGPF) can also induce priming in plants. For example, 

plants that had been pre-inoculated with (PGPF) Trichoderma asperellum T203 can 

express a higher level of PR genes after infection with the leaf pathogen (Shoresh et 

al., 2005). 

The phenomenon of priming in plant-microbe interaction has most extensively 

been studied under plant-ISR-inducing PGPR interaction. The first evidence with 

which potentiated plant defense responses are involved in PGPR-mediated ISR, was 

studied under inoculation of carnation (Dianthus caryophyllus) with Fusarium 

oxysporum f. sp. dianthi. The ISR-expressing carnation presented a faster rise in 

phytoalexin levels than uninoculated plants (van Peer et al., 1991). ISR induced by 

Bacillus pumillus SE34, protected beans against the root-rot fungus F. oxysporum f. 

sp. pisi, and confirms that endophytic bacteria may function as potential inducers of 

plant disease resistance (Benhamou et al., 1996). The typical host reactions in pre-

bacterized  roots  included  rapid   strengthening   at   the   site   of   attemped  fungal  
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Fig. 1.16: The three steps of ‘priming’ phenomenon in grapevine (adapted from Aziz 

et al., 2003; Hamiduzzaman et al., 2005; Slaughter et al., 2008; Verhagen et al., 

2010). 

 

penetration, through appositions that contained callose and phenolic material which 

prevent the fungal progress (Benhamou et al., 1996). 

Other ISR-inducing PGPR have also been demonstrated to enhance plant’s 

defense capacity by priming for potentiated expression of defense genes, strongly 

suggesting that priming is a common feature of PGPR-mediated ISR. Tobacco plants 

inoculated by selected strain of nonpathogenic rhizobacteria EXTN-1, capable of 

eliciting broad-spectrum induced systemic resistance (ISR) in several crops, showed 

an augmented, rapid transcript accumulation of defense-related genes including PR-
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1a, PAL, and 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) following 

inoculation with PMMoV (Ahn et al., 2002). The expression patterns of six distinct 

genes isolated after root colonization by the non-pathogenic rhizobacteria 

Pseudomonas chlororaphis O6, were related not only to induced systemic resistance 

in cucumber, but also to significantly faster and stronger transcript accumulation of 

these genes after challenge infection (Kim et al., 2004). Similarly, the bacterium 

Paenibacillus alvei K165 has the ability to protect A. thaliana against Verticillium 

dahliae by inducing resistance in the host, and concominant activation and increased 

transient accumulation of the PR-1, PR-2, and PR-5 genes were observed in 

treatments where both the inducing bacterial strain and the challenging pathogen were 

present in the rhizosphere of the A. thaliana plants (Tjamos et al., 2005). De Meyer et 

al. (1999b) showed that ISR-Pseudomonas aeruginosa 7NSK2 can potentiate defense 

gene expression in systemic tissue, but is not associated with PR1a expression at the 

time of challenge with tobacco mosaic virus. During ISR induced by P. syringae pv. 

tomato DC3000, Arabidopsis leaves showed 81 over expressed genes, indicating that 

plants were primed to respond faster and/or strongly to pathogen attack (Verhagen et 

al., 2004). JA and ET have been predicted to be the regulators of the majority of 

genes with potentiated expression, showing that colonization of the roots by 

WCS417r-primed Arabidopsis plants augmented expression of JA- or ET-responsive, 

or both genes (van Wees et al., 1999; Hase et al., 2003). Recently, ISR-inducing 

PGPR with enhanced defense capacity by priming have also been demonstrated in 

grapevine. Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa 7NSK2 

have the ability  to induce resistance in grapevine against Botrytis cinerea by 

oxidative burst and phytoalexin (i.e. resveratrol and viniferin) accumulation in grape 

cells, while they can prime the physiological response in grapevine leaves by 
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accelerated phytoalexin production upon challenge with B. cinerea (Verhagen et al., 

2010) (Fig. 1.16). 

 

1.3.3.3 Priming in abiotic stress: connection between biotic and abiotic factors 

Responses of plants to drought, cold or high salinity and other abiotic stresses involve 

the induction of a large number of genes (Bray, 1997; Fowler & Thomashow, 2002). 

Distinct mechanisms have been suggested to be involved in the regulation of stress-

responsive genes. Some of these responses are modulated by hormones such as JA, 

SA and ABA signalling or by molecules like calcium (Bray, 1997; Fowler & 

Thomashow, 2002). 

Induced stress resistance by many chemicals has been described in several 

plants (Sticher et al., 1997) either by induction of direct responses in absence of 

pathogens or by potentiation of physiological responses as inducers of priming. 

BABA as discussed above is an effective inducer of resistance against biotic stress in 

many plants (Zimmerli et al, 2000; 2001). However, recently it became apparent that 

it can also affect the defence capability of plants against abiotic stress by priming. 

Tolerance of plants to drought and salt stress has been increased in Arabidopsis by 

BABA (Jakab et al., 2005). SA-inducible PR-1 and PR-5 genes and the ABA-

dependent RAB-18 and RD-29A genes have been correlated with the protection of 

plants against salt and drought stress. SA-deficient plants showed a reaction that was 

similar to the one in wild-type plants while mutants impaired in ABA signalling could 

not be protected by BABA application. However, pretreatment with BABA did not 

induce ABA accumulation directly, but accelerated ABA production following 

osmotic stress. The augmented ABA production resulted in augmented ABA-

inducible gene expression and accelerated stomatal closure (Jakab et al., 2005). These 
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finding demonstrates that BABA-induced tolerance to osmotic stress is based on 

priming for enhanced adaptation responses rather than on the direct activation of these 

responses. The potential of BABA to prime the physiological state of plants, which 

can react faster and more efficiently to biotic and abiotic stress, reveals a connection 

between these two types of stresses at the molecular level. This conclusion is 

supported by the fact that plant-growth promoting bacteria induce alteration in plant 

gene expression that can be correlated to resistance against abiotic and biotic stresses 

(Timmusk & Wagner, 1999).  

As it was indicated in the previous chapter, cold-acclimated plants show an 

increased ability to survive much lower temperatures than non-acclimated ones 

(Thomashow, 2001). There is direct evidence that changes in gene expression 

occurring during the primed physiological state of cold acclimation are responsible 

for several biochemical and physiological changes, which contribute to an increase of 

the plant tolerance to extreme temperatures (Thomashow, 2001). In a similar way, 

acclimated plants strongly increase the resistance to snow moulds and other pathogen 

fungi (Tronsmo, 1984a,b; Tronsmo et al., 1993; Bryngelsson et al., 1994). The 

analysis of the effect of cold hardening and Microdochium nivale infection on 

expression of pathogenesis-related genes in winter wheat showed that the induction of 

PR-proteins was stronger and more rapid in plants that have been hardened prior to 

inoculation, according to the phenomenon of priming (Ergon et al., 1998). These 

results suggest that cold treatment can prime the physiological state of plants 

increasing their resistance not only to further cold stress but also against pathogens.  
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1.4 Objectives 

Bulkholderia phytofirmans strain PsJN and grapevine, have developed a 

beneficial interaction with the bacteria improving grapevine growth and inducing the 

tolerance to some pathogens such as B. cinerea. Furthermore, it was also observed 

that the bacteria improve several grapevine physiological parameters that regulate 

growth and adjust grapevine responses to cold (Ait Barka et al., 2006). Despite the 

available information by previous studies, several questions remained regarding the 

beneficial interaction between grapevine and PsJN strain. How does grapevine sense 

the root colonization by bacteria and what are the molecular and physiological 

changes that occur in grapevine by this interaction? Which grapevine defense 

mechanisms can be activated by these changes and how could they help grapevine to 

better tolerate “cool” climate? To answer these questions, the three objectives of this 

study may be decomposed as follows: 

 

I) Study of systemic response of grapevine plantlets after root inoculation by 

Bulkholderia phytofirmans strain PsJN 

The effects of rhizobacteria have been demonstrated in different plant species, 

e.g. bean, carnation, cucumber, radish, tobacco, tomato, and in the model plant 

Arabidopsis thaliana (van Loon et al., 1998), and recently in grapevine (Magnin-

Robert et al., 2007; Verhagen et al., 2010). Colonization of roots with plant growth-

promoting rhizobacteria (PGPR) leads to induced systemic resistance in parts of plants 

that are spatially separated from the inducing microorganism (van Loon 1997; 1998). 

This protection is typically manifested as both a reduction in disease symptoms and 

inhibition of pathogen growth (van Loon, 2007). ISR is phenotypically similar to SAR 

that is triggered by necrotizing pathogens. These two types of resistance have been 
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reported as synonymous (Hammerschmidt et al., 2001; Tuzun, 2006). Nevertheless, 

the signal transduction pathway and the molecular basis underlying ISR differ in many 

aspects from the pathogen-induced SAR. For instance, it was reported that pathogen 

induced SAR requires salicylic acid, whereas rhizobacteria-mediated ISR is almost 

always dependent on JA and ET signalling (van Loon & Bakker, 2005). Recently a 

second SAR-type defense response associated with endogenous free SA accumulation 

and PR gene expression and/or PR proteins accumulation has been proposed 

(Timmusk & Wagner, 1999; Park & Kloepper, 2000; Magnin-Robert et al., 2007). In 

order to further understand the physiological changes that occur in grapevine after root 

colonization, the first objective of this study is to investigate whether the PsJN strain is 

able to stimulate the defense mechanism in grapevine plantlets by induction of ISR, 

studying the changes in pattern of defense gene expression encoding enzymes of 

phenylopropanoid, pathogenesis-related proteins and octadecanoid pathways in leaves 

of grapevine plantlets after root inoculation (Fig 1.17a). 

 

II) Characterization of grapevine physiological responses to cold in fully 

bacterized plantlets with Burkholderia phytofirmans strain PsJN  

Very recently, the analysis of interaction between PGPR and plants has focused on the 

establishment of the primed physiological state by which plants are able to better or 

more rapidly mount defense responses, or both to stress (Conrath et al., 2002;  

Goellner & Conrath, 2008). In several studies, it has been reported that priming is a 

defense mechanism able to protect plants systemically from several environmental 

stresses by the potentiated activation of the various cellular defense responses. 

Nowadays, the event that ISR-inducing PGPR may prime the physiological state 
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Fig. 1.17: The first and second objective of this study: (a) Study of systemic response 

of grapevine plantlets after root inoculation by Bulkholderia phytofirmans strain PsJN 

and (b) Characterization of grapevine physiological responses to cold in fully 

bacterized plantlets with B. phytofirmans strain PsJN. 
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protecting plants from several pathogens is a well-studied phenomenon in plant 

potentiation (Conrath et al., 2006). Although  the  understanding  of  several  

mechanisms  of  priming  in  model  plants like  Arabidopsis  has progressed,  priming 

induced by ISR-inducing PGPR is a poorly studied area for several plants including 

grapevine, especially in response to cold.  

In order to characterize the defense mechanisms that have been activated in 

fully bacterized plantlets upon exposure to low non-freezing temperature, the second 

objective of this project was to check whether this beneficial effect is mediated by the 

grapevine primed physiological state induced by strain PsJN. Therefore, stress-related 

expression of genes encoding pathogenesis-related proteins, enzymes of 

phenylopropanoid and octadecanoid pathways,  as well as cold specific transcription 

factors (CBF), and stress-related metabolites such as proline, aldehydes or hydrogen 

peroxide were monitored in order to characterize the defense mechanism induced in 

bacterized grapevine plantlets upon low non-freezing temperatures (Fig 1.17b). 

Additionally, the accumulation of several sugar markers  with  cryoprotective effects 

in cold-resistant plants were analysed, in order to further understand potentiated 

responses of plantlets bacterized by strain PsJN subjected to low non-freezing 

temperatures. 

 

III) Transcript analysis by cDNA-AFLP technique of primed- physiological state 

induced by Burkholderia phytofirmans strain PsJN in grapevine plantlets 

One of the cornerstones of modern molecular biology for analysis of plant 

physiological responses is the isolation of differentially expressed genes. cDNA-

AFLP is a RNA fingerprinting technique that has been extensively used in recent 

years to display differentially expressed patterns in several plants (Yang et al., 2003; 
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Mao et al., 2004; Burger & Botha, 2004). Since the molecular mechanism and the 

genetic basis of priming are still poorly understood we used non-radioactive cDNA-

AFLP technology for fingerprinting of grapevine mRNAs to (i) further investigate of 

primed physiological state in grapevine plantlets induced by strain PsJN and (ii) 

isolate and identify unknown over-expressed genes related to cold acclimation in 

bacterized plantlets after exposure to low non-freezing temperatures (Fig 1.18). 

 

Transcript analysis 
by cDNA-AFLP 

technique 

(i) investigation of primed 
physiological state in 

grapevine plantlets induced 
by strain PsJN

(ii) isolation and identification 
of unknown over-expressed 
genes in bacterized plantlets 

upon cold 
 

Fig. 1.18: The third objective of this study:  Transcript analysis by cDNA-AFLP 

technique of primed- physiological state induced by Burkholderia phytofirmans strain 

PsJN in grapevine plantlets. 
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Abstract 

Burkholderia phytofirmans strain PsJN is a plant growth-promoting rhizobacterium 

(PGPR) able to establish rhizosphere and endophytic populations in grapevine. This 

bacterium was able to induce resistance against Botrytis cinerea and to low 

temperatures. To further investigate the interaction between grapevine and strain 

PsJN, changes in the expression pattern of several defense-related genes were 

analyzed in Chardonnay grapevine plantlets following root inoculation with bacteria. 

Results showed significant increase in the expression of defense related genes in 

leaves, although the bacteria were not present int the upper parts of the grapevine 

plantlets. The observed pattern of defense related-genes was typical for induced 

systemic resistance.  
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Introduction  

Several biologically induced systemic defence responses have been well 

characterised. They include systemic acquired response (SAR), which is triggered by 

pathogens causing limited infection, such as hypersensitive necrosis (Durrant & 

Dong, 2004); and induced systemic resistance (ISR), which is activated upon 

colonization of roots by selected strains of non-pathogenic rhizobacteria (van Loon et 

al., 1998; van Loon, 2007; van Wees, 2008) or mycorrhizal fungi (Pozo & Azcon-

Aguilar, 2007). 

Over the past decade several plant growth-promoting rhizobacteria (PGPR) 

have been used as inoculants to improve plant nutrition and as biological agents to 

control plant pathogens (Bakker et al., 2003; Bloemberg et al., 2001; Dobbelaere et 

al., 2003; Compant et al., 2005a). Part of effect of PGPR on growth promotion is due 

to their ability to antagonize deleterious microorganisms on the basis of various 

mechanisms such as competition for nutrients, siderophore-mediated competition for 

iron, or production of antibiotics or lytic enzymes (Compant et al., 2005a; de 

Vleesschauwer & Höfte, 2009). 

In addition to their direct antimicrobial proprieties, selected strains of 

rhizobacteria are also able to activate ISR. This phenomenon has been demonstrated 

in many different plant species (van Loon et al., 1998, de Vleesschauwer & Höfte, 

2009), and is effective against a broad range of plant pathogens, including fungi, 

bacteria and viruses (van Loon et al., 1998). 

The signal(s) induced by the PGPR can spread systemically through the plants, 

leading to a reduction of disease symptoms even if rhizobacteria and pathogens are 

spatially separated (van Loon et al., 1998; van Loon & Bakker, 2005; 2006; Pieterse & 

van Loon, 2009).  
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The mechanisms involved in SAR are well documented in many plant species. 

They include several well-characterized defense reactions such as hypersensitive 

reaction (HR), oxidative burst, reinforcement of cell wall structures through 

lignification or callose deposition, accumulation of antimicrobial phytoalexins and 

induction of defense-related proteins with antifungal properties (Pieterse & van Loon, 

2009). By contrast, mechanisms involved in ISR are less understood. They include, 

the reinforcement of cell wall structures through lignification or callose deposition 

(Benhamou et al., 1996), the accumulation of antimicrobial phytoalexins (Ongena et 

al., 1999) and the induction of genes encoding defense-related proteins (Bloemberg & 

Lugtenberg, 2001; Cartieaux et al, 2003; Verhagen et al., 2004).  

Endophytic PGPR, Burkholderia phytofirmans strain PsJN (Sessitsch et al., 

2005), has been isolated from surface-sterilized onion roots (Frommel et al., 1991). 

The bacterium is able to (i) establish rhizosphere and endophytic populations in 

various plants, (ii) stimulate plant growth, and (iii) induce developmental changes 

leading to better plant adaptation to environmental stresses (Bensalim et al., 1998, 

Sharma & Nowak, 1998). Moreover, the strain PsJN also showed biocontrol activity 

since it protects effectively in vitro and in vivo against Botrytis cinerea (Ait Barka et 

al., 2002, Compant et al., personal data). 

After inoculation of grapevine plantlets with a gfp derivative of strain PsJN, 

the root interior is colonized within 3 h post inoculation (p.i.) (Compant et al., 

2005b). Nevertheless, the first PsJN::gfp2x cells were detected in the fifth leaf only 

after 72 h p.i. with a stationary-phase level that occurred 84 h p.i. (Compant et al., 

2005b).  

Non-pathogenic rhizobacteria can stimulate ISR response in the host plant. 

Nevertheless molecular events underlying ISR are less well understood than in the 
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case of SAR. The present study investigated the ISR character of B. phytofirmans 

strain PsJN by monitoring the expression of several defense related-genes after 

colonization of grapevine by the bacterium.  

 
 
Materials and Methods 

Plant material and in vitro growth conditions.  

Plantlets of V. vinifera cv. Chardonnay clone 7535 were micropropagated by nodal 

explants grown on 15 ml semisolid medium in 25 mm culture tubes as described by 

Ait Barka et al. (2006). The cultures were grown in a growth chamber under white 

fluoresent light (200 μE m2·s-1) with 16 h light at 26°C (constant temperature).  

 

Bacterial inoculum 

The bacterial inoculum was produced by transferring two loops of B. phytofirmans 

PsJN to 100 ml of King’s B liquid medium in 250 ml Erlenmeyer flasks incubated at 

20 °C at 150 rpm for 48 h.  Bacteria were collected by centrifugation (3,000 x g for 

15 min) and washed twice with phosphate-buffer saline (PBS) (10 mM, pH 6.5). The 

pellet was re-suspended in PBS and used as inoculum. The bacterium concentration 

was estimated by spectrophotometry (600 nm) and adjusted to 3 x 10
8
 CFU.ml-1 

with PBS.  

 

Plant bacterization. 

Six-week-old plantlets, with six developed leaves, were gently removed from agar 

medium, inoculated by root immersion in 2 ml of B. phytofirmans strain PsJN (3 x 

10
8
 CFU.ml

-1
). Roots of control plantlets were immersed in PBS. Plant leaves were 

sampled 12, 24 and 48 h post inoculation to analyze gene expression. At that time it 
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has been shown previously that bacteria were still in the rhizosphere and root internal 

tissues and did not colonize the aerial parts (Compant et al., 2005b). Leaves, close to 

roots of plantlets were avoided to insure the absence of bacteria in the samples.   

 

Analysis of gene expression 

Sampling, DNase treatment, RNA extraction and synthesis of cDNA. Leaf 

samples were frozen in liquid nitrogen and stored at - 80°C until use. Leaves were 

ground in liquid nitrogen to a fine powder and total RNAs were extracted from 100 

mg powder following the RNA Plant Purification Reagent protocol, according to the 

manufacturer’s instruction (Invitrogen, France). The RNA pellet was re-suspended in 

20 μl of RNase-free water. Genomic DNA was removed with RNase-free DNase 

treatment (Promega, ref 9PIM610). Five µl of total RNA were treated with 1 U of 

enzyme according to manufacturer’s instructions. RNA purity and concentration 

were assessed by determining the spectrophotometric absorbance of the samples at 

260 and 280 nm and A260/A280 ratios. RNA integrity was evaluated from the 28S 

and 18S rRNA bands on 1 % agarose gel after electrophoresis in 0.5xTAE (Tris-

Acetate-EDTA), stained with ethidium bromide and visualised under UV light. 

 Reverse transcription of RNA was performed with 200 ng of total RNA, using 

M-MLV reverse transcriptase (Invitrogen, France) following the manufacturer’s 

protocol. 

 

Real time RT-PCR analysis: PCR reactions were carried out in duplicates in 96-

well plates (25 μl per well) in a reaction buffer containing 1xSYBR Green I mix (PE 

Biosystems; including Taq polymerase, dNTPs, SYBR Green dye), 300 nM primers 

(forward and reverse)   and  a  1:50   dilution   of  reverse   transcribed   RNA.  PCR  



 

 

91

Table 1: Genes analyzed by real-time RT-PCR 

Genes Primer sequences 

Ef1α Forward 5′ GAA CTG GGT GCT TGA TAG GC 3′ 
Reverse 5′ AAC CAA AAT ATC CGG AGT AAA AGA 3′ 

Phenylalanine ammonia-lyase 
(VvPAL) 

Forward 5′ TCC TCC CGG AAA ACA GCT G 3′ 
Reverse 5′ TCC TCC AAA TGC CTC AAA TCA 3′ 

Stilbene synthase (VvStSy) Forward 5′ AGG AAG CAG CAT TGA AGG CTC 3′ 
Reverse 5′ TGC ACC AGG CAT TTC TAC ACC 3′ 

Lipoxygenase (VvLOX) Forward 5′ CTG GGT GGC TTC TGC TCT C 3′ 
Reverse 5′ GAT AAG CCG CAG ATT CAT  GC 3′ 

β-1,3-glucanase (VvGluc) Forward 5′ AAT TTG ATC CGC CAC GTC AA 3′ 
Reverse 5′ TGC GGC TCC TTC TTG TTC TC 3′ 

Chitinase 4c (VvChit4c) Forwrad 5′ GCA ACC GAT GTT GAC ATA TCA 3′ 
Reverse 5′ CTC ACT TGC TAG GGC GAC G 3′ 

Protease inhibitor (VvPIN) 
 

Forwrad 5′ AGT TCA GGG AGA GGT TGC TG 3′ 
Reverse 5′ GCA CTA GGG TCC GTG TTT GGG TCG ACG  3′ 

 

conditions were 95°C for 15 s (denaturation) and 60°C for 1 min 

(annealing/extension) for 40 cycles on a GeneAmp 5700 sequence Detection System 

(Applied Biosystems, France). Transcript level was calculated using the standard 

curve method and normalized against Eflα gene as an internal control (Terrier et al., 

2005). Non bacterized plantlets grown at 26°C were used as a reference sample (X1 

expression).  

The genes and the specific primers used in this study are listed in Table 1.  

They correspond to genes encoding enzymes of the phenylopropanoid pathway 

(phenylalanine ammonia lyase (VvPAL) and stilbene synthase (VvStSy)), three 

pathogenesis-related proteins (VvGluc, VvChit4c, and VvPIN) which encode an acidic 

PR-3, basic PR-2 and a PR-6 respectively), and lipoxygenase for the octadecanoid 

pathway (VvLOX).  

 

Results 

An induction of expression was observed for all genes after the inoculation of plants 

with the strain PsJN (Fig. 1). The pattern of VvStSy, VvPAL, VvChit4c and VvLOX 
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expression showed a peak 12 h after root inoculation with an increase between 7 to 30 

fold higher than basal level in inoculated plantlets compared to the control. Transcript 

accumulation then decreased and reach the basal level 48 h after root inoculation (Fig. 

1a,b,c,f). The expression of VvGluc increased after 12 h with a maximum 24 h (Fig. 

1d) after inoculation (16-fold), then decreased to basal level for non-bacterized 

plantlets. The expression of VvPIN was induced 170-fold more than control starting 

from 12 h to 24 h after root inoculation (Fig.1e), then returned to the same level as 

control at 48 h.  

 

Discussion 

The root colonization by strain PsJN resulted in a significant increase in the expression 

of different defense related-genes in leaves. Because bacteria were still present in the 

rhizoplane and only began to penetrate internal root tissues (Compant et al., 2005b), 

we suggest that the strain PsJN may induce a systemic spread of a signal from roots to 

leaves within 12 h after root inoculation. A similar phenomenon, referred to as ISR 

response, has been reported in several studies. For instance, ISR was described in 

Arabidopsis thaliana roots after colonization by Paenibacillus polymyxa (Timmusk & 

Wagner, 1999). The non-pathogenic rhizobacterium Bacillus amyloliquefaciens, was 

also able to elicit ISR by transcript accumulation of defense-related genes in tobacco 

leaves (Ahn et al., 2002).  

Research on molecular mechanisms of rhizobacteria-mediated ISR was 

initially focused on the role of PR-proteins, as the accumulation of these proteins was 

considered to be strictly correlated with induced disease resistance. According to 

Pieterse and van Loon (2009) the onset of  ISR, unlike SAR,  is  not  accompanied  by 
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Fig. 1: Defense gene expression of bacterized and non-bacterized grapevine plantlets 

leaves. Transcript accumulation of VvStSy (a), VvPAL (b), VvChit4c (c), VvGluc (d), 

VvPIN (e), and VvLOX (f), within 12, 24 and 48 hours post-inoculation, in response to 

strain PsJN treatment. Level of transcripts was calculated using the standard curve 

method from duplicate data, with grapevine EF-1α gene as internal control and non-

treated plantlets as reference sample.  
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the concomitant activation of PR genes. These authors reported that accumulation of 

PR-proteins was detectable only after pathogen assault. In the same line, radish plants 

of which roots were treated with ISR-inducing P. fluorescens WCS417r did not 

accumulate PR proteins, although these plants clearly showed enhanced resistance 

against fusarium wilt disease (Hoffland et al., 1995). Interestingly, AtTLP1 encoding 

a thaumatin-like protein that belongs to the PR-5 family was expressed in the root 

vascular bundle of Arabidopsis upon colonization by WCS417r (Leon-Kloosterzield 

et al., 2005). These authors indicate that induction of AtTLP1 is a local response of 

Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. 

and is unlikely to play a role in systemic resistance. 

In fact, according to the literature, it appears that the induction and 

accumulation of PR-proteins seems dependant to the host-ISR-inducting agent 

interaction. 

Nevertheless, in accordance with our results showing an induction of genes 

encoding PR-proteins as response of root inoculation by strain PsJN, different reports 

have demonstrated that PGPR are able to induce the expression of genes encoding 

PR-proteins and/or accumulation of PR-proteins in plants (Timmusk & Wagner, 

1999; Park & Kloepper, 2000; Ahn et al., 2002), including grapevine (Magnin-Robert 

et al. 2007).  

In most cases, ISR is suggested to be controlled by a SA-independent pathway 

(JA/ET dependant pathway) (van Wees et al. 2000; Pieterse and van Loon, 2009). 

Nevertheless, analysis of JA and ET levels in leaves of ISR-expressing plants 

revealed no changes in the production of these signal molecules (Pieterse et al., 2000; 

Hase et al., 2003). Therefore, it had to be assumed that the JA and ET dependency of 

ISR is based on an enhanced sensitivity to these hormones, rather than on an increase 
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in their production. Recently, Conn et al. (2008) reported that culture filtrate of 

Micromonospora sp. strain EN43 grown in a minimal medium resulted in the 

induction of the SAR pathway; however, when grown in a complex medium, the 

JA/ET pathway was activated. In this line, Maurhofer et al. (1994) showed that 

inoculation of plants by the root-invading P. fluorescens strain CHA0 induced the 

synthesis of PR-proteins. The increased resistance in tobacco as response to bacterium 

might be fully explained by the bacterial production of SA, which could elicit a SAR 

response leading to SA-inducible PR-proteins in the leaves.  

Timmusk and Wagner, (1999) reported that P. polymyxa also induced gene 

expression of PR-1, a SA-dependent gene, suggesting that this PGPR induced a mild 

biotic stress. This effect initiated a systemic response that resulted in partial protection 

against Erwinia carotovora. 

Later on, Wang et al. (2005) report the up-regulation of genes encoding PR 

proteins including β-1,3-glucanase (PR-2) and hevein-like protein precursor (PR-4) as 

response of Arabidopsis to P. fluorescens FPT9601-T5 colonization. It was also 

reported that the protection of Arabidopsis against CMV by strain 90-166 follows a 

signalling pathway for virus protection that is not dependent of SA and NPR1, but 

dependent on jasmonic acid (Ryu et al., 2004). 

Chitinases are up-regulated by a variety of stress conditions and by 

phytohormones such as ethylene, jasmonic acid, and salicylic acid (Busam et al. 

1997). Like other PR proteins, chitinases play a role in plant resistance against distinct 

pathogens. Inhibitors of serine proteases (PIN), belonging to the class of antifungal 

PR-6 proteins, have a potent activity against plant and animal pathogens (van loon & 

van Strien, 1999). The PIN genes have been extensively characterized as a marker-

gene in the jasmonate-induced transduction cascade. Our results showed an induction 
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of Chit4c and PIN expression after root inoculation. In accordance, Belhadj et al. 

(2007) reported an induction of several mechanisms of defense including genes 

encoding PR proteins such as Chit4c and PIN, up-regulation of PAL and StSy genes 

when grapevine cell suspensions were treated with MeJA in presence of 

carbohydrates.  

The resistance induced by selected grapevine-associated bacteria was 

correlated with some plant defense responses such as chitinase and ß-1,3-glucanase 

activities in both leaves and berries (Magnin-Robert et al., 2007). 

In accordance with our result, the activation of systemic resistance by 

nonpathogenic rhizobacteria has also been associated with the induction of 

lipoxygenase (LOX) activity in bean and tomato (Akram et al;, 2008; Ongena et al., 

2004, Ongena et al., 2007; Sailaja et al., 1998).  

By ensuring spatial separation between B. phytofirmans and the systemic 

response observed in leaves, the PGPR was able to induce the systemic response of 

several defense genes coding for enzymes of phenylopropanoid pathway, octadecanoid 

pathway and pathogenesis-related proteins may be involved in JA/ET pathway in 

grapevine plantlets after root inoculation. Although modification of the gene 

expression profiles caused by PGPR inoculation has been mostly reported with 

Arabidopsis (Cartieaux et al., 2003; Wang et al., 2005), our study indicates that the 

strain PsJN could possibly trigger the ISR in grapevine.  

However, the results of this study showed that the PsJN the induce the 

expression of either SA and JA/ET pathways. This suggests that interaction between 

grapevine and strain PsJN may act through ISR and SAR by overlaping both 

mechanisms. Pieterse and van Loon (2009) noted that global expression profiling of 

various Arabidopsis-attacker interactions revealed substantial crosstalk between SA-, 
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JA- and ET-dependent defense pathways that provide a powerful regulatory potential 

allowing the plant to fine-tune its defense responses. 

 

To complete this study, multiple ways should be followed under ISR condition: 

i) Investigation of early events following root inoculation with the 

bacteria (ROS, MAPK, Ca+) ; 

ii) Analysis of SA and JA levels in plants to discriminate the pathway(s) 

involved in the establishment of ISR; 

iii) Study of physiological changes occurring after the perception of 

PGPR (photosynthesis; phytoalexines); 

iv) The ISR character could be independent from the protection 

/resistance proprieties toward phytopathogens. Consequently, it will 

be interesting to analyse the impact of the presence of the strain PsJN 

on the development of gray mold disease. 
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Abstract 

Burkholderia phytofirmans strain PsJN is a plant growth-promoting rhizobacterium 

that colonizes all grapevine (Vitis vinifera L.) organs and confers resistance to low 

non-freezing temperatures. The goal of the paper was to highlight the mechanisms by 

which the bacterium favours grapevine acclimation to cold, especially whether the 

beneficial effect of the bacterium is mediated through the priming of plant responses. 

In order to investigate the putative primed state of bacterized plantlets, stress-related 

gene expression and stress-related metabolite accumulation were monitored in 

bacterized grapevine plantlets submitted to low non-freezing temperatures. When 

plantlets were grown at 26°C, bacterization had no significant effect on tested 

parameters. By contrast, both stress-related gene transcripts and metabolite levels 

increased to a higher extent in bacterized plantlets than in non-bacterized ones at 4°C. 

Results indicate that the presence of B. phytofirmans strain PsJN within grapevine 

tissues primes responses to cold stress. Moreover, after one week of cold exposure, 

the content of stress-related metabolites such as aldehydes and hydrogen peroxide 

decreased faster in bacterized than in non-bacterized plantlets, suggesting that the 

presence of the bacteria in plant tissues favours the cold acclimation process. 
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Introduction  

During the course of evolution, plant species have developed mechanisms that enable 

them to acclimate to cold by minimizing the deleterious effects of cold stress (Gilmour 

et al., 2000; Xin & Browse, 2000). Under low, non-freezing temperatures, cell 

membranes of cold sensitive plants rigidify, leading to a disturbance of membrane-

related processes such as opening of ion channels or membrane-associated electron 

transfer reactions (Alonso et al., 1997; Uemura & Steponkus, 1999). As a 

consequence, the whole plant physiology is affected as revealed by a decrease of 

photosynthesis and subsequent growth alteration (Ait Barka et al., 2006).  By contrast, 

plants may adapt to these adverse conditions and thus maintain their physiological 

activity.  

Numbers of physiological changes have been identified related to cold 

acclimation (Thomashow, 1999; Chinnusamy et al., 2006; Nakashima & Yamaguchi-

Shinozaki, 2006), including general stress-related responses such as accumulation of 

reactive oxygen species (ROS) (Neill et al., 2002), but also cold specific traits. Cold 

acclimation has been shown to be correlated to (i) accumulation of cryoprotective 

compounds such as sugars and proline (Hekneby et al., 2006; Patton et al., 2007), (ii) 

regulation of specific gene expression (Hughes & Dunn, 1996; Chinnusamy et al., 

2006) and (iii) synthesis of cold-stress related proteins (Hughes & Dunn, 1996; 

Thomashow, 1999). 

The analysis of cold acclimation reveals a complex process resulting in a 

coordinated up- or down-regulation of hundreds of genes. For example, transcript 

levels of COR (cold regulated), LTI (low-temperature induced), or KIN (cold induced) 

genes greatly increased within a few hours following exposure to cold (Thomashow, 

1999). The signal transduction pathways leading to expression of cold-regulated 
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genes in Arabidopsis thaliana involve a regular network in which CBF (C-repeat 

binding factor) transcription factors (CBF1-3) control many COR genes during cold 

acclimation (Fowler & Thomashow, 2002; Xiao et al., 2006; Tattersall et al., 2007; 

Xiao et al., 2008). 

In grapevine, low temperatures decrease both growth and photosynthesis 

(Flexas et al., 1999; Hendrickson et al., 2003; Hendrickson et al., 2004; Bertamini et 

al., 2005; Ait Barka et al., 2006) but stimulate both carbohydrate metabolism 

(Hamman et al., 1996) and proline accumulation (Ait Barka & Audran, 1997; Ait 

Barka et al., 2006). Recently, a Vitis vinifera CBF4 gene, homologue to A. thaliana 

CBF1, has been characterized upon exposure to low non-freezing temperature (4°C) 

and might be preponderant for the over-wintering of grape plants (Xiao et al., 2008).  

Burkholderia phytofirmans strain PsJN is a plant growth-promoting 

rhizobacterium (PGPR) able to establish rhizospheric and endophytic populations in 

various plants (Nowak & Shulaev, 2003). This bacterium stimulates plant growth and 

induces physiological changes leading to a better plant adaptation to environmental 

stresses (Nowak et al., 1995; Pillay & Nowak, 1997; Bensalim et al., 1998; Sharma & 

Nowak, 1998). In grapevine, it was recently established that B. phytofirmans strain 

PsJN colonizes the rhizosphere, penetrates roots and thus migrates into all plant tissues 

(Compant et al., 2005). Furthermore, the presence of the bacterium in the plant causes 

a better acclimation to cold non freezing temperatures, as revealed by (i) lower cell 

damages, (ii) higher photosynthetic activity and (iii) accumulation of cold stress 

related metabolites such as starch, proline and phenolic compounds (Ait Barka et al., 

2006). 

Following colonization of roots by beneficial microbes, infection by 

necrotizing pathogens, or after treatment with various chemicals, plants can establish a 
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unique physiological situation so called ‘‘primed’’ state (Conrath, 2009). Primed 

plants respond by activating defense responses faster and/or more strongly when 

subsequently challenged by microbial pathogens, herbivorous insects, or abiotic 

stresses (Conrath et al., 2002; Conrath et al., 2007; Goellner & Conrath, 2008; 

Conrath, 2009).  

The beneficial interaction between grapevine and B. phytofirmans strain PsJN 

remains to be further elucidated, especially how the presence of this strain helps to 

withstand cold. We hypothesized that bacterized plants might be primed to respond 

quicker or more efficiently to cold conditions. For this purpose, we analyzed the 

ability of the bacterium to potentiate (i) expression of defense- and cold-related 

genes and (ii) changes in concentrations of several stress-related metabolites such as 

proline, stress-related aldehydes and hydrogen peroxide. 

 

Materials and Methods 

Plant material and in vitro growth conditions  

Plantlets of Vitis vinifera cv. Chardonnay clone 7535 were micro-propagated by 

nodal explants grown on 15 ml agar medium in 25 mm culture tubes as described 

earlier (Ait Barka et al., 2006). Cultures were performed in a growth chamber under 

white fluorescent light (200 μE.m-2.s-1) with 16 h light per day at constant 26°C.  

 

Bacterial inoculum 

The bacterial inoculum was produced by transferring two loops of B. phytofirmans 

PsJN to 100 ml of King’s B liquid medium in 250 ml Erlenmeyer flask incubated at 

20°C at 150 rpm for 48 h. Bacteria were collected by centrifugation (3,000 g for 15 

min) and washed twice with phosphate-buffer saline (PBS) (10 mM, pH 6.5). The 
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pellet was re-suspended in PBS and used as inoculum. The bacterium concentration 

was estimated by spectrophotometry (600 nm) and adjusted to 3 x 10
8
 CFU.ml-

1
 with 

PBS (Pillay & Nowak, 1997). 

 

Plant bacterization 

Roots of two week-old plantlets were immersed in B. phytofirmans strain PsJN (3 x 

10
8
 CFU.ml

-1
) for 10 s. Roots of control plantlets were immersed in PBS. After 

immersion, plantlets were grown as described above for four weeks before cold 

treatment. At that time, it is established that bacteria have colonized roots, stem and 

leaves of grapevine plantlets (Compant et al., 2005). 

 

Cold treatment 

Six week-old (bacterized four weeks earlier) and non-bacterized plantlets were 

transferred to a cold growth chamber maintained at 10°C under 16 h light (white 

fluorescent light, 200 μE m-2
·s-1) and at 4°C for 8 h dark, whereas the control plants 

were at 26°C. Each treatment was replicated three times and each replicate consisted 

of six plantlets.  

 

Analysis of gene expression 

Sampling, DNase treatment, RNA extraction and synthesis of cDNA. Leaf 

samples were frozen in liquid nitrogen and stored at - 80°C until use. Leaves were 

ground in liquid nitrogen to a fine powder and total RNA was extracted from 100 mg 

powder following the RNA Plant Purification Reagent protocol, according to the 

manufacturer’s instruction (Invitrogen, France). The RNA pellet was re-suspended in 

20 μl of RNase-free water. Genomic DNA was removed with RNase-free DNase 

treatment (Promega, ref 9PIM610). Five µl of total RNA were treated with 1 U of 
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enzyme according to manufacturer’s instructions. RNA purity and concentration 

were assessed by determining the spectrophotometric absorbance of the samples at 

260 and 280 nm and A260/A280 ratios. RNA integrity was evaluated from the 28S 

and 18S rRNA bands on 1 % agarose gel after electrophoresis in 0.5xTAE (Tris-

Acetate-EDTA), stained with ethidium bromide and visualised under UV light. 

 Reverse transcription of RNA was performed with 200 ng of total RNA, using 

M-MLV reverse transcriptase (Invitrogen, France) following the manufacturer’s 

protocol. 

 

Real time RT-PCR analysis. PCR reactions were carried out in duplicates in 96-

well plates (25 μl per well) in a reaction buffer containing 1xSYBR Green I mix (PE 

Biosystems; including Taq polymerase, dNTPs, SYBR Green dye), 280 nM primers 

(forward and reverse) and a 1:50 dilution of reverse transcribed RNA. PCR 

conditions were 95°C for 15 s (denaturation) and 60°C for 1 min 

(annealing/extension) for 40 cycles on a GeneAmp 5700 sequence Detection System 

(Applied Biosystems, France). Transcript level was calculated using the standard 

curve method and normalized against Eflα gene as an internal control (Terrier et al., 

2005). Non-bacterized plantlets grown at 26°C were used as a reference sample.  

 The genes and the specific primers used in this study were listed in Table 1. 

They corresponded to genes encoding a phenylalanine ammonia-lyase (PAL), a 

stilbene synthase (StSy), three pathogenesis-related (PR) proteins (Gluc, Chit4c, and 

Chit1b), a lipoxygenase (LOX) and the transcription factor CBF4.  
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Analysis of stress-related metabolites 

Table 1: Genes analyzed by real-time RT-PCR 

Genes and accession numbers Primer sequences 

Elongation factor 1α ( Ef1α) 
BQ799343 

Forward 5′ GAA CTG GGT GCT TGA TAG GC 3′ 
Reverse 5′ AAC CAA AAT ATC CGG AGT AAA AGA 3′ 

Phenylalanine ammonia-lyase (PAL) 
X75967 

Forward 5′ TCC TCC CGG AAA ACA GCT G 3′ 
Reverse 5′ TCC TCC AAA TGC CTC AAA TCA 3′ 

Stilbene synthase (StSy) 
AF274281 

Forward 5′ AGG AAG CAG CAT TGA AGG CTC 3′ 
Reverse 5′ TGC ACC AGG CAT TTC TAC ACC 3′ 

Lipoxygenase (LOX) 
AY159556 

Forward 5′ CTG GGT GGC TTC TGC TCT C 3′ 
Reverse 5′ GAT AAG CCG CAG ATT CAT  GC 3′ 

β-1,3-glucanase (Gluc) 
AF239617 

Forward 5′ AAT TTG ATC CGC CAC GTC AA 3′ 
Reverse 5′ TGC GGC TCC TTC TTG TTC TC 3′ 

Chitinase 4c (Chit4c) 
AY137377 

Forwrad 5′ GCA ACC GAT GTT GAC ATA TCA 3′ 
Reverse 5′ CTC ACT TGC TAG GGC GAC G 3′ 

Chitinase 1b (Chit1b) 
Z54234 

Forward 5′ ATG CTG CAG CAA GTT TGG TT 3′ 
Reverse 5′ CAT CCT CCT GTG ATG ACA TT 3′ 

C-repeat binding factor (CBF4) 
DQ497624 

Forward 5’-ACC CTC ACC CGC TCG TTA TG- 3’  
Reverse 5’-CCG CGT CTC CCC GAA ACT T- 3’ 

 

 

Free proline. Two hundred μl of the potassium phosphate extract were mixed with 

800 μl ninhydrin reagent which contained 1 % (w/v) ninhydrin in 60 % acetic acid 

(Ait Barka & Audran, 1997). The mixture was heated at 100°C for 20 min and then 

cooled in ice. One ml toluene was added and the sample was vigorously shaken for 15 

s. The samples were placed in darkness at room temperature for at least 4 h. The 

absorbance of the upper phase was then read spectrophotometrically at 520 nm. 

Proline concentration was determined by using a calibration curve and expressed as 

μM proline.g−1 dry weight (DW). 

 

Lipid peroxidation (LP) markers. The lipid peroxidation was evaluated by assaying 

the concentration of thiobarbituric acid reactive substances according to Heath & 

Packer (1968). Fresh leaves were ground in Fontainebleau sand and trichloroacetic 

acid (TCA) (0.1 % w/v). The homogenate was centrifuged at 4°C for 10 min at 
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12,000 g. One volume supernatant was mixed with 4 volumes of 20 % TCA 

containing 0.5 % (w/v) 2-thiobarbituric acid. The mixture was heated at 95°C for 30 

min, quickly cooled in ice and centrifuged at 10,000 g for 5 min. The non-specific 

absorbance of supernatant at 600 nm was substracted from the maximum absorbance 

at 532 nm for malondialdehyde (MDA) measurement (Kumar & Knowles, 1993) and 

455 nm for aldehydes (Meir et al., 1992). For MDA and aldehyde calculation, an 

extinction coefficient (E) of 1.56 × 105 M-1.cm-1 was used for MDA at 532 nm, and an 

E of 0.457 × 105 M-1.cm-1 was used at 455 nm as average of E obtained for aldehydes 

(propanal, butanal, hexanal, heptanal, and propanal-dimethylacetal) according to Meir 

et al. (1992). Results were expressed in nmol.g-1 DW. 

 

Hydrogen peroxide. H2O2 content was evaluated according to the method of 

(Mondal & Choudhuri, 1981), with some modifications. Two hundred and fifty mg of 

leaf powder was homogenised in 1 ml of ice-cold acetone and was centrifuged at 

13,500 g for 10 min. Two hundred and fifty µl of cold water and 100 µl of 5 % titanyl 

sulfate were added to supernatant. To this mixture, 500 µl of 1N NH4OH solution 

were added to precipitate the peroxide-titanium complex. After centrifugation at 6,000 

g for 5 min, the supernatant was discarded and the pellet was washed with cold 

acetone. The precipitate was then dissolved in 1.5 ml of 2N H2SO4 and the final 

volume adjusted to 2 ml with cold water. The absorbance of the solution was read at 

415 nm. H2O2 content was calculated from a standard curve.  

 

Statistical analysis 

Metabolite and gene expression studies corresponded to 3 independent experiments. 

Each replicate corresponded to 6 plantlets. Reported data are means ± standard error 
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(SE) of the 3 independent experiments, except CBF4, for which reported data are 

means ± SE of a duplicate of one representative experiment out of 3 independent 

ones. Standard analysis of the variance (t test) was used to assess the significance of 

the treatment means at P<0.05 level. 

 

Results 

Gene expression 

Whatever gene considered, our results showed that basal levels of gene expression 

were similar in bacterized and non-bacterized plantlets grown at 26ºC (Fig. 1). When 

plantlets were exposed to low-non freezing temperature (4ºC), transcripts of all genes 

accumulated in both non-bacterized and bacterized plantlets, except for LOX. 

Nevertheless, the accumulation profiles in bacterized and non-bacterized plantlets 

were significantly different with higher levels measured in the formers (Fig. 1).   

After 24 h of cold exposure, StSy and PAL expression was enhanced by 460 

and 40 respectively in bacterized plantlets, whereas it increased only by 150 and 9 in 

the non-bacterized ones (Figs. 1a, b). After 48h of cold exposure, transcript levels 

decreased but remained higher in bacterized plantlets. After two weeks of treatment, 

no differences were noticed between bacterized and non-bacterized plantlets.   

Considering PR proteins, Chit4c transcripts accumulated gradually in 

bacterized plantlets, reaching a peak (40 fold) after 72 h of cold shift (Fig. 1c). After 

two weeks of treatment, transcript accumulation remained 15 fold above the basal 

level. In non-bacterized plantlets, the pattern was similar but less amplified. Chit1b 

expression was induced by 12 after 24h of cold exposure in bacterized plantlets and 

then decreased gradually until the end of experiment (Fig. 1d). In non-bacterized 

plantlets, expression was only enhanced by 4 after 24 h. Similarly Gluc expression 
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was also stimulated following cold treatment (peak at 48 h), but in a higher extent in 

bacterized plantlets (Fig. 1e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Defense gene expression of StSy (a), PAL (b), Chit4c (c), Chit1b (d), Gluc (e) 

and LOX (f) in leaves of non-bacterized and bacterized grapevine plantlets after 24, 

48, 72 h, 1 and 2 weeks of cold treatment. Results represent the mean fold increase of 
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mRNA level over control plantlets (non-bacterized, 26°C) referred as 1 x expression 

level and correspond to means of 3 independent experiments ± SD 
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Fig. 2: CBF4 expression in leaves of non-bacterized and bacterized grapevine 

plantlets after 9 and 24 h of cold treatment. Results represent the mean fold increase 

of mRNA level over control plantlets (non-bacterized, 26°C) referred as 1 x 

expression level and correspond to means ± SD of a duplicate of one representative 

experiment out of 3 independent ones. 

 

 

In contrast to the other tested genes, LOX expression was not induced in non-

bacterized plantlets (Fig. 1f). Oppositely, bacterization resulted in a transient peak of 

expression after 24 h of cold treatment (7.5 fold). 

To analyze transcription factor CBF4 expression, leaves were sampled earlier 

because it was reported that the peak of Vitis CBF4 expression following cold stress 

occurred after 9 h (Xiao et al., 2008). Transcript level was actually up-regulated in 

plantlets within 9 h after cold exposure (Fig. 2). Gene expression peaked to 60 and 160 

fold in non- and bacterized plants, respectively. Interestingly, CBF(1-3) gene 

expression, known for their cold responsiveness in grapevine (Xiao et al., 2006), was 

not induced in this study (data not shown). 
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Fig. 3: Accumulation of proline in non-bacterized and bacterized grapevine plantlets 

after 24, 48, 72 h, 1 and 2 weeks of cold treatment. Means indicated with different 

letters are significantly different (P<0.05). 

 

 

Proline content 

At 26°C, bacterization of grapevine plantlets did not induce significant increase of 

proline level during the first 3 days (Fig. 3). After 1 and 2 weeks, proline content was  

slightly higher in bacterized plantlets. When bacterized or non-bacterized plantlets 

were subjected to low non-freezing temperature, they both accumulated proline in a 

greater extent than plantlets grown at 26°C. But proline over-accumulation was 

significantly higher in bacterized plantlets after one week of cold exposure.  
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Aldehyde and malondialdehyde content 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Accumulation of aldehydes and malondialdehyde in non-bacterized and 

bacterized grapevine plantlets after 24, 48, 72 h, 1 and 2 weeks of cold treatment. 

Means indicated with different letters are significantly different (P<0.05). 

 

During the sampling period, no significant difference in aldehyde and MDA levels 

was observed between plantlets when grown at 26°C (Fig. 4). However, after 

exposure to 4°C, both aldehyde and MDA levels increased since 24 h, with a 

stronger effect in the bacterized plantlets. After 72 h of treatment, aldehyde and 

MDA contents became similar in both bacterized and non-bacterized plantlets.  
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Fig. 5: Accumulation of hydrogen peroxide in non-bacterized and bacterized 

grapevine plantlets after 24, 48, 72 h, 1 and 2 weeks of cold treatment. Means 

indicated with different letters are significantly different (P<0.05). 

 

Interestingly, afterwards aldehyde and MDA concentrations significantly decreased 

in higher proportions in bacterized plantlets.   

 

Hydrogen peroxide accumulation 

No H2O2 accumulated in bacterized plantlets when grown at 26°C (Fig. 5). By 

contrast, cold stress induced H2O2 accumulation in both bacterized and non-bacterized 

grapevine plantlets within the first 72 h of treatment, but in a higher extent in the 

formers. Here again, after 1 week of treatment H2O2 content was significantly lower in 

bacterized plantlets. 
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defense-related gene transcripts and stress-related metabolites. These reactions were 

stronger in bacterized plantlets. This may be correlated with previous results showing 

that leaf cells of bacterized plantlets are less affected by deleterious effects of cold (Ait 

Barka et al., 2006), and further indicates that B. phytofirmans strain PsJN may 

improve grapevine resistance to low non-freezing temperatures according to the 

phenomenon of priming (Goellner & Conrath, 2008; Conrath, 2009). Priming induced 

by PGPR has been reported several times (De Meyer et al., 1999; Hase et al., 2003; 

Kim et al., 2004; Verhagen et al., 2004; Tjamos et al., 2005; van Wees et al., 2008; 

Verhagen et al., 2010) when studying induced systemic resistance (ISR) after 

challenge with pathogens. Our results demonstrate for the first time priming induced 

by PGPR upon cold stress. 

 

Induction of defense responses upon cold treatment 

The induction of defense mechanisms following biotic or abiotic stresses has been 

well documented. For example, expression of StSy genes is often induced in grapevine 

when submitted to various forms of stress, including pathogen infection (Preisig-

Muller et al., 1999), ozone treatment (Brehm et al., 1999) and UV-light application 

(Versari et al., 2001). But only poor information is available about grapevine defense 

mechanisms triggered during cold acclimation. In this work, we showed that StSy 

expression was stimulated after 24 h, as reported previously (Sanchez-Ballesta et al., 

2007). Similarly, the induction of PAL following cold exposure is in accordance with 

previous results obtained in other plants using either transcriptomics (Christie et al., 

1994; Leyva et al., 1995; Gaudet et al., 2003) or proteomics (Cui et al., 2005).  

Chitinases and glucanases are of special interest when studying plant responses 

to cold since they exhibit both antifreeze and antifungal activities and have thus been 
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extensively analyzed in plants submitted to cold or pathogen attack (Hon et al., 1995; 

van Loon & van Strien, 1999; Yeh et al., 2000; Huang & Duman, 2002). Depending 

on the stress, they may be classified either as antifreezing (AFPs; Griffith & Yaish, 

2004) or pathogenesis-related (van Loon & van Strien, 1999) proteins.  

In A. thaliana, the expression of transcription factors CBFs is quickly 

stimulated (2 h) after cold treatment (Liu et al., 1998; Gilmour et al., 2000). More 

recently, four CBF-like genes, CBF 1–4, have been isolated from Vitis sp. and were 

shown to be induced within few hours after exposure to low temperatures, in particular 

CBF4 (Xiao et al., 2008). Our data showing a clear induction of CBF4 expression 

after 9 h of cold treatment are therefore in accordance with these results. 

Apart from gene expression, plant responses to cold also result from 

fluctuations of stress-related metabolites such as proline, hydrogen peroxide or 

aldehydes. Proline is the best characterized stress responsive molecule and its 

accumulation is often associated with plant resistance to low temperature, acting as 

membrane stabilizer, osmo-protector, regulator of enzymes, or scavenger of ROS 

(Brugiere et al., 1999; Chen & Li, 2002; Wang et al., 2008). It is therefore not 

amazing that in grapevine, accumulation of proline appeared as a response to cold 

applied either as a shock (Ait Barka & Audran, 1997) or for acclimation (Ait Barka 

et al., 2006). Besides, chilling temperatures are known to induce the synthesis of 

ROS, which stimulate LP (Pinhero et al., 1997). Among ROS, H2O2 has opposite 

effects on plant submitted to low temperatures depending on the process of 

application (Prasad et al., 1994). Under cold shock, H2O2 accumulates to damaging 

levels in plant tissues because of low levels of antioxidant enzymes. By contrast, in 

cold-acclimated plants, H2O2 triggers the synthesis of antioxidant enzymes such as 

catalase or peroxidase that scavenge ROS and help the plant to overcome cold 
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conditions. In our case, the presence of B. phytofirmans in plantlets provokes 

stronger H2O2 accumulation within the first 3 days of treatment but also speeds up 

the decrease of H2O2 level after 1 week. Under cold conditions, aldehydes and MDA 

are produced by the peroxidation of polyunsaturated fatty acids and affect cell 

membrane fluidity and functions (Barclay & McKersie, 1994). In our work, 

fluctuations of both aldehydes and MDA levels are similar to those reported for 

H2O2, confirming that B. phytofirmans speeds up grapevine reaction to cold shift and 

later favours the acclimation process to cold temperatures. 

 

The priming effect of B. phytofirmans strain PsJN 

The presence of the bacterium results in a greater capacity to withstand damage 

provoked by cold stress (Ait Barka et al., 2006). Our result showed for the first time 

that the PGPR B. phytofirmans strain PsJN acts as a priming agent of grapevine 

plantlets when submitted to low non-freezing temperatures. Indeed, at 26°C, the level 

of both stress-related transcripts and metabolites were globally identical in bacterized 

and non-bacterized plantlets but reactions were stronger in the former after a cold 

shift. In grapevine primed expression of defense mechanisms resulting in pathogen 

resistance has already been demonstrated in plants pretreated with β-aminobutyric acid 

(BABA) and challenged with downy mildew (Hamiduzzaman et al., 2005; Slaughter 

et al., 2008). Recently grapevine physiological responses have been potentiated 

against Botrytis cinerea by non pathogenic rhizobacteria Pseudomonas spp (Verhagen 

et al., 2010). 

PAL appears to be a reliable marker of the priming state. It was previously 

shown that either gene expression or enzymatic activity was higher when (i) tobacco is 

challenged with tobacco mosaic virus following pretreatment with chemicals (Conrath 
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et al., 1995), (ii) parsley cell suspensions are elicited after benzothiadiazole 

application (Katz et al., 1998; Thulke & Conrath, 1998) or (iii) asparagus is 

challenged with Fusarium oxysporum f. sp. asparagi following salicylic acid treatment 

(He & Wolyn, 2005). 

Among the tested genes, LOX has a particular behaviour since its expression 

is not induced in non-bacterized plantlets submitted to cold but follows the same 

pattern of expression than the other tested genes when plantlets are bacterized. 

Similarly, it was demonstrated that LOX was strongly induced in grapevine following 

infection with Plasmopara viticola, only when infection was preceded by a BABA 

priming treatment (Hamiduzzaman et al., 2005). The authors also reported that LOX 

was jasmonic acid (JA)-regulated. The clear potentiated expression of LOX in 

bacterized plantlets after cold shift suggests that JA signal transduction pathway 

could be involved in the process of cold acclimation induced by B. phytofirmans. 

The results obtained in this study about oxidative metabolism may appear 

incoherent. LOX generates peroxidative damages in plasma membrane through lipid 

peroxidation (Lee et al., 2005), which is deleterious to plant cells. This is 

contradictory with the suspected beneficial effect of priming that may facilitate plant 

reaction to stress. However, one week after cold exposure, the LP markers and H2O2 

decreased faster in bacterized than in non-bacterized plantlets, suggesting the 

occurrence of undefined mechanism that promotes ROS elimination. This may 

represent a pathway of plant acclimation to cold stress when bacterized. 

In this paper, we report for the first time that grapevine priming was induced 

by a PGPR, significantly helping the plant to withstand cold stress. The state of 

priming offers a cost-efficient resistance strategy, usually characterized as enabling 

the plant to react more efficiently to biotic or abiotic stresses by boosting cell defense 
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responses (Conrath et al., 2007; Conrath, 2009). Apart from facilitating cold 

acclimation, it was also shown that B. phytofirmans strain PsJN also protects 

grapevine plantlets against Botrytis cinerea (Ait Barka et al., 2000). There is thus 

some probability that the priming effect induced by B. phytofirmans strain PsJN may 

also participate in the resistance of grapevine bacterized plantlets to grey mould.  
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Abstract 

Burkholderia phytofirmans strain PsJN is a plant growth promoting rhizobacterium 

(PGPR) that enhances grapevine tolerance to low non-freezing temperatures by 

changing several physiological parameters. In order to further understand the 

mechanisms involved in the responses of in vitro bacterized grapevine plantlets to 

cold, the accumulation of carbohydrates was analyzed in leaves during cold 

acclimation. The results showed that sugars of the primary metabolism including 

sucrose, glucose, fructose and starch increased after exposure to low non-freezing 

temperatures. More precisely, bacterized plantlets reacted faster and stronger than non-

bacterized ones to cold by accumulating higher levels of carbohydrates, suggesting 

that B. phytofirmans strain PsJN primed grapevine reactions to cold temperatures. 

Since sugar accumulation is known to participate in plant tolerance to cold, our results 

indicate that grapevine bacterization promotes plantlet acclimation to low non-freezing 

temperatures. 
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Introduction 

Low temperatures cause significant stress to cold-sensitive plants affecting their 

physiological processes thus reducing crop quality and productivity (Levitt, 1980; 

Raison & Lyons, 1986). On the other hand, insensitive plants exposed to low non-

freezing temperatures may become more resistant to cold, a phenomenon known as 

cold acclimation (Xin & Browse, 2000; Heknedy et al., 2006). The physiological, 

biochemical and metabolic alterations upon cold acclimation have been correlated 

with (i) biochemical changes in membrane lipid composition (Alonso et al., 1997; 

Uemura & Steponkus, 1999), (ii) changes in gene expression and accumulation of cold 

stress-related proteins (Hughes & Dunn, 1996; Thomashow, 1999), (iii) accumulation 

of proline contents (Hekneby et al., 2006; Patton et al., 2007) and (iv) increases in 

antioxidant enzymes (Lee & Lee, 2000; Kuk et al., 2003). Besides, the accumulation 

of cryoprotective carbohydrates is one of the best characterized phenomena that occur 

during the cold acclimation process (Strause & Hauser, 1986; Pollock & Lloyd, 1987; 

King et al., 1988; Leborgne et al., 1995; Ait Barka & Audran, 1996; Travert et al., 

1997; Stushnoff et al., 1997). 

In grapevine, the effects of low temperatures have already been correlated with 

fluctuations in growth (Hendrickson et al., 2003, 2004; Bertamini et al., 2005; Ait 

Barka et al., 2006), carbohydrate metabolism (Ait Barka & Audran, 1996; Hamman et 

al., 1996), proline contents (Ait Barka & Audran, 1997; Ait Barka et al., 2006), gene 

expression and signal transduction (Thomashow, et al., 1998; 1999), as well as 

accumulation of CBF transcription factors (Xiao et al., 2006; 2008). Recently, it was 

revealed that B. phytofirmans strain PsJN is able to colonize all grapevine organs 

(Compant et al., 2005; 2008). The colonization was concomitant with enhanced 

changes in stress-related gene expression, proline and phenolic compounds, as well as 
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hydrogen peroxide and membrane lipid peroxidation (LP) markers upon exposure to 

low non-freezing temperatures (Ait Barka et al., 2006; Theocharis, personal 

communication). These physiological changes have been proven to be stronger and 

faster in bacterized plantlets, suggesting that B. phytofirmans strain PsJN primes 

grapevine plantlet reactions after cold shift, resulting in a better acclimation to cold 

conditions. Moreover, focusing on carbohydrate metabolism, the presence of this 

bacterium in the whole plantlet also contributed to maintain the same level of 

photosynthesis in bacterized plantlet grown at 4°C than in non-bacterized ones 

maintained at 26°C (Ait Barka et al., 2006). 

In order to further understand the implication of carbohydrate metabolism in 

the process of cold acclimation in bacterized grapevine plantlets, we followed the 

fluctuations of soluble sugars with cryoprotective effects such as sucrose, glucose and 

fructose and starch within the first 2 weeks of cold exposure. 

 

Materials and methods 

Plant material 

Plantlets of Vitis vinifera L. cv. Chardonnay clone 7535 were micro-propagated by 

nodal explants grown on 15 ml of semisolid medium in 25 mm diameter culture tubes 

under gnobiotic system as described by Ait Barka et al. (2006). Briefly, the cultures 

were grown in a growth chamber under white fluorescent light (200 μE m-2.s-1) with 

16 h photoperiod at 26°C.  

 

Plant bacterization 
The bacterial inoculum was produced by transferring two loops of PsJN to 100 ml of 

King’s B liquid medium in 250 ml Erlenmeyer flask incubated at 20°C at 150 rpm for 
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48 h.  Bacteria were collected by centrifugation (3,000 g for 15 min) and washed twice 

with phosphate-buffer saline (PBS) (10 mM, pH 6.5). The pellet was re-suspended in 

PBS and used as inoculum. The bacterium concentration was estimated by 

spectrophotometry (600 nm) and adjusted to 106 CFU/ml with PBS. Roots of two 

week-old plantlets were immersed in B. phytofirmans strain PsJN (3 × 10
8
 CFU.ml

-1
) 

for 10 s, while roots of control plantlets were immersed in PBS. After immersion, 

plantlets were cultivated in tubes in growth chambers as described above for 4 weeks 

before cold treatment. At this moment, bacteria had fully colonized the roots, stem and 

leaves (Compant et al., 2005).  

 

Cold treatment 

Six weeks-old, bacterized (four weeks before) and non-bacterized grapevine plantlets, 

were divided into two sets. The first set was transferred to a cold growth chamber 

maintained at 10°C under a 16 h photoperiod with light provided by white fluorescent 

lamps at 200 μEl m-2.s-1, and 4°C under dark for 8 h, whereas the second set (control) 

was left at constant temperature (26°C). Sampling was performed after 24, 48, 72 h 

and 1 and 2 weeks of cold treatment.  

 

Total soluble carbohydrates 

Two hundred and fifty mg of leaves were ground in 2 ml of 0.1M potassium phosphate 

buffer (pH 7.5). The homogenates were centrifuged at 12,000 g at 4°C for 15 min and 

the supernatants were used for each analysis. An aliquot of the potassium phosphate 

extract (200 μl) was mixed with 1 ml of anthrone-sulphuric reagent (0.1% anthrone 

and 0.1% thiourea in 12.5 N sulphuric acid) and incubated for 10 min at 100°C. After 
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cooling, the absorbance was read at 625 nm and results were expressed in mg.g−1 dry 

weight (DW). 

 

Sucrose, Glucose and Fructose 

An aliquot of the initial potassium phosphate extract (200 μl) was used to measure the 

concentration of sucrose, glucose and fructose. The analysis was performed using 

enzymatic kits (Scil Diagnostic GmbH, Viernheim, Germany) according to 

manufacturer’s protocol. Results were expressed in mg.g−1 DW. 

 

 Starch extraction and analysis 

The pellets from soluble sugar extraction were used for starch analysis. The collected 

pellets were re-suspended in dimethyl sulfoxide-8 M hydrochloric acid (4:1 v/v). 

Starch was dissolved over 30 min at 60°C with constant agitation (60 rpm). After 

centrifugation for 15 min at 12,000 g, 100 μl supernatant were mixed with 100 μl 

iodine-HCl solution (0.06% KI and 0.003% I2 in 0.05 M HCl) and 1 ml distilled water. 

The absorbance was read at 600 nm after 15 min incubation at room temperature. 

Results were expressed in mg.g−1 DW. 

 

Statistical analysis 

Each treatment was repeated three times and each replicate consisted of six plantlets. 

Reported data are means ± standard error (SE). Standard analysis of the variance (t 

test) was used to assess the significance of the treatment means at P<0.05 level. 

 

Results  

At the beginning of the experiment, bacterized and non-bacterized plantlets do not 
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Fig. 1: Accumulation of total soluble sugars in non-bacterized and bacterized 

grapevine plantlets after 24, 48, 72 h, 1 and 2 weeks of cold treatment. Means 

indicated with different letters are significantly different (P<0.05). 

 

exhibit similar physiological situations regarding the concentration of soluble sugars 

and starch in leaves, although both bacterized and non-bacterized plantlets were grown  

at 26°C. The presence of B. phytofirmans strain PsJN in the plantlet did not induce any 

significant change in soluble sugar concentration within the first 3 days of experiment 

when cultivated at 26°C (Figs. 1, and 2). Afterwards, leaf contents in total soluble 

sugars (Fig. 1), as well as glucose and fructose (Fig. 2) tended to be higher in 

bacterized plantlets after 1 and 2 weeks respectively but without significant 

differences. However, starch content was significantly higher in bacterized plantlets 

cultivated at 26°C, from the beginning and during the whole experiment at 26°C (Fig. 

3).
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 Fig. 2: Accumulation of sucrose, glucose and fructose in non-bacterized and 

bacterized grapevine plantlets after 24, 48, 72 h, 1 and 2 weeks of cold treatment. 

Means indicated with different letters are significantly different (P<0.05). 
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Fig. 3: Accumulation of starch in non-bacterized and bacterized grapevine plantlets 

after 24, 48, 72 h, 1 and 2 weeks of cold treatment. Means indicated with different 

letters are significantly different 

 

 

In both bacterized and non-bacterized plantlets (Figs. 1, 2), the exposure to low 

non-freezing temperature induced a gradual increase of total soluble sugars, including 

sucrose, glucose and fructose. The increase was faster and stronger in bacterized 

plantlets, reaching a peak 1 week after cold treatment. Similarly, cold treatment 

induced a significant accumulation of starch in plantlets grown at 4°C (Fig. 3), but in a 

higher extent in bacterized ones. 

 

Discussion 

Grapevine reactions to cold temperatures 

In woody plants, the correlation between cold tolerance and sugar accumulation has 

already been established (Leborgne et al., 1995; Travert et al., 1997). Under 
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temperate or continental climates, soluble sugars increase at the onset of winter when 

plants are submitted to low temperatures and next decrease at bud burst when winter 

dormancy is over (Ashworth et al., 1993; Rinne et al., 1994; Barbarox & Breda, 2002; 

Bhowmik & Matsui, 2003). Although the precise function of soluble sugars is not yet 

determined, their accumulation in cold-acclimated plants suggests a role in 

osmoregulation, cryoprotection or as signaling molecules (Wanner & Juntilla, 1999; 

Annikki & Palva, 2006). Moreover, carbohydrates may also act as reactive oxygen 

species scavengers and contribute to increases of membrane stabilization (Bohnert & 

Jensen, 1996). 

Depending on the plant species, various forms of soluble sugars are involved 

in physiological reactions to cold stress. For example, sucrose is the most easily 

detectable sugar in cold-tolerant plants (Guy et al., 1980; Pollock, 1984; Salerno & 

Pontis, 1989). It enhances cold hardiness and desiccation tolerance of buds in woody 

plants (Stushnoff et al., 1997). The accumulation of sucrose in sugar cane exposed to 

chilling stress supports the well-established role of this sugar as an osmoprotectant 

that stabilizes cell membranes and maintains turgor (Jouve et al., 2004; Whittaker et 

al., 2001). Also, the oligosaccharides raffinose and stachyose are closely associated 

with season-long cold hardiness and dormancy (Stushnoff et al. 1993; Ashworth et 

al. 1993; Flinn & Ashworth 1995; Imanishi et al. 1998). In grapevine, the onset of 

cool autumn temperatures induces significant modifications of carbohydrate 

metabolism. It shifts from production of sucrose to monosaccharides (fructose and 

glucose) and raffinose (Hamman et al., 1996; Ait Barka & Audran, 1996), with a 

peak at midwinter (Ait Barka & Audran, 1996). This seasonal modification in 

soluble sugar accumulation of vineyard grown plants is quite similar with changes 
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reported here in bacterized and non-bacterized plantlets submitted to low 

temperatures.  

Starch variation has been also demonstrated to be strongly correlated with cold 

acclimation following various pathways of fluctuations. In some plants such as 

cabbage seedlings (Sasaki et al., 1996), spinach (Guy et al., 1992) or grapevine grown 

in the vineyard (Ait Barka & Audran, 1996), cold acclimation induces an increase of 

both soluble sugars and starch. Oppositely, starch may be converted into soluble 

saccharides during cold exposure in some species (Sakai &Yoshida, 1968; Pollock & 

Lloyd, 1987; Fischer & Höll, 1991; Ögren et al., 1997; Greer et al., 2000).  

The behaviour of in vitro grown grapevine plantlets is different. Whether 

plants are bacterized or not, starch content is significantly increased after only 24 h or 

treatment and continues to accumulate during the 2 weeks of cold exposure as also 

reported earlier (Ait Barka et al., 2006). Sucrose uptake is known to be stimulated 

under stressing conditions (Arbona et al., 2005). Therefore, the difference of reaction 

between vineyard and in vitro grown plants upon low temperatures may be due to the 

presence of sucrose in the culture medium. 

 

Effects of the bacterization on sugar fluctuations 

At 26°C, bacterized plantlets accumulate soluble sugars and starch 6 weeks after the 

onset of inoculation with the PGPR B. phytofirmans strain PsJN. Recently, Conrath 

(2009) reports that induced resistance is associated with elevated levels of soluble 

carbohydrates resulting from alterations in primary metabolism that confers resistance 

to a variety of biotic challenges. Under stress conditions, grapevine is known to 

accumulate various forms of carbohydrates (Saladin et al., 2003; Ait Barka et al., 

2006). It means that the bacterium affects carbohydrate metabolism in grapevine 
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plantlets that may be mediated through at least two different ways. First, it was 

demonstrated that bacterization with this bacterium causes a stimulation of net 

photosynthesis (Ait Barka et al., 2006), which may contribute to sugar accumulation. 

Second, the complete colonization of grapevine plantlets may provoke some stress 

and thus leads to sugar accumulation. Whatever, bacterium originating stress is weak 

since stress markers are not induced (Theocharis, personal observation). Such reaction 

may further be enhanced by the presence of high sucrose concentrations in the 

artificial culture medium. 

In accordance with our results, various studies reported that application of 

sugar to various plant tissues, or inducing the accumulation of sugar in transgenic 

plants, can lead to activation of various PR genes (Herbers et al., 1996a,b; Johnson 

and Ryan, 1990). Therefore, the potentiated responses of soluble sugars and starch 

accumulation induced by strain PsJN in grapevine plantlets may contribute to grape 

plant protection to low non-freezing temperatures. Here we demonstrate that 

bacterized and non-bacterized grapevine plantlets react to low non-freezing 

temperature by rapid accumulation of both soluble sugars and starch, which is faster 

and stronger in bacterized plantlets. Such reaction is a characteristic trait of a primed 

physiological response and is in accordance with the variations of stress-related 

markers reported earlier (Theocharis, personal observation). Therefore, we could 

address that PsJN is a PGPR that primes several physiological responses of grapevine 

plantlets under cold stress including the accumulation of soluble sugars and starch.  

Similarly, a correlation between elevated sucrose levels and primed defence responses 

was reported also for rice over-expressing the PRms gene from maize, which encodes 

a PR-1 type protein (Casacuberta et al., 1991). 
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In conclusion, this study confirms the protective action of B. phytofirmans 

strain PsJN to grapevine plantlets against the negative effects of low non-freezing 

temperatures. This beneficial effect consists in (i) stimulating carbon metabolism 

including photosynthesis (Ait Barka et al., 2006) and sugar accumulation and (ii) 

priming stress responses whether they are related to carbon metabolism (this work) or 

defence responses (Theocharis, personal observation). Thus the presence of B. 

phytofirmans strain PsJN into the whole grapevine plantlets may speed up the process 

of cold acclimation to low non freezing temperature.  
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Abstract 

cDNA-AFLP analysis is a RNA fingerprinting technique that has been used 

extensively in recent years to display differentially expressed genes in plants. In the 

present study, the differential gene expression patterns were analysed in grapevine 

plantlets by cDNA-AFLP technique  to further investigate the primed- physiological 

state of Vitis vinifera L. induced by ISR-inducing PGPR Burkholderia phytofirmans 

strain PsJN, and  to isolate and identify unknown over-expressed genes after exposure 

to low non-freezing temperatures. Nine combinations of non-radioactive digoxigenine 

labelled-PstI and MseI primers were used to generate differentially expressed 

fragments for non-bacterized and bacterized plantlets at 26°C, and after a 24 hour- 

exposure to low non-freezing temperatures (10°C/16 h photoperiod, and 4°C/ 8 h 

dark). From forty up- and- down regulated cDNA fragments that were detected, the 

75% were isolated successfully and re-amplified by PCR. The investigation of 

expressed bands in non-bacterized and bacterized grapevine plantlets by cDNA-AFLP 

technique has revealed that strain PsJN prime the physiological state in grapevine 

plantlets by stimulating the expression of about 50% of detected genes, while the 

identification of three isolated bands showed that bacterized plantlets can react to cold 

by over-expressing genes responsible for abiotic stress Although the analysis of 

isolated genes needs furher investigation, a part of transcript accumulation in priming 

phenomenon induced by strain PsJN upon low non-freezing temperature was 

detected.  
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Introduction   

The isolation of differentially expressed genes is one of the cornerstones in modern 

molecular biology. The several techniques to analyze genes that are expressed 

differently include the now classic approaches of differential and subtractive 

hybridisation, and the polymerase chain reaction (PCR)-based approaches for 

selective amplification of complementary DNA (cDNA) (Gray et al., 1992; 

Woodhead et al., 1998; Davies & Robinson, 2000; Burger & Botha, 2004).  

Differential display reverse transcription PCR (DDRT-PCR) was the first in 

vitro technique developed for the determination of transcript patterns (Liang & 

Pardee, 1992). It has been widely applied to identify and clone a large number of 

genes that are differentially expressed (Wilkinson et al., 1995; Baldwin et al., 1999; 

Bézier et al., 2002; Iqbal et al., 2008). Nevertheless, this technique tends to give high 

rates of false positives (Debouck, 1995), which are primarily attributed to the 

presence of multiple DNA fragments in one particular band (McClelland et al., 1995; 

Men & Gresshoff, 1998). To counteract this high rate of false positives, several 

improved PCR-based methods have been developed (Kawamoto et al., 1999; 

Shimkets et al., 1999; Sutcliffe et al., 2000). A method that has widely been used to 

analyze expression of multigene families was developed by Fischer et al. (1995), as a 

combination of DDRT-PCR and amplified fragment length polymorphism (AFLP) 

(Vos et al., 1995). This technique termed cDNA-AFLP analysis, is a RNA 

fingerprinting technique (Bachem et al., 1996) that has been used extensively in 

recent years to display differentially expressed genes in plants (Yang et al., 2003; 

Mao et al., 2004; Burger & Botha, 2004; Ongena et al., 2005). The method is based 

on digestion of cDNAs by two restriction enzymes and oligonucleotide adapters 

ligated to the resulting restriction fragments to generate template DNA for polymerase 
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chain reaction (PCR). PCR primers complementary to the adapter sequences with 

additional selective nucleotides at the 3′ end allow the amplification of a limited 

number of cDNA fragments (Vos et al., 1995). Unlike differential display methods 

that make use of small random primers (Liang & Pardee, 1992), relatively high 

annealing temperatures can be used and, hence, cDNA-AFLP is more stringent and 

reproducible. In contrast to hybridization-based techniques, such as cDNA 

microarrays, cDNA-AFLP can distinguish between highly homologous genes from 

individual gene families (Agarwal et al., 2008). In addition, cDNA-AFLP does not 

need any pre-existing sequence information, which makes it an excellent tool to 

identify novel genes (Mao et al., 2004; Burger & Botha, 2004). 

Analysis of changes in gene expression by RT-PCR, has shown that grapevine 

plantlets, bacterized by ISR-inducing Burkholderia phytofirmas strain PsJN, can 

prime the accumulation of transcripts of several well-characterized defense genes 

under cold stress according to phenomenon of priming (Theocharis, personal 

observation). Using non-radioactive digoxigenine labelled-PstI and MseI-primers for 

fingerprinting of grapevine mRNA by cDNA-AFLP techology, the objectives of the 

present work are (i) the further investigation of primed physiological state in 

grapevine plantlets induced by strain PsJN, and (ii) the isolation and identification of 

unknown over-expressed genes of cold response in bacterized plantlets in low non-

freezing temperatures.   

 

Materials and Methods 

Plant material and in vitro growth conditions. 

Plantlets of V. vinifera cv. Chardonnay clone 7535 were micropropagated by nodal 

explants grown on 15 ml semisolid medium in 25 mm culture tubes as described by 
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Ait Barka et al. (2006). Briefly, the cultures were grown in a growth chamber under 

white fluorescent light (200 μE m2·s-1) with 16 h light at 26°C (constant temperature).  

 

Plant bacterization 

The bacterial inoculum was produced by transferring two loops of PsJN to 100 ml of 

King’s B liquid medium in 250 ml Erlenmeyer flask incubated at 20°C at 150 rpm for 

48 h.  Bacteria were collected by centrifugation (3,000 × g for 15 min) and washed 

twice with phosphate-buffer saline (PBS) (10 mM, pH 6.5). The pellet was re-

suspended in PBS and used as inoculum. The bacterium concentration was estimated 

by spectrophotometry (600 nm) and adjusted to 3 × 10
8
 CFU.ml-1 with PBS. Roots of 

two week-old plantlets were immersed in B. phytofirmans strain PsJN (3 × 10
8
 

CFU.ml
-1

) for 10 s. Roots of control plantlets were immersed in PBS. After 

immersion, plantlets were cultivated in tubes in growth chambers as described above 

for four weeks before cold treatment. 

 

Cold treatment 

Six weeks-old, bacterized for four weeks, and non-bacterized plantlets were divided 

into two subsamples: the first was transferred to a cold growth chamber maintained at 

10°C under  16 h light (white fluorescent light, 200 μE m2·s-1) and at 4°C for 8 h dark 

. The second subsample (control) was left at 26°C and 16 L: 8 D. Analyses were 

conducted 24 h after treatment.  

 

Sampling, RNA extraction & synthesis of cDNA 

Leaf samples were frozen in liquid nitrogen and stored at -80°C until use. Messenger 

RNA was extracted from 50-100 mg leaf material following the RNA Plant 
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Purification Regent protocol (Invitrogen, France). Leaves were ground in liquid 

nitrogen to a fine powder and homogenized in RNA purification extraction regent. 

The suspension was purified by two-phenol/chloroform/isomyl alcohol (25/24/1, 

v/v/v) extraction, and the RNA was then purified by an equal amount of isopropanol. 

After centrifugation, the RNA pellet was resuspended in 20 μl of RNase-free water 

and quantified by absorbance at 260 nm. Reverse Transcription of RNA was 

performed with 600ng of total RNA using M-MLV reverse transcriptase (Invitrogen, 

France) following the manufacturer’s protocol. 

 

cDNA-AFLP detected with non-radioactive digoxigenine labeled primers 

AFLP associated-procedure was carried out according to modified cDNA-AFLP 

methods decribed by Venter et al. (2001) (Fig 1). The protocol with a non radiocative 

digoxigenine labelling used visualization of cDNA-AFLP fragments, according to 

Vrieling et al. (1997) was the following: 1) cDNA quantification: cDNA was 

quantitated by PicoGreen dsDNA Quantitation Reagent using Hoechst (bisbenzimide) 

dyes. 2) Digestion with restriction endonucleases: cDNA were digested with 2.5 U of 

both MseI and PstI restriction enzymes at 37°C for 3 hours incubated at 70°C for 15 

min to inactivate the restriction enzymes. 3) Ligation of oligonucleotide adaptors: 

Non-phosphorylated adaptor sequences were ligated to the restriction fragments at 

20°C overnight. 4) Pre-amplification reaction: The restriction ligation products were 

subjected to 30 cycles of pre amplification (94°C denaturation, 30 s; 56°C annealing, 

1 min; 72°C polymerization, 1 min) using primers with no selective nucleotides to 

obtain a sufficient ammount of template. A second pre-amplification was followed  

using the  products  of  the  first one.  The  final  products 
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Fig 1: AFLP accociated procedure with 4 steps for development of cDNA amplified 
fragments.  

2. Ligation of oligonucleotide adaptors: 

C  

 

ATGCAG  
  TACGTC 

TTA 
AAT 

3. Pre-amplification using primers with no selective nucleotide: 

 

PstI  primer MseI primer  

4. Selective amplification with two or three selective nucleotides: 

5’ N 

ATGCAGN  
  TACGTCN 

5’ 

NTTA 
NAAT 
N 

PstI primers  MseI primers 

CTGCAG  
GACGTC 

TTAA 
AATT 

               G  
   ACGTC 

T 
AAT 

 
 

1. Digestion with Pst I & MseI 
restriction enzymes: 

Pst I adaptor  MseI adaptor 

TGCA TA 

G 
   ACGTC 

TGCAG 
T ACGTC 

TTATAC 
AATG 

T 
AAT 
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were quantified by Pigogreen Quantification Reagent, stained with Syb Green 

asymmetrical cyanine dye and than visualized in on a 1% agarose gel. The expected 

sizes ranging from 100 bp to 500 bp. 5) Selective amplification with non-radioactive 

digoxigenine labeled primers (Touchdown PCR): Selective ampification was 

performed with 9 compination of PstI primer (5′-GAC TGC GTA CAT GCA G+N-3′) 

and MseI primer (5′-GAT GAG TCC TGA GTA A+N-3′) extensions where ‘N’ 

represent two or three selective nucleotides (Table 1). The PstI forward primers were 

digoxigenine labeled. Thirty six cycles of amplification (12 cycles: 94°C 

denaturation, 30 s; 65°C annealing, 30 s; 72°C polymerization; 1 min then 24 cycles 

94°C denaturation, 30 s; 56°C annealing, 30 s; 72°C polymerization, 1 min) were 

carried out where the annealing temperature was lowered gradually from 65°C to 

56°C at which efficient primer binding occurs. Thermocycling was started at 65°C 

annealing temperature for optimal primer selectivity. The final products of selective 

amplification were quantified by PigoGreen Quantification Reagent securing the 

equal sample cDNA concentration loaded in gel electrophoresis (concentration of 

loaded samples: 8.82ng/ 5μl). 

 

 

Table 1. Nine PstI and MseI primer combinations with two or three selective 

nucleotides used for cDNA-AFLP analysis. 

PstI / MseI primer extensions 

1. CT/ CAA 4. GT/ CAA 7. GTA/ CAA 

2. CT/ CAC 5. GT/ CAC, 8. GTA/ CAC 

3. CT/ CAG 6. GT/ CAG 9. GTA/ CAG 
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6) Gel loading and analysis: Amplified products were heated at 95°C for 5 min after 

addition of an equal amount of formamide dye (98% (v/v) formamide, 10 mM EDTA 

pH 8.0 and 0.1% bromophenol blue and xylene cyanol) and immediately chilled on 

ice. Fragments were separated in 6% (m/v) denaturating polyacrylamide gels poured 

inside a glass sandwich (Nucleic Acid Electrophoresis Cell Bio-Rab) for 

polymerization of the gel. The two gels were developed in 80 W for about 100 min 

(gels were pre-run at 100W for about 1 h). 7) Gel blotting (dry blot transfer): Pre-

soaked (in 0.5 X TBE) non-charged nylon membrane was placed over the gel, 

avoiding air bubbles. The membrane was rinsed in 0.5 X TBE and try for 15 min at 

65°C, then base at 95°C for 30 min. The digoxigenine labeled amplified cDNA 

fragments were visualized on BioMAX MR film (Eastman Kodak Company, 

Rochester, New York) after exposure times to ranging between 24 and 48 hours. 8) 

cDNA recovery: Bands that appeared to be differentially expressed, were scored and  

removed by cutting the membrane. cDNA was recovered from each band after heat 

treatment at 95°C in 30 μl distilled water for 10 min. Fragments were re-amplified 

using the selective and non-selective primers and PCR conditions as used in the initial 

pre-amplification procedures and the succesfully re-amplified cDNA fragments were 

visualized by SybGreen asymmetrical cyanine dye in on a 1% agarose gel. 9) Cloning 

and Sequencing PCR products: For sequencing of amplified cDNA fragments, 

Invitrogen TOPO TA Cloning kit was used following the manufacturer’s instruction.  

Due to the possibility of comigration associated with cDNA-AFLP (Lang et al. 2005), 

five clones were examined from each band on the gel. 10) Identification of sequences 

(BLAST): Homology search were performed using the Basic Local Alignment Search 

Tool (Blast) algorithm (Altchul et al., 1990). All ambiguities and vector and primer 



 

 

158

sequences were removed before nucleotide sequences were submitted to search 

entries in the National Centre for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/) and in DFCI Grape Gene Index (http:// 

compbio.dfci.harvard.edu/tgi/cgibin/tgi/gimain.pl?gudb=grape). The significance of 

the homology was based on the Score and E-value. 

 

Results  

The amplified fragments by cDNA-AFLP analysis were separated by gel 

electrophoresis according to their length. Amplified fragments that showed the same 

mobility between the four samples (non-bacterized 26°C/4°C and bacterized 

26°C/4°C) were considered as identical cDNA fragments. The brightest band among 

fragments with the same lenght in acrylamide gel electrophoresis was considered as 

the most overexpressed band (band B in gel Fig.2). In similar way, present bands are 

concidered as expressed in comparison to absent bands (band A and C in gel Fig.2). 

According to the gels’ analysis, the size of amplified products ranged from 50 bp to 

350 bp. The part of the gels which presented the majority of the amplified bands, 

ranged between 100 bp and 300 bp. The higher number of bands was obtained by 

primer combination N° 1 (PstI +CT/ MseI +CAA), N° 4 (PstI +GT/ MseI +CAA), and 

N° 9 (PstI + GTA/ MseI +CAG). Only a few bands were amplified by the primer 

combination N° 6 (PstI + GT/ MseI + CAG) while no amplified bands were obtained 

by primer combination N° 7 (PstI+GTA/ MseI +CAA) and 8 (PstI+GTA / MseI 

+CAC). From the forty well-developed differentially expressed bands scored in gel, 

the 50% were expressed in bacterized grapevine plantlets at 26°C, while 22,5% were 

expressed in bacterized   grapevine  plantlets  at 4°C (Table 2). On the other hand, the 

25% expressed at 26°C in non-bacterized plantlets, while 



 

 

159

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: cDNA- AFLP analysis of differential expressed fragments by five primers 

(Table 1) together with a ladder (L) labelled by digoxigenine combination separated 

in 6% (m/v) denaturating polyacrylamide gel. (No 1,2,3,4,5):  the primer compinations 

for selective amplification. (a): non-bacterized  26°C, (b): non-bacterized 4°C, (c): 

bacterized 26°C, (d): bacterized 4°C. (A, B and C): three differential expressed 

fragments which analysed further by cloning and RT-PCR. 
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Table 2: Differential expression of forty amplified fragments by cDNA-AFLPs. A, B 

and C are overexpressed bands in bacterized plantlets upon cold analysed by RT-

PCR. 

 

Absence of band(-), faint band(+), presence of band (++), overexpressed band 

(+++++), most over-expressed bands(++++++). 

 

Bands Non-bact 26°C 
(a) 

Non-bact 4°C 
(b) 

Bact 26°C 
(c) 

Bact 4°C 
(d) 

Compination of   
PstI /MseI (No) 

● - - - ++ 1 
● ++ + + + 1 
● ++ + + + 6 
● - - ++ - 1 
A - - ++ +++++ 1 
● - - ++ - 1 
● +++++ + + + 1 
● - - ++ - 1 
● - - ++  1 
● +++++ + + ++++++ 1 
● - - +++++ - 2 
● - - +++++ - 2 
● - - +++++ - 2 
● + + +++++ ++ 3 
● +++++ + - - 3 
● +++++ ++ ++ + 3 
● ++ + +++ + 3 
● +++ + + + 3 
● ++  +++++ - 3 
B ++ +++ ++++ ++++++ 4 
● +++++ - - - 4 
● ++ +++++ - - 4 
C - - - +++++ 4 
● ++  ++ +++++ 4 
● - - +++++ - 4 
● - - +++++ - 5 
● - - +++++ - 5 
● +++++ + ++++ + 5 
● + - ++++++ - 6 
● + ++ ++++ +++++ 5 
● - - ++++++ - 9 
● +++++ +  + 9 
● ++ +++++ ++++ +++++ 9 
● - ++ +++++ ++ 9 
● + ++  +++++ 9 
● - - +++++ - 9 
● ++ - +++++ - 9 
● ++ + +++++ + 9 
● - - +++++ - 9 
● ++++++ +++++ - - 9 



 

 

161

significantly lower (10%) were the expressed fragments in non-bacterized plantlets at 

4°C (Fig 3). 

From the forty differential expressed isolated bands, twenty four were re-

amplified succesfully by non-selective primers showing a single amplified band, 

while five of them showed douple or smeared bands (Fig 4). The cloning and 

sequence analysis of three selective bands (A, B and C) overexpressed in bacterized 

plantlets showed that the three bands were homologous to grapevine genes induced in 

abiotic stress in leaves (A & C) and in berries (B) (Table 3). For each band, the five 

clones resulted in identical sequences.  
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Fig 3: Percentage of up regulated genes in non-bacterized and bacterized grapevine 

plantlets at 26°C/4°C analysed by cDNA-AFLP with specific primers. 
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Fig. 4: Successfully re-amplified differential expressed bands by non-selective 

primers isolated from membrane and ladder (L) labelled by digoxigenine visualized 

by SybGreen asymmetrical cyanine dye in on a 1% agarose gel. 

 

 

Table 3: Characterization of the 3 cDNA sequences identified from the single bands 

excised from cDNA-AFLP polyacrylamide gel. The ambiguities and vector and 

primer sequences were removed. 

  

Clone  
(base pairs) Homology sequences 

Significance of 
Identity (Max 
Ident. and E-
value) 

 Band A 
(209 bp) 

An expressed sequence tag database for abiotic 
stressed leaves of Vitis vinifera var. Chardonnay 
cDNA clone VVB160G05 5, mRNA sequence 
(Cramer,G.R. and Cushman,J.C. 2002) 

1e-100,  99% 
 

Band B 
(63 bp) 

An expressed sequence tag database for abiotic 
stressed berries of Vitis vinifera var. Chardonnay 
cDNA clone VVD103F10 5, mRNA sequence 
(Cushman,J.C., 2002) 

3e-24, 100% 
 

 Band C  
(309 bp) 

An expressed sequence tag database for abiotic 
stressed leaves of Vitis vinifera var. Chardonnay 
cDNA clone VVB179G05 5, mRNA 
sequence(Cushman,J.C., 2002) 
 

5e-31,  100% 
 

 

L 

L 
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Discussion  

cDNA-AFLP detected with non-radioactive digoxigenine labeled primers 

The main advantage of PCR-based approaches for detection of differentially 

expressed genes is the ability to rapidly and simultaneously display mRNAs that are 

expressed in various eukaryotic cells or tissues, in different stages of development or 

under altered conditions. For detection of AFLP applications, radioactive and non-

radioactive fluorescent-labelled primers were usually used (Cervera et al., 2000; 

Vignani et al., 2002; Theocharis et al. 2010b). However, radioactive labelling is not 

feasible in every laboratory, while the detection of fluorescent labels requires 

expensive equipment. Alternatively, the method based on the digoxigenine labelling 

of AFLP primers has proved reliable and cheap and in addition no major re-

arrangements of original protocols are required (Vrieling et al., 1997; Hanada et al., 

2003). Concerning the well-detected bands in our gel and the equal quantity (ng) of 

samples loaded in polyacrylamide gel-walls, it is addressed that non-radioactive 

digoxigenine method can succesfully reveal the differential expression of up and 

down regulated genes after grapevine plantlets exposure to low temperatures. In 

addition, the high percentage of re-amplified bands isolated from membranes and the 

fact that the cloning (five times for each band) resulted in identical sequences, allows 

the conclusion that digoxigenine labelling of AFLP primers is a reliable method for 

analysis of changes in gene expression at stress conditions like cold treatment.  

 

Trsansription analysis 

Changes in gene regulation induced by plant responses to cold have been addressed 

by several studies in the last decade (Jaglo et al., 1998, 2001; Kreps et al., 2002). For 

example, exposure of chinese cabbage to cold altered the expression of approximately 
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9% of genes (257 up-regulated and 311 down-regulated genes), while 4 weeks of cold 

changed the expression of approximately 7% of genes (181 up-regulated and 246 

down-regulated), in comparison to untreated seedlings (Yang et al., 2005). To further 

understand the gene network controlling tolerance to cold stress in Arabidopsis, many 

studies have reported a large number of early cold-responsive genes which encode 

transcription factors that likely control late-responsive genes, suggesting a multitude 

of transcriptional cascades (Fowler & Thomashow, 2002; Lee et al., 2005; Oono et 

al., 2006). In grapevine, chilling after 8 h seems to cause changes in transcript 

abundance, with 78% of transcripts that changed at least two-fold in response to 

chilling to be increased in abundance, indicating a larger and more complex response 

in the acclimation process of a gradual long-term stress (Tattersall et al., 2007).  

cDNA-AFLP was succesfully used to study gene expression of plants in 

response to low temperatures and to further understand cold acclimation process.  

According to Meng et al. (2008), 13 differentially expressed cDNA fragments were 

cloned, sequenced and further analysed from Poncirus trifoliata after 10, 24 and 55 h 

of low temperature treatment (4°C). Further study by cDNA-AFLP, revealed six up-

regulated and two down regulated genes identified successfully based on their amino 

acid sequences, understanding cold tolerance mechanism of Citrus unshiu (Lang et 

al., 2005). Similarly, cDNA-AFLP analysis in our study reveals interesting 

conclusions about the forty up- and down- regulated genes which are expressed 

differentially. By these nine specific primer combinations, it is shown that the 

percentage of expressed regulated genes in non-bacterized plantlets was decreased 

from 25% (at 26°C) to 10% (at 4°C), while in bacterized plantlets, in the same 

conditions, from 50% to 22.5%. This characteristic down-regulation of genes reported 

by cDNA analysis, could be related with several physiological activities that are 
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suppressed in plants after cold treatment. Such suppression of essential genes by cold 

in insensitive plants can hinder the normal plant growth in cold, while it may lead to 

death in sensitive plants (Yoshida et al., 1996). Therefore the increased number of 

genes expressed in bacterized plantlets under cold stress can reveal a better adaptation 

of bacterized plantlets to low non-freezing temperature, in comparison to non-

bacterized plantlets, although, the percentage of reduced genes under cold are similar 

in both of them (about 50% reduction). 

Significant differences in gene expression between bacterized and non-

bacterized plantlets were also addressed under normal growth conditions (26°C). The 

higher percentage (50%) of overexpressed bands in bacterized plantlets at 26°C, in 

comparison with non-bacterized plantlets (25%), can be related with the physiological 

state induced by strain PsJN stimulating several physiological activities of grapevine 

plantlets such as growth and photosynthesis (Nowak et al., 1995; Ait Barka, et al., 

2006), accumulation of proline (Ait Barka, et al., 2006; Theocharis, personal 

observation) and carbohydrates (unpublished results). 

On the other hand, the overexpressed genes (homologous to genes in 

grapevine induced in abiotic stress in leaves and berries) in bacterized plantlets upon 

cold revealed that, in contrast to several physiological activities, grapevine defense 

mechanism was activated upon low non freezing temperatures, confiming the 

potentiated expression of defense genes in bacterized plantlets which were addressed 

in our previous work according to phenomenon of priming (Theocharis, personal 

observation). 

Although further analysis of isolated bands and study of expression pattern by 

RT-PCR is necessary to confirm AFLP analysis, the investigation of gene expression 

in non-bacterized and bacterized grapevine plantlets by cDNA-AFLP technique can 
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reveal that strain PsJN prime the physiological state in grapevine plantlets by 

stimulating the expression of about 50% of detected genes, while the identification of 

three isolated bands showed that bacterized plantlets can adapt to cold stimulating 

grapevine defense mechanism by over-expression of genes responsible for abiotic 

stress. 
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Beneficial effects of PGPR 

Plant growth-promoting bacteria are free-living soil bacteria that can directly or 

indirectly facilitate rooting and growth of plants (Mayak et al., 2004a,b; Glick, 1995; 

Compant et al., 2005a). An indirect stimulation of plant growth includes a variety of 

mechanisms by which bacteria prevent environmental stresses from inhibiting plant 

growth and development by induction of resistance (Glick & Bashan, 1997). 

Beneficial rhizobacteria induce plant resistance without damaging visually their host 

neither causing any localized necrosis. Although, the eliciting factors produced by 

ISR-triggering rhizobacteria must be different from elicitors or pathogens (van Loon, 

2007), in several cases PGPR induce defense mechanism similarly to pathogens by 

accumulation of PR proteins (Timmusk & Wagner, 1999; Park & Kloepper, 2000; 

Tjamos et al., 2005; Magnin-Robert et al., 2007).  

Expression of ISR may take different forms, depending on the activity of the 

inducing rhizobacterium and the nature of the interaction between the plant and the 

pathogen (Chester, 1993). A common feature of the resistance responses induced by 

ISR-inducing beneficial bacteria is the phenomenon of priming. The physiological 

condition in which plants are able to better and/or more rapidly increase defense 

responses  to biotic or abiotic stress is called the “primed state” The primed-caused 

potentiation of plant defense responses has frequently been associated with enhanced 

resistance to various biotic and abiotic stresses (Goellner & Cornath, 2008). 

 

Burkholderia phytofirmans strain PsJN beneficial effects in grapevine plantlets 

B. phytofirmans strain PsJN is a plant growth promoting rhizobacterium (PGPR) able 

to establish rhizosphere and endophytic populations in various crops, including 

grapevine (Nowak, 1998; Compant et al., 2005b, 2008). Stimulation of plant growth 
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and defense responses by PsJN in grapevine plantlets has been previously reported 

(Ait Barka et al. 2000; 2002), while the ability of bacterized plantlets to withstand 

cold has already been demonstrated by analysis of several biochemical and 

physiological aspects (Ait Barka et al., 2006). By analysis of interaction between 

grapevine and PsJN and the characterization of defense mechanism induced in 

bacterized plantlets, the beneficial role of bacteria in grapevine was further revealed 

in this study by: 

 

i) Analysis of ISR-type response of grapevine plantlets bacterized with 

Bulkholderia phytofirmans strain PsJN  

The analysis of gene expression patterns in leaves of grapevine plantlets showed that 

strain PsJN induced a systemic spread of a signal, from roots to leaves after root 

inoculation when bacteria are still present in rhizoplane and began penetrating root 

internal tissues. Similar modifications in gene expression profiles have been reported 

as characteristic reactions of defense mechanism induced by PGPR against pathogens, 

known as (ISR) (Ahn et al., 2002; Cartieaux, et al., 2003; Wang et al., 2005; van 

Loon et al., 2007). Although change in gene expression profiles caused by ISR has 

been mostly reported in Arabidopsis, our study proposes that B. phytofirmans may 

induce an ISR-type mechanism by transcript accumulation of grapevine defense 

genes, including those encoding PR proteins (Fig. 1). 

 

ii) Study of grapevine primed physiological responses with Burkholderia 

phytofirmans strain PsJN upon cold stress  

In vitro inoculation of V. vinifera L. cv. Chardonnay explants with B. phytofirmans 

strain PsJN, increased physiological activity at low temperature, demonstrating a 
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better adaptation of bacterized plantlets to cold (Ait Barka et al., 2006). Changes in 

expression of well characterized defense genes and CBF4 transcription factor behind 

the documented grapevine cold adaptation were investigated in our study. Compared 

to the non-bacterized control, PsJN treatment elevated the level of the response to low 

temperature stress causing earlier and higher expression of defense-related genes and 

CBF4, all crucial to plant adaptation and survival under stress. The grapevine plantlet 

responses to B. phytofirmans strain PsJN inoculation are consistent with the priming 

phenomenon as documented by potentiated accumulation of transcripts, addressing 

that primed physiological responses against cold may be induced by interaction with a 

microorganism (Fig. 1). 

Several parameters were analysed to further understand the role of strain PsJN 

in grapevine to low non-freezing temperatures and the phenomenon of priming. 

Results showed that bacterized plantlets reacted to cold stress faster and/or stronger 

by accumulating carbohydrates (total soluble, glucose, fructose and sucrose, starch) 

and proline; phenomena that have been strongly correlated with an increased cold 

resistance in plants. Furthermore, the earlier reduction of lipid peroxidation markers 

and hydrogen peroxide contents after 1 week in bacterized compared to non-

bacterized plantlets, suggested a significant activation of cold acclimation 

mechanisms in the former resulting to better adaptation to cold (Fig. 1).  

 

iii) Transcript analysis by cDNA-AFLP technique to further investigate the 

primed- physiological state of V. vinifera L. induced by Burkholderia 

phytofirmans strain PsJN 

cDNA-AFLP analysis, is a RNA fingerprinting technique that has been used 

extensively in recent years to display differentially expressed genes in plants (Yang et  
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Fig. 1: Study of grapevine primed physiological responses with Burkholderia 

phytofirmans strain PsJN upon cold stress. 

 

 

 

al., 2003; Mao et al., 2004; Burger & Botha, 2004; Ongena et al. 2005). The 

investigation of expressed bands in non-bacterized and bacterized grapevine plantlets 

by cDNA-AFLP technique has revealed that strain PsJN prime the physiological state 

in grapevine plantlets by stimulating the expression of about 50% of detected genes, 

while the identification of three isolated bands showed that bacterized plantlets can 

react to cold by over-expressing genes involved in response to for abiotic stress. 

Although the analysis of isolated genes needs further investigation, an overview of 

gene expression in priming phenomenon induced by strain PsJN upon low non-

freezing temperature was successfully detected.  
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Cost and benefits of defense induced by Burkholderia phytofirmans strain PsJN 

Induced resistance can protect plants against a wide spectrum of abiotic and biotic 

stresses. However, it can be costly due to allocation of resources or toxicity of 

defensive products. Most theories of plant defense assume that there will be a cost to 

fitness resulting from the production of defense chemicals or structures, which at least 

must be balanced by the resulting benefit (Simms & Rausher, 1987; Simms & Triplet, 

1994). These costs should ideally be measured as reduction in fitness or they may be 

estimated by measuring reduction in growth rates (Simms & Rausher, 1987; Sagers & 

Coley, 1995). Most studies on costs and benefits of induced resistance have focused 

on situations in which the defense is activated directly by the inducing agents. 

Determining the cost and benefits of induced direct defense and comparing those to 

priming, van Hulten et al. (2006) demonstrated that fitness costs of priming are 

substantially lower than those of the directly induced defense against pathogens, while 

the benefits of priming outweigh its cost when disease occurs. From ecological point 

of view, priming is the plant’s solution to the trade off dilemma between 

environmental stress protection and costs involved in defense activation, representing 

an important adaptive defense strategy in plants. Apparently, induced resistance uses 

priming as a common mechanism by which plants acquire sustainable protection 

against environmental stress (Conrath et al., 2006).  

B. phytofirmans strain PsJN is a well characterized PGPR able to protect 

plants against abiotic and biotic stresses. In this study further analysis of this 

symbiotic relation with grapevine, showed that strain PsJN induces an ISR-type 

response, but without any significant cost to grapevine fitness, in view of the fact that 

several physiological parameters, like growth rates and photosynthesis in grapevine 

plantlets are improved after plant inoculation by strain PsJN (Ait Barka et al., 2000; 
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2002). Additionally, B. phytofirmans strain PsJN induces a save-energy defense 

mechanism in grapevine plantlets to low non-freezing temperatures, according to 

phenomenon of priming. Therefore, B. phytofirmans protects plantlets by priming 

grapevine defense mechanism when stress occurs, offering a low-cost adaptive 

defense strategy against cold stress. 

Consequently, grapevine plantlet responses to PsJN inoculation are consistent 

with an induced systemic response and priming phenomena as documented by 

activation of the expression of the defense-related genes and change in several 

biochemical markers upon low non freezing temperature, addressing for the first time 

that the phenomenon of priming in grapevine could be induced by interaction with a 

microorganism offering a sustainable protection of vineyard in “cool” climates.  
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4. FUTURE PROSPECTS 
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B. phytofirmans  strain PsJN has been well characterized as a PGPR that triggers 

induced resistance in grapevine against fungal pathogens. Recently, it has been 

demonstrated that PGPR may also enhance resistance to stress in low non-freezing 

temperatures.  In this study, the induction of ISR-type resistance by PsJN strain in 

grapevine plantlets has been proposed while the analysis of bacterized grapevine 

reaction to low non-freezing temperatures revealed that strain PsJN can prime the 

physiological response of grapevine defense mechanisms. Therefore, it could be 

suggested that strain PsJN acts similarly to other ISR-inducing PGPRs, able to prime 

the defense mechanism of grapevine tolerance against stresses. Through the further 

analysis of ISR-type resistance and the further study of primed physiological 

responses upon cold, the future prospects of this project may include investigation of 

several physiological, biochemical and molecular aspects of this symbiotic relation. 

 

i) Further analysis of ISR response in grapevine plantlets after root inoculation 

 The study of grapevine reactions to inoculation by strain PsJN showed an 

ISR-type response after root inoculation with bacteria and further investigation is 

needed by studying grapevine responses of root-colonized plantlets by strain PsJN, 

upon pathogen contamination. Although, the beneficial effects of strain PsJN against 

Botrytis cinerea have already been revealed (Ait Barka et al., 2000; 2002), the 

specific role of the systemic signal induced after root inoculation in defense against 

pathogen, need to be clarified. For that reason, the next step of this study is the 

analysis of differential expressed genes induced by strain PsJN in correlation with 

the induced resistance of grapevine plantlets to pathogen.  

Previous study also showed that strain PsJN can also enhance the rate of 

photosynthesis (Ait Barka et al., 2006). The further analysis of stimulation of 
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photosynthetic activity induced by strain PsJN is an interesting field to further 

investigate. The photosynthetic status in grapevine after root inoculation could be 

analysed through the ratio of chlorophyll fluorescence variable to maximal 

chlorophyll fluorescence (Fv/Fm) and any changes in expression levels of several 

genes correlated with changes in photosynthesis. 

 

ii) Investigation of carbohydrate accumulation mechanisms in grapevine 

plantlets upon low non-freezing temperature, and analysis of the potentiated role 

of strain PsJN 

By several studies, the exposure of plants to low temperatures has been 

connected with an increase in total carbohydrate concentration.  Even if low 

temperature leads to the inhibition of photosynthesis, a possible explanation about the 

relation between cold and accumulation of sugars has been provided by activation of 

specific enzyme activities of the Calvin cycle. Therefore, the study of changes in gene 

expression levels of several genes, including Rubisco and hexokinase, correlated with 

changes in photosynthesis and tissue sugar concentrations, and the analysis of post-

translational activation of enzymes such as Ribulose bisphosphate carboxylase 

oxygenase (Rubisco) and Fructose-1,6-bisphosphatase in sucrose synthesis pathways, 

in bacterized and non-bacterized grapevine plantlets, is a key point of this future 

work.  

 

iii) Isolation of antifreeze proteins and analysis of beneficial effects of strain 

PsJN in grapevine plantlets 

As it was shown, grapevine plantlets under low non-freezing temperature 

increased the accumulation of transcripts encoding PR proteins which are homologous 
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to antifreeze proteins (AFPs). AFPs accumulated in cold-acclimated plants exhibit 

both antifreeze and antifungal enzymatic activity (Yeh et al., 2000; Huang & Duman 

2001). Although AFPs have been reported in apoplast of many acclimated plants 

since 1992, their enzymatic activity has not been reported in grapevine yet. Therefore, 

the first goal of this prospect will be to isolate the antifreeze proteins from the young 

acclimated grapevine leaves which are frequently exposed to low non-freezing 

temperature during spring. After isolation, further investigation of their thermal 

hysteresis activity (the difference between the melting point and freezing point) in 

grapevine could be analysed in relation with the possible beneficial effect of PsJN 

strain.  

 

iv) Further investigation of primed- physiological state of V. vinifera L. induced 

by Burkholderia phytofirmans strain PsJN by transcription analysis 

By cDNA-AFLP analysis, it was revealed that strain PsJN induce the 

physiological state of fully colonized grapevine plantlets by stimulating the 

expression of  about 50% of detected genes in comparison to non-bacterized, at 

normal growth condition. Although, previous studies showed that bacteria can be 

involved in several physiological parameters (e.g. growth rates and photosynthesis 

activity, sugar and proline accumulation), there is a lack of knowledge regarding the 

molecular status in bacterized grapevine plantlets, and especially the identity of 

expressed genes and their relation with the phenomenon of priming. Therefore, the 

isolation and identification of these expressed bands may support our knowledge 

about the primed physiological state in grapevine plantlets induced by B. 

phytofirmans strain PsJN. 
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