UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE et INSTITUT D'OPTIQUE ATMOSPHERIQUE DE TOMSK

THESE

Presentée à

L'U.F.R. Sciences Exactes et Naturelles

Pour l'obtention du titre de

DOCTEUR DE L'UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE

Spécialité : PHYSIQUE

Par

Evgeniya STARIKOVA

Sujet de la thèse

CONTRIBUTION A L'ETUDE DES ETATS EXCITES ROVIBRATIONELS DE D₂O ET O₃ PAR L'ANALYSE DE SPECTRES INFRAROUGES HAUTE RESOLUTION

Soutenue: le 16 juin 2009 devant le jury:

C. CAMY-PEYRET	Directeur de Recherche CNRS, Rapporteur
JM. FLAUD	Directeur de Recherche CNRS, Rapporteur
A.V. NIKITIN	Docteur en Physique, IAO, Tomsk, Examinateur
O. BOYARKIN	Maitre d'Enseignement et de Recherche, Suisse, Examinateur
A. CAMPARGUE	Directeur de Recherche CNRS, Examinateur
S. MIKHAILENKO	Docteur en Physique, IAO, Tomsk, Co-directeur de Thèse
MR. DE BACKER-BARILLY	Professeur de l'Universite de Reims, Co-directrice de Thèse

Remerciements

Tout d'abord, je souhaite exprimer toute ma reconnaissance à mes directeurs de thèses Semen N. Mikhailenko et Marie-Renée De Backer pour l'aide et le soutien qu'ils m'ont apporté durant ces trois années.

J'exprime ma reconnaissance au professeur Alain Barbe pour sa précieuse collaboration lors des analyses des spectres de l'ozone et au professeur Vladimir G. Tyuterev pour les calculs globaux des niveaux d'énergie de la molécule d'ozone. Je les remercie également pour toutes les discussions scientifiques fructueuses qui m'ont permis de mener à bien ce travail.

Les spectres de $D_2^{16}O$ ont été enregistrés à l'Institut de Chimie Physique de l'Université de Justus Liebig en Allemagne. Je suis reconnaissante également à Georg Mellau pour son aide expérimentale et pour l'utilisation des programmes de traitement de ces spectres. Je remercie enfin Ludovic Daumont et Alain Jenouvrier du GSMA, Reims, qui ont enregistré le spectre d'absorption du mélange HDO/D₂O dans la gamme spectrale 5600-8800 cm⁻¹ et pour leur collaboration lors de l'analyse de ce spectre.

Les analyses des spectres de l'ozone ont été effectuées au Groupe de Spectrométrie Moléculaire et Atmosphérique de l'Université de Reims, dirigé par le professeur Georges Durry. Je tiens tout particulièrement à remercier Alain Campargue, Samir Kassi et ses collègues de Grenoble qui ont enregistré les spectres CRDS de l'ozone.

J'exprime ma reconnaissance à mes collègues du Laboratoire de Spectroscopie Théorique de l'Institut d'Optique Atmosphérique, Académie des Sciences de Russie, Tomsk, particulièrement à Serguei A. Tashkun pour sa collaboration qui m'a permis d'apprendre et d'utiliser les programmes GIP et RITZ. Je le remercie également d'avoir effectué les calculs variationnels pour la molécule $D_2^{16}O$ à haute température. Enfin, je remercie l'ensemble des membres du laboratoire de spectroscopie théorique de Tomsk et du GSMA de Reims pour leur soutien de tous les instants.

Table des matières

I - Introduction	1
II - Etude des spectres d'émission de $D_2^{16}O$ à haute température	10
II -1. Introduction	10
II -2 Résultats	10
II -2.1 Niveaux d'énergie de rotation des états vibrationnels (000) et (010) II -2.2 Structure rotationnelle de la première triade des états vibrationnels	10
interagissant $\{(020), (100), (001)\}$ de la molécule D ₂ O	14
II -2.3 Analyse de la deuxième triade des états vibrationnels {(030), (110), (011)}	
de la molécule D ₂ O	15
II -2.4 Les spectres de D_2O : validation de l'identification des niveaux d'énergie déterminés à partir des spectres d'absorption et des spectres d'émission à	
haute température.	16
II -3 Conclusion	23
III - Analyses des spectres CW-CRDS de ${}^{18}O_3$ dans la region 5930-7000 cm ${}^{-1}$.	26
III -1 Contexte	26
III -2 Conditions expérimentales	27
III -3 Résultats	28
III -3.1 Analyse de la région $6200-6400 \text{ cm}^{-1}$	30
III -3.2 Analyse de la région 5930-6080 cm^{-1}	32
III -3.3 Analyse de la région 6490-6900 cm^{-1}	32
III -3.4 Déplacements isotopiques dus aux substitutions homogènes ${}^{16}O_3 \rightarrow {}^{18}O_3$	34
III -4 Conclusion	36
IV – Conclusion	38

I. Introduction

Les spectres de vibration-rotation d'une molécule sont une source considérable d'informations sur l'absorption / émission dans un milieu gazeux, les niveaux d'énergie, la fonction potentielle, les paramètres du moment dipolaire, la polarisabilité et les interactions entre molécules. C'est pourquoi, l'étude et l'analyse de ces spectres sont d'une importance capitale pour la compréhension des phénomènes physiques, astrophysiques, météorologiques et atmosphériques.

Durant ces dernières décennies, les développements rapides des techniques laser et de la spectroscopie par transformation de Fourier, ont permis d'obtenir un très grand nombre de données moléculaires de très grande précision et cela même pour des états vibrationnels hautement excités. Par ailleurs, l'accroissement de la sensibilité des spectromètres et leurs facultés à couvrir de plus larges domaines spectraux entraînent une complexité des spectres enregistrés. L'étude de ces spectres nécessite un travail très minutieux pour le spectroscopiste, correspondant donc à un temps bien supérieur à l'enregistrement du spectre lui-même. L'analyse des spectres à haute résolution des molécules non rigides ainsi que des molécules dans des états hautement excités n'est plus possible avec des modèles traditionnels simples. Il est absolument nécessaire d'utiliser des méthodes et des modèles qui tiennent compte de la complexité de recouvrement des polyades « classiques », donc utilisant les calculs globaux de spectres de rotation-vibration à partir de surfaces du potentiel et de moment dipolaire, même si les ajustements s'effectuent avec des hamiltoniens effectifs polynomiaux (O_3) ou non (H_2O).

La première partie de ce mémoire concerne la molécule d'eau et plus précisément son isotopologue $D_2^{16}O$. Nous présenterons les résultats obtenus à partir des spectres d'émission de la vapeur d'eau deuteurée enregistrés dans les gammes spectrales 320-520 cm⁻¹ et 1800-5600 cm⁻¹. Cette étude est nécessaire pour accroître la connaissance de la structure de rotation-vibration des spectres moléculaires utile à la compréhension de la physique et la dynamique moléculaire, de la chimie de la molécule et à ses applications.

Pour la première fois, les spectres d'émission de $D_2^{16}O$ ont été enregistrés à hautes températures (T~1000-2000 K). Dans la littérature, de nombreux travaux ont été consacrés à cette molécule, dont les spectres d'absorption sont généralement enregistrés à température ambiante par des spectromètres par transformation de Fourier (TF). Les gammes spectrales étudiées correspondent à des transitions entre états vibrationnels éloignés de l'énergie de dissociation de la molécule. Mais les spectres d'émission à haute température permettent d'accéder à des niveaux correspondant à des nombres quantiques rotationnels très élevés et ainsi d'étendre l'ensemble des niveaux d'énergie expérimentalement déterminés. Afin d'améliorer leur modélisation, nous avons utilisé la méthode de la «fonction génératrice» pour construire l'Hamiltonien effectif et modéliser ces états rovibrationnels excités. Notons que la plupart des travaux précédents consacrés à la spectroscopie de D_2O utilisaient le modèle polynomial standard sous une forme de développement de Watson, par exemple [1.1, 1.2].

Parallèlement à nos études, le groupe de spectroscopie de Nizhni Novgorod (N. Zobov, S. Shirin et collaborateurs) a analysé d'autres spectres TF d'émission de $D_2^{16}O$, enregistrés à la température de 1500 °C dans la région de 380 – 1725 cm⁻¹ [1.3]. La comparaison des résultats avec ceux obtenus par ce groupe montre que notre étude permet d'apporter de nouveaux éléments d'information sur les états rovibrationnels excités, ainsi que sur leur attribution spectroscopique et sur la modélisation.

La deuxième partie de ce mémoire concerne l'analyse des spectres CRDS de l'isotopologue ${}^{18}O_3$ de la molécule d'ozone. L'ozone est un des composants de l'atmosphère terrestre nécessaire à la vie grâce à l'absorption des radiations solaires nocives pour les êtres vivants. L'étude des spectres de l'ozone et de ses composés isotopiques, vers les énergies très élevées proches de la dissociation, joue un rôle très important pour la compréhension des phénomènes de formation moléculaire et isotopique et pour la cinétique chimique.

La compréhension des processus liés à la destruction de la couche d'ozone dans l'atmosphère demande une modélisation précise de la formation et la dissociation de la molécule. Malgré un nombre élevé d'études dans ce domaine, plusieurs questions restent posées. L'observation expérimentale des anomalies de formation isotopiques de l'ozone [1.4-1.6], pose la question des modèles dynamiques de destruction et de recombinaison de la molécule. L'amplitude et la forme de la barrière de dissociation de la molécule reste à déterminer et à valider [1.7] en utilisant les données spectroscopiques. La forme de la surface potentielle pour les voies de réaction de fragmentation dans le domaine des états de transition, le rôle des états métastables et des états de Van der Waals, ainsi que des effets non-adiabatiques restent à éclaircir. [1.8-1.11]. Les modèles utilisant les meilleures surfaces d'énergies potentielles disponibles obtenues par des calculs *ab initio* surévaluent d'un facteur 3 à 5 les coefficients des réactions d'échange isotopique lors de la formation de l'ozone [1.8]. Il est donc essentiel d'améliorer la fonction potentielle de la molécule proche de la limite de dissociation. Pour cela, il est primordial de disposer de données spectroscopiques et de leurs analyses fiables concernant les états vibrationnels hautement excités et ceci pour une grande majorité des espèces isotopique

de l'ozone. C'est l'un des enjeux de nos études sur l'ozone. Ce travail de thèse représente une première étape du projet qui porte sur l'étude des niveaux d'énergie des isotopologues de l'ozone près de la limite de la dissociation.

Par conséquent, une collaboration avec le Laboratoire de Spectrométrie Physique de Grenoble et l'équipe d'A. Campargue nous a permis de sonder la gamme spectrale s'étendant de 5900 à 7000 cm⁻¹ ou les spectres CRDS de ¹⁸O₃ ont été enregistrés. Les niveaux d'énergie les plus élevés associés à ces observations correspondent à 82% de l'énergie de dissociation de la molécule, faisant intervenir des transitions entre états vibrationnels avec $\Delta v = \sum_{i} \Delta v_i = 8$. Grâce

au décalage isotopique des centres de bandes (d'environ -340 cm⁻¹) lors de la substitution homogène ${}^{16}O_3 \rightarrow {}^{18}O_3$, il a été possible d'identifier et modéliser pour ${}^{18}O_3$ les bandes d'absorption correspondantes aux transitions vers les états vibrationnels (125) et (431) qui sont les états plus élevés observés pour l'ozone par spectroscopie à haute résolution. Il faut remarquer que les bandes équivalentes n'ont pu être observées pour l'isotopologue principal ${}^{16}O_3$ puisque la gamme spectrale associée se situe en dehors des possibilités instrumentales actuelles. Le travail d'analyse de ces spectres est extrêmement délicat et coûteux en temps à cause de la très grande densité de raies observées (> 100 raies par cm⁻¹). De plus, la modélisation des observations, par le biais d'Hamiltoniens effectifs, fait intervenir un nombre important de résonances entre états vibrationnels interagissants, certains de ces états étant « dark » car ne donnant pas lieu à l'observation de la bande associée. L'analyse des spectres CRDS de ${}^{18}O_3$ entre 5900 et 7000 cm⁻¹ a permis de mettre en évidence des irrégularités de décalages isotopiques des niveaux vibrationnels bien que la substitution des atomes d'oxygène soit uniforme [notre article : E.N. Starikova, A. Barbe, M-R De Backer-Barilly, VI.G. Tyuterev, S.A. Taskhun, S. Kassi, A. Campargue, Chem. Phys. Letter, 470 (2009) 28-34].

Comme nous l'avons déjà signalé, les études menées durant ce travail de thèse concernent les analyses des états vibrationnels hautement excités des molécules d'eau et d'ozone. Ces analyses ont été rendues possibles grâce aux développements expérimentaux récents. Dans le cas de la molécule D₂O, les niveaux d'énergie de rotation élevés ne peuvent être atteints qu'en chauffant le gaz lors de l'enregistrement (T~2000 K). D'autre part, la très grande sensibilité du spectromètre laser CRDS, développé à Grenoble, a permis d'enregistrer des transitions rovibrationnelles d'intensités extrêmement faibles, nous donnant ainsi accès aux niveaux d'énergie proche de la dissociation de la molécule.

Parmi les approches théoriques recensées dans la littérature et utilisées pour l'étude des spectres de vibration-rotation des molécules, deux sont principalement utilisées : la première est

celle des hamiltoniens effectifs, la seconde celle des calculs globaux variationnels. Les méthodes basées sur la théorie des perturbations et les hamiltoniens effectifs par polyade d'états vibrationnels interagissants sont historiquement plus répandues de part leur relative simplicité d'utilisation [1.12, 1.13]. Ces méthodes sont dites « locales » puisqu'elles s'appliquent à des intervalles spectraux bien définis ou à des séries de transitions. L'avantage de ces méthodes réside dans l'utilisation d'un nombre limité d'états vibrationnels interagissants organisés en polyades dans une gamme spectrale donnée. Ceci facilite la tâche du spectroscopiste en diminuant les temps de calcul et en permettant d'atteindre la précision expérimentale pour les positions des raies en particulier. Pour les molécules de type toupie asymétrique, le modèle de l'Hamiltonien effectif couramment utilisé est celui de Watson [1.14] complété pour les termes de couplages entre les états perturbés par des résonances accidentelles. Ce modèle, largement utilisé et étendu pour les moments de transitions effectifs dans les travaux de Camy-Peyret et Flaud [1.15-1.18] permet de calculer les paramètres des raies d'absorption et de compléter les banques de données moléculaires. En outre, une telle approche donne naturellement l'identification spectroscopique. Cependant ces méthodes possèdent leurs propres limitations : elles permettent une description très correcte des niveaux d'énergie de rotation-vibration relativement peu élevés mais leurs précisions diminuent pour les niveaux d'énergie plus fortement excités. De grandes difficultés apparaissent lors de l'utilisation de méthodes effectives pour décrire les états vibrationnels hautement excités des molécules non rigides. Pour pallier à cette difficulté, nous avons employé le modèle de la fonction génératrice qui a permis d'améliorer la précision des calculs pour l'isotopologue principal de l'eau [1.19]. Ce modèle a été appliqué pour la première fois aux analyses de spectres de D₂O dans notre travail.

Récemment, grâce aux travaux de Partridge et Schwenke et coll. [1.20, 1.21], la méthode du calcul variationnel s'est développée afin de prédire de façon globale les spectres de molécules tri-atomiques. Cette méthode présente l'avantage de donner de nombreuses informations sur tous les niveaux ro-vibrationnels possibles de la molécule ainsi que sur l'ensemble des intensités des raies d'absorption et d'émission. Cependant cette approche nécessite la connaisssance des fonctions d'énergie potentielle et des fonctions du moment dipolaire de manière extrêmement précise. De plus, la réalisation et la mise en œuvre technique de cette méthode sont complexes puisqu'il est nécessaire de développer les calculs de surfaces correspondantes en utilisant les méthodes « ab initio » de chimie quantique de haut niveau. Il s'agit de prendre en considération des corrélations électroniques de façon très sophistiquée ainsi que les corrections adiabatiques et non adiabatiques. Actuellement, les calculs globaux n'atteignent pas encore la précision

de la molécule ainsi que les transitions ro-vibrationnelles. Par conséquent, les modèles globaux et modèles effectifs (locaux) sont complémentaires pour l'étude des spectres moléculaires.

Lors de nos études des spectres de vibration-rotation des molécules, nous avons utilisé les résultats des calculs globaux variationnels pour une attribution initiale des transitions. La confirmation définitive des attributions et la modélisation des observations a été effectuée à l'aide des Hamiltoniens effectifs (positions des raies) et de moments de transition effectifs (intensités des raies). Pour l'étude de la molécule $D_2^{16}O_2$, l'identification préliminaire des spectres a été réalisée grâce aux calculs variationnels de Partridge et Schwenke [1.20, 1.21]. Ces données étaient ensuite introduites dans le modèle de l'hamiltonien effectif, les paramètres ainsi obtenus servant de paramètres initiaux pour le traitement des niveaux d'énergie expérimentaux. Ceci permet d'améliorer l'extrapolation à un domaine de nombres quantiques J, K_a expérimentalement inaccessible. Dans le cas de l'ozone, les calculs globaux des niveaux d'énergie [1.22, 1.23] et des constantes de rotation des états vibrationnels effectués au GSMA à partir de la fonction potentielle ont servi à l'identification préliminaire des raies observées. Ces constantes de rotation sont également utilisées comme paramètres initiaux pour les états vibrationnels « dark ». Le traitement des niveaux d'énergie s'effectue par la méthode des hamiltoniens effectifs avec l'introduction d'états vibrationnels résonants pour modéliser les couplages observés.

Le présent mémoire de thèse est structuré de la façon suivante : il comprend une introduction, trois chapitres et une conclusion. Sont donnés en annexes l'ensemble des raies observées et analysées (8 listes pour D_2O , 9 listes pour ${}^{18}O_3$).

Le premier chapitre est consacré aux bases théoriques de la spectroscopie moléculaire à haute résolution dans l'infrarouge. Nous rappelons l'approche générale pour la séparation des variables électroniques et nucléaires (approximation de Born-Oppenheimer) et l'équation de Schrödinger de la molécule pour un état électronique isolé. Les bases de méthodes variationnelles pour les calculs globaux de spectres sont brièvement discutées. Nous exposons le formalisme des hamiltoniens effectifs et leur utilisation pour décrire les niveaux d'énergie ro-vibrationnelles des molécules. La méthode des transformations de contact (CT) utilisée pour la construction des hamiltoniens effectifs est décrite. Les constructions des hamiltoniens effectifs pour un groupe d'états vibrationnels interagissants sont présentées ainsi que les formules qui rendent compte des couplages de résonances anharmoniques et de type Coriolis. Nous rappelons également la méthode des fonctions génératrices (« G-function model ») propres à la construction des Hamiltoniens effectifs pour

 D_2O . Nous présentons les propriétés de symétrie des molécules étudiées et les règles de sélection pour les transitions ro-vibrationnelles. Est également rappelé le formalisme de calcul des intensités des raies.

Le second chapitre expose les résultats obtenus à partir des spectres d'émission de $D_2^{16}O$ enregistrés dans la gamme spectrale 320-860 et 1800-5600 cm⁻¹. Après une présentation synthétique de la molécule et de ses propriétés, nous résumons les divers travaux recensés dans la littérature. Nous exposons ensuite les caractéristiques des spectres utilisés pour notre étude. Nous présentons les analyses des deux premiers états vibrationnels (000) et (010) de la molécule $D_2^{16}O$. L'ajustement des niveaux d'énergie de la molécule par un modèle d'Hamiltonien de type Watson ne permet pas de reproduire correctement les niveaux d'énergie rotationnels hautement excités. En revanche, l'utilisation d'un Hamiltonien basé sur les fonctions génératrices permet de reproduire les observations à la précision expérimentale près. Sont ensuite analysées les premières et deuxièmes triades. Les résultats obtenus sont comparés d'une part avec ceux obtenus par différents auteurs, et d'autre part avec les calculs globaux disponibles. Enfin, ce chapitre présente les analyses simultanées du spectre d'émission de $D_2^{16}O$ dans la gamme spectrale 4600-5600 cm⁻¹ et du spectre d'absorption du mélange HDO/D₂O dans la gamme spectrale 5600 - 8800 cm⁻¹. Ces études permettent d'obtenir un grand nombre d'informations sur les niveaux de rotation de la molécule mais aussi de confirmer les attributions de deux façons indépendantes (par l'analyse des spectres d'absorption et celle d'emission), ce qui rend les résultats plus fiables.

Le **troisième chapitre** est consacré aux analyses des spectres CRDS (5900-7000 cm⁻¹) de l'isotopologue ¹⁸O₃ de l'ozone. Après un bref rappel des propriétés de la molécule, nous faisons un bilan des études réalisées précédemment à nos travaux. Nous rappelons la génération d'ozone et nous résumons les conditions expérimentales d'enregistrement des spectres CRDS.

Sont ensuite présentées les prédictions globales des centres de bandes de ¹⁸O₃ dans la gamme spectrale étudiée. Ces prédictions, effectuées par VI. G. Tyuterev, sont obtenues à partir de la surface énergie potentielle établie pour l'isotope principal ¹⁶O₃ de l'ozone [1.22, 1.23] developpée lors de la collarobation entre les équipes du GSMA (Reims) et du LTS (Tomsk). Nous exposons en détail les résultats de nos analyses dans les gammes spectrales 5690 - 6100 cm⁻¹, 6200-6400 cm⁻¹ et 6500-6700 cm⁻¹; cette dernière région étant la plus complexe et la plus intéressante à analyser. En effet, pour la modélisation des observations de cette dernière région nous avons dû tenir compte, dans notre Hamiltonien effectif, de huit états vibrationnels interagissants, dont quatre d'entre eux sont dits « dark ». Enfin, nous présentons l'analyse des deux bandes d'absorption associées aux états vibrationnels les plus hauts en énergie jamais

observés pour l'ozone, à savoir les états (125) et (431). Enfin, nous examinons les conséquences sur les états vibrationnels lors de la substitution isotopique totale ${}^{16}O_3 \rightarrow {}^{18}O_3$.

Les résultats de ce travail de thèse ont fait l'objet de plusieurs publications dans des journaux internationaux à comité de lecture. Les analyses des spectres de $D_2^{16}O$ ont été publiées dans deux articles au Journal of Molecular Spectroscopy et un article dans les proceedings SPIE. En ce qui concerne l'étude des spectres de ${}^{18}O_3$, les résultats ont été publiés dans la revue Chemical Physics Letters (un article), et au Journal of Molecular Spectroscopy (trois articles).

Par ailleurs, nous avons présenté nos travaux dans 18 conférences russes et internationales dont les principales sont les suivantes : Colloquium on High Resolution Molecular Spectroscopy (Dijon, France 2003 et 2007, Salamanca, Espagne 2005), Symposium on Molecular Spectroscopy (Columbus, USA 2008), Atmospheric Spectroscopy Applications (Reims, France 2008), Symposium on High Resolution Molecular Spectroscopy (Krasnoyarsk, Russie 2003, Nizhny Novgorod, Russie, 2006), Symposium "Atmospheric and Ocean Optics, Atmospheric physics" (Maksimikha Buryatiya, Russie, 2007).

Bibliographie de l'introduction

- 1.1 R.A. Toth, HDO and D_2O low pressure, long path spectra in the 600-3100 cm⁻¹ region. II. D_2O line positions and strengths // J. Mol. Spectrosc. **195** (1999) 98.
- 1.2 Sheng-gui He, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, Xiang-huai Wang, Shui-ming Hu, Hai Lin, Qing-shi Zhu, High–resolution Fourier transform spectrum of the D₂O molecule in region of the second triad of interacting vibrational states // J. Mol. Spectrosc. **200** (2000) 34.
- 1.3 S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Tennyson, T. Parekunnel, P.F. Bernath, Analysis of hot D₂O emission using spectroscopically determined potentials // J. Chem. Phys. **120** (2004) 206.
- 1.4 Y.Q. Gao, R.A. Marcus, Strange and unconventional isotope effects in ozone formation // Science **293** (2001) 259.
- 1.5 Ch. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky, Kinetic origin of the ozone isotope effect: a critical analysis of enrichments and rate coefficients // Phys. Chem. Chem. Phys. **3** (2001) 4718.
- 1.6 A. Miklavc, S.D. Peyerimhoff, Rates of formation of ozone isotopomers: a theoretical interpretation // Chem. Phys. Lett. **359** (2002) 55.
- 1.7 R. Hernandez-Lamoneda, M.R. Salazar, R.T Pack, Does ozone have a barrier to dissociation and recombination? // Chem. Phys. Lett. **355** (2002) 478.
- 1.8 R. Schinke, S.Yu. Grebenshchikov, M.V. Ivanov, P. Fleurat-Lessard, Dynamical studies of the ozone isotope effect // Annu. Rev. Phys. Chem. **57** (2006) 625.
- 1.9 M. Lopez-Puertas, B. Funke, S. Gil-Lopez, M.A. Lopez-Valverde, Thomas von Clarmann, H. Fischer, H. Oelhaf, G. Stiller, M. Kaufmann, M.E. Koukouli, J.-M. Flaud, Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) // C. R. Physique 6 (2005) 848.
- 1.10 D. Babikov, B.K. Kendrick, R.B. Walker, R.T Pack, P. Fleurat-Lesard, R. Schinke, Formation of ozone: Metastable states and anomalous isotope effect // J. Chem. Phys. 119 (2003) 2577.
- 1.11 S.Yu. Grebenshchikov, R. Schinke, P. Fleurat-Lessard, M. Joyeux, Van der Waals states in ozone and their influence on the threshold spectrum of $O_3(X^1A_1)$. I. Bound states // J. Chem. Phys. **119** (2003) 6512.
- 1.12 Y.S. Makushkin, Vl.G. Tyuterev, Perturbation methods and effective Hamiltonians in the molecular spectroscopy. Novosibirsk: Science, Siberian. Branch, 1984. 240 pp.
- 1.13 VI.G. Tyuterev, Recent advances in global variational and effective calculations of the line positions and intensities for triatomic molecules: some features of a new generation of spectroscopic databanks // Atmos. Oceanic Opt. **16** (2003) 220.
- 1.14 J.K.G. Watson, Determination of centrifugal distortion coefficients of asymmetric-top molecules // J. Chem. Phys. **46**, (1967) 1935.
- 1.15 J.M. Flaud, C. Camy-Peyret, The interacting states (020), (100), and (001) of $H_2^{16}O$ // J. Mol. Spectrosc. **51** (1974) 142.

- 1.16 C. Camy-Peyret, J.M. Flaud, The interacting states (030), (110), and (011) of $H_2^{16}O // J$. Mol. Spectrosc. **59** (1976) 327.
- 1.17 S.A. Clough, F.X. Kneizys, Coriolis interaction in the v_1 and v_3 fundamentals of ozone // J. Chem. Phys. 44 (1966) 1855.
- 1.18 L.E. Snyder, T.H. Edwards, Simultaneous analysis of the (110) and (011) states of hydrogen sulfide // J. Mol. Spectrosc. **31** (1969) 347.
- 1.19 S.N. Mikhailenko, Vl.G. Tyuterev, K.A. Keppler, B.P. Winnewisser, M. Winnewisser, G. Mellau, S. Klee and K. Narahari Rao, The 2v₂ band of water: analysis of new FTS measurements and high-Ka transitions and energy levels // J. Mol. Spectrosc. 184 (1997) 330.
- 1.20 H. Partridge, D.W. Schwenke, The determination of an accurate isotope dependent potential energy surface for water from extensive *ab initio* calculations and experimental data // J. Chem. Phys. **106** (1997) 4618.
- 1.21 D.W. Schwenke, H. Partridge, Convergence testing of the analytic representation of an *ab initio* dipole moment function for water: Improved fitting yields improved intensities // J. Chem. Phys. **113** (2000) 6592.
- 1.22 Vl.G. Tyuterev, S.A. Tashkun, P. Jensen, A. Barbe, T. Cours, Determination of the effective ground state potential energy function of ozone from high-resolution infrared spectra // J.Mol. Spectrosc. **198** (1999) 57.
- 1.23 Vl.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, P. Jensen, T. Cours, A. Barbe, M. Jacon, Variational EKE-calculations of rovibrational energies of the ozone molecule from an empirical potential function // Chem. Phys. Lett. **316** (2000) 271.

II. Etude des spectres d'émission de $D_2^{16}O$ à haute température

II – 1 : Introduction

Nous avons étudié les spectres d'émission de $D_2^{16}O$ enregistrés par George Mellau à l'aide du spectromètre Bruker IFS 120 HR (Giessen, Allemagne) aux températures de 1160, 1520 et 1950K et pour différentes pressions. Ce spectromètre possède une précision allant de 0,015 cm⁻¹ à 0,005 cm⁻¹ dans les gammes spectrales 320-520 et 1800-5600 cm⁻¹. Le mélange gazeux H₂O + HDO + D₂O avec une pression totale de 16 torr a également été étudié dans la région spectrale 400-860 cm⁻¹. La figure 1 présente de façon globale l'ensemble des états vibrationnels analysés ainsi que les publications et communications qui en découlent.

Figure 1. Etats vibrationnels étudiés de la molécule $D_2^{16}O$

II – 2 : Résultats

II -2.1 - Niveaux d'énergie de rotation des états vibrationnels (000) et (010) [article 1 : G.
Mellau, S.N. Mikhailenko, E.N. Starikova, S.A. Tashkun, H. Over, Vl.G. Tyuterev, J. Molec.
Spectrosc. 224, (2004), 32-60]

Les niveaux d'énergie de rotation des deux états vibrationnels les plus bas ont été obtenus lors de l'analyse des spectres d'émission dans la gamme spectrale 320-860 cm⁻¹. Les résultats de

cette analyse sont publiés dans l'article 1. Une vue globale du spectre et les conditions d'enregistrement sont donnés dans la figure 1 et dans le tableau 1, respectivement de cet article. Nous avons utilisé le programme Symath pour déterminer les nombres d'onde des trantitions dans les spectres de $D_2^{16}O$ pur. Ce programme permet d'obtenir la position des raies d'absorption, leur demi-largeur et leur intensité par ajustement du profil théorique de la raie au profil expérimental (Figure 2). La position des raies est obtenue avec une précision meilleur que 10^{-4} cm⁻¹. Le programme Symath a été créé au laboratoire de spectroscopie moléculaire de l'Institut de physique – chimie de l'Université de Giessen (Allemagne) par le docteur George Mellau.

Figure 2. Exemple de détermination de la position des raies dans le spectre à l'aide du programme Symath

L'identification préalable des nombres d'onde des trantions avec J, $K_a \le 20$ a été réalisée à partir des prédictions du spectre de D₂O à température élevée, basé sur la surface énergie potentielle (PES) [2.1] et la surface moment dipolaire [2.2] de Schwenke et Partridge. Ces calculs sont disponibles dans la base de données « Spectra » [2.3] developpé à LTS IOA, Tomsk. L'utilisation simultanée des calculs globaux et des itérations faites à l'aide du modèle non polynomial d'hamiltonien a permis d'avancer pas à pas dans l'attribution des nombres quantiques de rotation élevés et ainsi d'identifier les trantions avec J, $K_a > 20$.

Nous avons ainsi pu atribuer plus de 1000 raies d'émission pour les trois bandes (000) – (000), (010) - (010) et (010) – (000) de l'isotopomère de l'eau $D_2^{16}O$. Il faut remarquer que seulement 13 transitions rotationnelles propres à cette gamme spectrale avaient été publiées précédemment par Paso et collaborateurs [2.4].

La détermination des niveaux d'énergie de rotation a été réalisée à l'aide du programme RITZ [2.5] écrit par S.A. Tashkun. Ce programme, basé sur le principe de Rydberg-Ritz, permet de déterminer les niveaux d'énergie à l'aide d'un traitement simultané de toutes les transitions

disponibles dans la littérature. Nous avons utilisé une série comportant 5330 transitions observées pour cette molécule incluant ceux publiés dans les travaux [2.6-2.14] pour obtenir de nouveaux niveaux d'énergie de rotation pour les états vibrationnels (000) et (010) de la molécule $D_2^{16}O$. Les niveaux d'énergie obtenus à l'aide du programme RITZ sont présentés dans le tableau 3 de la publication 1.

Bien que la molécule D₂O soit plus lourde que l'isotopologue principal de l'eau H₂O, les effets de la non rigidité liés à une excitation rotationnelle élevée sont importants. La modélisation des niveaux d'énergie de rotation obtenus dans ce travail (jusqu'à J = 25) en utilisant l'Hamiltonien de Watson est assez éloignée de la précision expérimentale des données, bien que tous les paramètres de cet opérateur jusqu'au $12^{\text{ème}}$ ordre (paramètres Δ , δ , H, h, L, l, P, p, Q, q) soient inclus dans l'Hamiltonien. Par conséquent, ce modèle possède des possibilités d'extrapolation très limitées.

Afin d'améliorer la description des niveaux d'énergie nous avons utilisé un modèle d'Hamiltonien développé à l'aide de la fonction génératrice G [2.15, 2.16]. Les expressions générales pour l'Hamiltonien sont décrites dans les formules (2) et (3) du premier article ci-joint. La comparaison des résultats de la modélisation des niveaux d'énergie pour les états vibrationnels (000) et (010) à l'aide de ces deux modèles est représentée dans la figure 3. Nous constatons que l'utilisation d'un modèle non polynomial d'Hamiltonien permet de décrire plus précisément l'ensemble des données expérimentales. Les paramètres obtenus des Hamiltoniens effectifs sont reportés dans le tableau 4 [article 1]. Les statistiques relatives aux résultats de l'ajustement sont données dans le tableau 5. Nous présentons d'une part la comparaison de nos résultats avec l'ensemble des niveaux d'énergie de rotation obtenus par R.A. Toth [2.17] pour les états vibrationnels (000) et (010), (voir figure 3 de la publication 1) et d'autre par la comparaison de nos résultats avec ceux obtenus par le calcul global réalisé sur la base de la surface énergie potentielle de la molécule [2.1] (voir figure 4 de la publication 1).

Parallèlement à nos travaux, le groupe de Nijni Novgorod a publié l'étude [2.18] du spectre d'émission de D_2O à haute température dans la gamme spectrale 380-1880 cm⁻¹. La comparaison de nos travaux et de ceux du groupe de Nijni Novgorod est résumée dans le tableau 2.1 cidessous. Il faut remarquer que pour les états (000) et (010) le nombre de niveaux d'énergie obtenus ainsi que les valeurs maximales atteintes par les nombres quantiques de rotation dans l'étude [2.18] sont bien supérieurs à l'ensemble de nos données. Cela s'explique par le fait que ce groupe avait accès à toute la gamme spectrale dans laquelle absorbe la bande v₂ alors que nous n'avions accès qu'à l'intervalle 320-860 cm⁻¹.

Tableau 2.1. Comparaison des résultats de notre analyse de la structure de rotation pour les deux premiers états vibrationnels de $D_2^{16}O$ avec les données publiées dans les travaux [2.17] et [2.18]

	R.A. [2		Notre	étude 1]		S.V. Shirin et all. [2.18]			
Etat vibrationnel	Nombre de niveaux d'énergie	J _{max}	K _{a max}	Nombre de niveaux d'énergie	J_{max}	K _{a max}	Nombre de niveaux d'énergie	J _{max}	K _{a max}
(000)	279	23	11	692	26	25	951	30	30
(010)	274	23	11	639	25	25	861	30	27

Figure 3. Qualité de l'ajustement des niveaux d'énergie des états vibrationnels (000) et (010) obtenus à l'aide de l'Hamiltonien de Watson (W, courbe noire) et de l'Hamiltonien de la fonction génératrice (G, courbe rouge)

Cependant, comme l'indique la récente étude de D_2O dans le domaine térahertz, nos résultats sont plus précis que ceux du groupe de Nijni Novgorod et ont donc été inclus dans l'analyse de Bunken et collaborateurs [2.19]. Les résultats de positions des raies obtenus par le

groupe de Nijni Novgorod sont très différentes des mesures de ces mêmes raies par d'autres auteurs, comme par exemple [2.20].

L'utilisation de l'hamiltonien de la fonction G a permis d'améliorer la description des niveaux d'énergie de rotation élevés de la molécule D_2O , tant pour l'état fondamental (000) que pour le premier mode de pliage (010). Par ailleurs, ce modèle présente l'avantage de fournir des prévisions plus fiables. C'est pourquoi nous l'avons utilisé pour la description des niveaux d'énergie de la premiere triade des états vibrationnels.

II – 2.2 - Structure rotationnelle de la première triade des états vibrationnels interagissant $\{(020), (100), (001)\}$ de la molécule D_2O [article 2 : S.N. Mikhailenko, G. Mellau, E.N. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Molec. Spectrosc. 233, (2005), 32-59]

Nous avons analysé les spectres d'émission de D₂O enregistrés dans les gammes spectrales 320-860 et 1750-3400 cm⁻¹ (voir figure 1) afin d'étudier la structure rotationnelle des états vibrationnels de la première triade {(020), (100), (001)}. Dans ces régions, nous avons pu identifier les transitions rotationnelles des bandes $2v_2 - 2v_2$, $v_1 - v_1$ et $v_3 - v_3$; les transitions rovibrationnelles des bandes $2v_2 - v_3$, $v_1 - v_3$, $v_1 - 2v_2$, $v_3 - v_1$ et $v_3 - 2v_2$ (région 322-661 cm⁻¹), de la bande $2v_2 - v_2$ (région 623-849 cm⁻¹), et enfin des bandes $v_1 - v_2$ et $v_3 - v_2$ (région 1750-2030 cm⁻¹). C'est au total plus de 3500 raies d'émission de D₂O qui ont été identifiées et analysées pour l'ensemble des bandes citées ci-dessus.

Les résonances accidentelles conduisent à la nécessité de construire un hamiltonien effectif pour le groupe des états résonants {(020), (100), (001)}, dont l'expression est donnée par l'équation (1). Les éléments matriciels non diagonaux correspondant à la résonance anharmonique et aux résonances de Coriolis sont explicités par les équations (2) et (3) respectivement.

Le tableau 2 regroupe l'ensemble des résultats obtenus lors de l'analyse des niveaux d'énergie des états vibrationnels de la première triade. Pour chaque niveau d'énergie, nous donnons la valeur expérimentale déduite des observations, la différence entre la valeur calculée et la valeur expérimentale. Le tableau 3 présente la statistique des ajustements, conduisant à un RMS égal à 0,004 cm⁻¹ pour 1952 niveaux observés. Notons que 35 niveaux d'énergie pour lesquels la différence d $E = E_{exp.} - E_{cal.}$ est supérieure à 0.02 cm⁻¹ n'ont pas été inclus dans l'ajustement. Ces niveaux peuvent être perturbés par des interactions « extra-polyades » avec des niveaux vibrationnels plus élevés qui n'ont pas été pris en compte dans notre modèle. Les paramètres ajustés de l'Hamiltonien effectif pour la première triade des états vibrationnels, accompagnés de leur déviation standard, sont donnés dans le tableau 5. L'ensemble de ces

paramètres permet une description plus précise des niveaux d'énergie de D₂O observés dans les spectres moyen-IR et IR lointain de la molécule.

La figure 4 donne une vue d'ensemble de la comparaison de nos résultats avec ceux de Toth [2.17]. Le tableau 2.2 donné ci-dessous présente de façon synthétique l'apport de notre travail. Nous avons ainsi augmenté le nombre de niveaux d'énergie observés et les gammes des nombres quantiques rotationnels atteints.

Etat vibrationnel	Nombre de niveaux d'énergie	J _{max}	K _a max	E_{max} (cm ⁻¹)	Nombre de niveaux d'énergie	J _{max}	K _a max	E_{max} (cm ⁻¹)		
	R.,	A. Toth	[2.17]		[ce travail]					
(020)	162	16	9	3850	591	29	22	9691		
(100)	184	17	10	4515	676	29	25	11112		
(001)	223	19	10	4760	720	30	23	9954		

Tableau 2.2. Ccomparaison de nos résultats avec ceux publiés par Toth [2.17]

Plus en détail, la figure 5 présente une comparaison de nos résultats relatifs aux niveaux d'énergie de rotation pour l'état vibrationnel (020) avec les données obtenues par S.V. Shirin et collaborateurs [2.18].

Pour conclure sur l'étude de la première triade (020), (100) et (001), nous avons identifié 3550 raies de la molécule $D_2^{16}O$ correspondant aux transitions entre niveaux rotationnels très élevés. Les nombres quantiques de rotation atteints lors de ce travail sont les suivants : $J_{max} = 29$ et K_a (max) = 22 pour (020), $J_{max} = 29$ et K_a (max) = 25 pour (100), $J_{max} = 30$ et K_a (max) = 23 pour (001).

II - 2.3 - Analyse de la deuxième triade des états vibrationnels {(030), (110), (011)} de la molécule D_2O [article 3 : E.N. Starikova, S.N. Mikhailenko, G. Mellau, Vl.G. Tyuterev, Proc. Of SPIE, vol 6580, (2006), 81-89]

L'analyse des spectres d'émission à température élevée de D_2O dans les régions spectrales 320-860 cm⁻¹ et 1750-4300 cm⁻¹ (figure 1) a permis l'identification de plus de 5600 transitions appartenant à la deuxième triade {(030), (110), (011)} des états vibrationnels de cette molécule. Nous avons ainsi obtenu un ensemble de 1593 niveaux d'énergie rovibrationnels pour cette triade. Les valeurs maximales des nombres quantiques rotationnels observés ainsi que la comparaison de nos résultats avec ceux présents dans la littérature sont résumés dans le tableau 2.

Le RMS obtenu entre les valeurs observées des niveaux d'énergie et les valeurs calculées est de 7,6×10⁻³ cm⁻¹ pour 1450 niveaux jusqu'à J = 22. Pour la plus grande partie d'entre eux (1078 niveaux), la différence entre les valeurs expérimentales et calculées des niveaux est $dE < 5 \times 10^{-3}$ cm⁻¹. Les figures 4 à 6 présentent le résultat des comparaisons des nombres d'onde des transitions observées obtenues lors de notre travail pour les bandes $3v_2$, v_1+v_2 et v_2+v_3 de la molécule $D_2^{-16}O$ avec les nombres d'onde calculés à partir de la surface énergie potentielle de la molécule [2.1].

A ce jour, l'analyse de tous les niveaux d'énergie de la deuxième triade n'est pas encore terminée. Ceci est du au fait de la difficulté de tenir compte à la fois de l'importance de la distortion centrifuge pour les valeures élevées de K_a dans (030) et des couplages par resonances avec d'autres états (110) et (011).Comme on peut le constater dans le tableau 2, les niveaux d'énergie sont déterminés jusqu'à $J_{max} = 30$, alors que la modélisation n'est réalisée que jusqu'à J = 22. Les résultats obtenus lors de l'analyse de la deuxième triade des états vibrationnels de $D_2^{16}O$ ont été présentés dans différentes conférences [2.21-2.23].

II - 2.4 - Les spectres de D_2O : validation de l'identification des niveaux d'énergie déterminés à partir des spectres d'absorption et des spectres d'émission à haute température.

Ce travail concerne l'analyse simultanée du spectre d'émission de D₂O dans la region 4600-5600 cm⁻¹ à température élevée et du spectre d'absorption du mélange gazeux HDO/D₂O enregistré dans la region 5600-8800 cm⁻¹.

Le spectre d'émission de D_2O pur a été enregistré à une température de 1950 K et une pression de 16 torr, avec une précision de 0,005 cm⁻¹ sur la position des raies. Le programme SpectrumFit a permis d'obtenir les positions de plus de 3800 raies de ce spectre.

Le spectre d'absorption du mélange gazeux HDO/D₂O a été enregistré, au GSMA de l'Université de Reims, par le spectromètre de Fourier Bruker IFS 120M à une température de 290 K avec une précision de 0,015 cm⁻¹ pour une pression totale d'environ 10 torr. La pression partielle de D₂O était de l'ordre de 3 torr. Longueur de la cuve était de 603 mètres. Le très grand rapport Signal sur Bruit du spectre (S/N=3000) et une épaisseur optique importante (1800 torr×mètre) ont permis de mesurer les paramètres de raies très faibles dont l'intensité minimale est de l'ordre de 1×10⁻²⁷ cm/molécule. Ces faibles raies correspondent généralement aux transitions entre niveaux d'énergie faisant intervenir des valeurs élevées de *J* et *K_a*, transitions généralement non observables dans les spectres d'absorption à température ambiante enregistrés

pour de faibles longueurs optiques. Grâce à ce spectre très long parcours, nous avons pu réaliser l'analyse simultanée du spectre d'absorption et des spectres d'émission. Les détails de cette expérience sont donnés dans la référence [2.24]. Au total, environ 17900 raies ont pu être observés. La comparaison des spectres à différentes pressions partielles de HDO et D₂O a permis d'attribuer 5800 raies à la molécule D₂O et environ 9500 raies à la molécule HDO.

La région 4700-5600 cm⁻¹ (I) correspond aux bandes de la première hexade des états vibrationnels interagissants {(040), (120), (021), (200), (101), (002)}, la bande la plus intense de cette region étant la bande v_1+v_3 . Des bandes chaudes mettant en jeu des états vibrationnels de la seconde hexade d'états interagissant (par exemple (111) – (010)) et des états plus élevés (par exemple (201) – (100)) sont également visibles dans cette region.

La région 6000-7000 cm⁻¹ (II) correspond aux bandes de la seconde hexade des états vibrationnels interagissants {(050), (130), (031), (210), (111), (012)} ; la bande la plus intense de cette region étant la bande $v_1+v_2+v_3$. Des bandes chaudes mettant en jeu des états vibrationnels de la première hexade d'états interagissant (par exemple (121) – (010)) sont également visibles dans cette gamme spectrale.

La region 7500-8300 cm⁻¹ (III) correspond aux bandes de la première décade des états vibrationnels interagissants {(060), (140), (041), (220), (121), (022), (300), (201), (102), (003)} ; la bande la plus intense de cette région étant la bande $2v_1+v_3$. Des bandes chaudes mettant en jeu des états vibrationnels de la seconde hexade d'états interagissants (par exemple (211) – (010)) sont également visibles dans cette region.

Puisque le spectre de la région 4700-5600 cm⁻¹ est enregistré à température élevée, nous avons la possibilité d'observer des raies des bandes chaudes et ainsi de vérifier la validité de l'identification du spectre dans les gammes spectrales à plus hauts nombres d'onde (gammes (II) et (III)).

L'identification des raies des spectres a été réalisée grâce aux calculs prédictifs utilisant la surface potentielle de Partridge et Schwenke [2.1, 2.2]. Les niveaux d'énergie experimentaux ont été déterminés à l'aide du programme RITZ. Le tableau 2.3. donné ci-dessous regroupe l'ensemble des niveaux d'énergie utilisés par le programme RITZ. Dans la gamme spectrale allant de 0.3 à 9540 cm⁻¹, environ 23800 transitions ont été mesurées, conduisant à 8687 niveaux d'énergie pour 31 états vibrationnels.

Examinons maintenant plus en détail l'identification des raies de la bande $v_1+v_2+v_3$. Les spectres calculés, à différentes températures, des bandes faisant intervenir l'état vibrationnel supérieur (111) sont donnés sur la figure 4.

$v_1 v_2 v_3$	Nb de	J_{max}	K _{a max}	$v_1 v_2 v_3$	Nb de	J_{max}	K _{a max}
	niveaux				niveaux		
(000)	914	30	29	(130)	100	14	9
(010)	776	30	26	(012)	237	18	12
(020)	620	30	22	(111)	232	26	11
(100)	689	29	25	(210)	155	17	10
(001)	722	30	23	(041)	11	21	3
(030)	531	29	20	(121)	175	16	10
(110)	505	26	22	(220)	5	7	4
(011)	568	30	21	(032)	14	9	5
(040)	152	25	11	(131)	81	13	9
(021)	196	28	12	(230)	11	10	6
(120)	179	19	15	(013)	157	16	9
(200)	186	20	16	(112)	139	17	9
(101)	413	30	17	(211)	177	16	9
(002)	401	25	15	(310)	102	14	7
(050)	29	20	8	(221)	8	7	2
(031)	192	25	10				

Tableau 2.3. Niveaux d'énergie utilisés par le programme RITZ.

Les données calculées sont tirées de la base de données SPECTRA (<u>http://spectra.iao.ru</u>).

La figure 4 montre qu'à la température ambiante, seules sont visibles les bandes $v_1+v_2+v_3$ (bande principale la plus intense) et $v_1+v_2+v_3-v_2$. Lorsque la température augmente, on voit apparaître des bandes dont l'état vibrationnel inférieur appartient à la première triade {(020), (100), (001)} et/ou à la seconde triade {(030), (110), (011)}. A la température de 2000 K, les bandes (111) – (110) et (111) – (011) se situant dans la région de la bande v_3 (2200-3000 cm⁻¹) deviennent encore plus intenses.

Ainsi, lors de l'identification des raies de la bande $v_1 + v_2 + v_3$ on peut vérifier l'attribution des niveaux d'énergie de l'état vibrationnel supérieur (111) en utilisant les données obtenues lors de l'observation des bandes (111) – (010), (111) – (020), (111) – (100), (111) – (001), (111) – (030), (111) – (110) et (111) – (011).

Un exemple démonstratif concerne la détermination du niveau rotationnel J = 9, $K_a = 9$ de l'état vibrationnel (111). Ormsby et collaborateurs [2.25] ont déterminé ce niveau (E = 7813,4747 cm⁻¹) à partir de l'unique transition (111) $9_{90} \leftarrow (000) 9_{91}$ en ayant ajouté la valeur du niveau d'énergie 9_{91} de (000) au nombre d'onde de la transition observée correspondante, à savoir 6554,6052 cm⁻¹.

Figure 4. Spectres calculés de D₂O obtenus à partir de la surface potentielle de Partridge et Schwenke [2.5.12, 2.5.13] à différentes températures.

Zobov et collaborateurs [2.26] obtiennent la même valeur pour ce niveau et mesure une transition attribuée à (111) $9_{90} \leftarrow (110) 9_{91}$ à 2652,413 cm⁻¹. Nous remarquons qu'en utilisant les énergies obtenues par Zobov et collaborateurs pour les niveaux 9_{90} de (111) et 9_{91} de (110), le nombre d'onde de la transition calculée doit être égal à 2652,432 cm⁻¹, soit 0.019 cm⁻¹ d'écart avec la transition observée.

Dans notre travail, la transition 9_{90} de (111) $\leftarrow 9_{91}$ de (000) est mesurée à 6554,5083 cm⁻¹. Par ailleurs, nous avons observé dans 5 bandes différentes 6 transitions faisant intervenir ce même niveau supérieur 9_{90} de (111).

Le tableau 2.4. regroupe toutes les transitions observées ayant contribuées à la détermination de l'énergie du niveau 9₉₀ de (111). Deux transitions (en gris), insuffisamment précises, ont été exclues. Finalement, l'énergie du niveau 9₉₀ de (111) est égale à 7813,3784 cm⁻¹.

Tableau 2.4	. Transitions	utilisées	pour	la	détermination	du	niveau	d'énergie	9	90	de	l'état
vibrationnel	(111)											

Nombre d'onde (am^{-1})	$v_1v_2v_3 J K_a K_c$	$v_1v_2v_3 J K_a K_c$	énergie du	énergie du
	du niveau	du niveau	niveau inférieur	niveau supérieur
(cm)	supérieur	inférieur	(cm^{-1})	(cm^{-1})
2528.9109	111 9 9 0	110 10 9 1	5284.4738	7813.3847
2652.3357	111 9 9 0	110 9 9 1	5161.0430	7813.3787
3776.2350	111 9 9 0	100 10 9 1	4037.1505	7813.3855
3940.5085	111 9 9 0	001 9 8 1	3872.8698	7813.3783
4051.8237	111 9 9 0	020 9 9 1	3761.5564	7813.3801
5298.7994	111 9 9 0	010 9 9 1	2514.5776	7813.3770
6554.5083	111 9 9 0	000 9 9 1	1258.8695	7813.3778
			moyenne	7813.3784

Il faut remarquer que la raie située à 6554.6052 cm⁻¹, mentionnée par Ormsby et collaborateurs [2.25] n'est pas observable dans nos spectres. Les différentes transitions observées dans nos spectres ayant pour niveau supérieur 9_{90} de (111), sont indiquées sur le schéma de la figure 2.5.

Ainsi, nous pouvons confirmer l'identification et l'attribution des raies. Nous obtenons de façon plus précise et plus sûre l'énergie du niveau 9 $_{9 0}$ de (111), contrairement aux valeurs publiées dans les références [2.25] et [2.26].

Figure 2.5. Schéma des transitions observées faisant intervenir le niveau supérieur 9 $_{90}$ de l'état vibrationnel (111).

Dans le tableau 2.5., nous comparons nos valeurs des niveaux d'énergie pour l'état vibrationnel (111) J = 9, 10, 11 avec les résultats de Zobov et collaborateurs [2.26]. Pour chaque niveau, nous faisons apparaître le nombre de transitions observées (colonne 6) qui ont permis d'obtenir la valeur du niveau d'énergie donnée. La huitième colonne présente la différence entre nos travaux et ceux de Zobov.

Il faut remarquer que nous n'avons pas utilisé toutes les transitions observées pour déterminer les niveaux d'énergie. Très souvent, les raies ne sont pas suffisamment isolées (chevauchement avec des raies plus intenses) pour mesurer précisément les nombres d'onde observés. Ces raies nous confirment l'identification du niveau d'énergie supérieur mais les nombres d'onde ne sont pas utilisés pour déterminer la valeur du niveau d'énergie.

Il faut noter que les niveaux 11₉₃ de (111) et 11₉₂ de (111) sont tirés du travail d'Ormsby et collaborateurs. Ces niveaux ne figurent pas dans le travail [2.26]. Les niveaux nouvellement attribués et ceux se différenciant fortement des données de la littérature sont indiqués en rouge dans le tableau.

Ainsi, les spectres d'émission enregistrés à température élevée sont une source importante d'informations sur les transitions entre niveaux ro-vibrationnels élevés de la molécule. Ces données permettent d'augmenter considérablement l'ensemble des niveaux d'énergie connus et de vérifier leur identification.

	(111)									contin	ue		
			$E^{^{a}}$	_	E°	$H^a - H^b$				E^{a}		$E^{^{ m \scriptscriptstyle D}}$	$H^{a} - H^{b}$
J	K_{a}	K_{c}	Notre	N	Zobov et	(mk)	J	K_{a}	K_{c}	Notre	N	Zobov et	(mk)
		-	travail		al.[2.25]	(<i>mk</i>)			-	travail		al.[2.25]	(<i>mk</i>)
	0	9	7000.1281	6	7000.1297	-1.6	10	7	4	7649.0554	5	7649.0565	-1.1
9	1	9	7000.0304	4	7000.0308	-0.4	10	7	3	7649.0546	2		
9	1	8	7084.7139	8	7084.7153	-1.4	10	8	3	7777.7742	4	7777.7750	-0.8
9	2	8	7085.2572	4	7085.2583	-0.9	10	8	2	7777.7745	3	7777.7752	-0.7
9	2	7	7146.3708	8	7146.3718	-1.0	10	9	2	7937.5935	5	7937.5949	-1.4
9	3	7	7168.8123	6	7168.8131	-0.8	10	9	1	7937.5942	3	7937.5949	-0.7
9	3	6	7189.6765	8	7189.6779	-1.4	10	10	1	8093.3754	2	8093.3763	-0.9
9	4	6	7226.6847	4	7226.6859	-2.2	10	10	0	8093.3754		8093.3763	-0.9
9	4	5	7231.1689	6	7231.1703	-1.4							
9	5	5	7313.1326	4	7313.1334	-0.8	11	0	11	7206.2930	5	7206.2951	-2.1
9	5	4	7312.9226	6	7312.9243	-1.7	11	1	11	7206.3158	2	7206.2959	19.9
9	6	4	7412.9391	2	7412.9405	-1.4	11	1	10	7312.6989	б	7312.7001	-1.2
9	6	3	7412.9188	5	7412.9202	-1.4	11	2	10	7312.8928	5	7312.8935	-0.8
9	7	3	7528.8513	2	7528.8536	-2.3	11	2	9	7399.9323	б	7399.9331	-0.8
9	7	2	7528.8519	5	7528.8531	-1.2	11	3	9	7402.3110	4	7402.3114	-0.4
9	8	2	7658.1987	3	7658.1995	-0.8	11	3	8	7458.3690	5	7458.3700	-1.0
9	8	1	7658.1984	4	7658.1995	-1.1	11	4	8	7482.5566	4	7482.5571	-0.5
9	9	1	7813.3784		7813.4747	-96.3	11	4	7	7513.1986	5	7513.1995	-0.9
9	9	0	7813.3784	5	7813.4747	-96.3	11	5	7	7568.4868	4	7568.4874	-0.6
							11	5	6	7569.7525	5	7569.7535	-1.0
10	0	10	7098.5199	4	7098.5221	-2.2	11	6	6	7666.8963	2	7666.8980	-1.7
10	1	10	7098.5350	4	7098.5362	-1.2	11	6	5	7666.7878	4	7666.7887	-0.9
10	1	9	7194.1895	5	7194.1903	-0.8	11	7	5	7781.5393	3	7781.5397	-0.4
10	2	9	7194.5484	6	7194.5499	-1.5	11	7	4	7781.4981	3	7781.4991	-1.0
10	2	8	7269.4708	5	7269.4719	-1.1	11	8	4	7909.7451	2	7909.7468	-1.7
10	3	8	7273.0222	6	7273.0233	-1.1	11	8	3	7909.7456	3		
10	3	7	7318.8959	4	7318.8965	-0.6	11	9	3	8073.5331		8073.3101	223.0
10	4	7	7345.9783	5	7345.9796	-1.3	11	9	2	8073.5331	2	8073.3101	223.0
10	4	6	7374.6567	3	7374.6572	-0.5	11	10	2	8229.3785		7206.2951	
10	5	6	7434.8284	6	7434.8297	-1.3	11	10	1	8229.3785	2	7206.2959	
10	5	5	7434.7729	3	7434.7735	-0.6	11	11	1	8401.7210		7312.7001	
10	6	5	7533.7051	5	7533.7064	-1.3	11	11	0	8401.7210	2	7312.8935	
10	6	4	7533.6503	2	7533.6518	-1.5							

Tableau 2.5. Comparaison des niveaux d'énergie obtenus pour l'état vibrationnel (111), J = 9, 10 et 11. Toutes les valeurs d'énergie et les différences observées sont exprimées en cm⁻¹.

A ce jour, nous avons réalisé l'attribution ro-vibrationnelle de 1450 raies dans le spectre d'émission de D_2O , la majeure partie de ces raies étant observées pour la première fois. Les transitions observées ont été identifiées comme des transitions appartenant aux états vibrationnels (101), (002), (200), (021), (040), (111), (210), (012), (031), (300), (201), (102), (121), (220), (041).

Le spectre d'absorption de HDO/D₂O enregistré au GSMA a permis l'identification rovibrationnelle de plus de 14000 raies. Remarquons que les échantillons d'eau utilisés pour l'enregistrement de ce spectre contenaient 0.2% de $H_2^{18}O$. Cela nous a permis d'observer des raies de HD¹⁸O et D₂¹⁸O. Ainsi, parmi l'ensemble des raies observées, 8237 sont attribuables à la molécule HD¹⁶O, 4340 à D₂¹⁶O, 876 à HD¹⁸O, 565 à H₂¹⁶O et 140 à D₂¹⁸O. Les premiers résultats de ce travail ont été présentés lors du Symposium International de Spectroscopie Moléculaire à Prague [2.27]. Une grande partie des données obtenues sur la molécule HD¹⁸O a été publiée dans l'article [2.28].

II – 3 : Conclusions

- 1. Notre travail avait pour but l'étude des niveaux rotationnels hautement excités des 8 premiers états vibrationnels de la molécule $D_2^{16}O$; à savoir l'état vibrationnel fondamental (000), l'état vibrationnel de pliage (010) et des deux premières triades des états vibrationnels interagissant {(020), (100), (001)} et {(030), (110), (011)}. Les études de la structure rotationnelle de ces états ont été réalisées grâce aux spectres d'émission enregistrés dans les régions 320-860 et 1750-4300 cm⁻¹. L'identification de plus de 10000 raies a permis de déterminer pour la première fois plus de 2300 niveaux d'énergie rotationnels hautement excités de ces états permettant d'atteindre les nombres quantiques de rotation J = 30 et $K_a =$ 29. Environ 7000 raies ont été identifiées pour la première fois.
- 2. La simulation théorique des données expérimentales obtenues a montré l'incapacité des modèles traditionnels d'Hamiltonien effectif polynomial pour décrire les niveaux rotationnels hautement excités, ceci même pour les états (000) et (010). C'est pourquoi nous avons utilisé le modèle d'Hamiltonien effectif utilisant la fonction génératrice pour décrire la structure rotationnelle des deux états vibrationnels de la molécule D₂¹⁶O cités précédemment. L'utilisation de ce modèle a permis de calculer les niveaux d'énergie avec une précision proche de la précision expérimentale.
- 3. L'analyse simultanée du spectre d'émission dans la région 4500-5600 cm⁻¹ et des spectres d'absorption à longs parcours optiques dans la région 5600-8800 cm⁻¹ a permis l'étude des états vibrationnels des deux premières hexades {(040), (120), (021), (200), (101), (002)} et {(050), (130), (031), (210), (111), (012)}. Les valeurs obtenues des niveaux d'énergie pour la première hexade de la molécule D₂¹⁶O ont été améliorées et corrigées par rapport aux travaux précédents publiés dans la littérature.

Bibliographie de la partie de D₂O

- 2.1 H. Partridge, D.W. Schwenke, The determination of an accurate isotope dependent potential energy surface for water from extensive *ab initio* calculations and experimental data // J. Chem. Phys. **106** (1997) 4618.
- 2.2 D.W. Schwenke, H. Partridge, Convergence testing of the analytic representation of an *ab initio* dipole moment function for water: Improved fitting yields improved intensities // J. Chem. Phys. **113** (2000) 6592.
- 2.3 S. Mikhailenko, Yu. Babikov, Vl. Golovko, S. Tashkun, SPECTRA, an Internet accessible information system for spectroscopy of atmospheric gases // 10th HITRAN Database Conference, Cambridge, MA, USA, June 22-24, 2008, Poster PI-13.
- 2.4 R. Paso, V.M. Horneman, High-resolution rotational absorption spectra of $H_2^{16}O$, $HD^{16}O$, and $D_2^{16}O$ between 110 and 500 cm⁻¹ // J. Opt. Soc. Am. **B12** (1995) 1813.
- 2.5 S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov, N.N. Lavrentieva, CDSD-1000, the high-temperature dioxide spectroscopic databank // JQSRT **82** (2003) 165.
- 2.6 R.A. Toth, $D_2^{16}O$ and $D_2^{18}O$ transition frequencies and strengths in the v₂ bands // J. Mol. Spectrosc. **162** (1993) 41.
- 2.7 W.S. Benedict, S.A. Clough, L. Frenkel, T.E. Sullivan, Microwave spectrum and rotational constants for the ground state of D_2O // J. Chem. Phys. **53** (1970) 2565.
- 2.8 G. Steenbeckeliers, J. Bellet. Application of Watson's centrifugal distortion theory to water and light asymmetric tops. General methods. Analysis of the ground state and the v_2 state of $D_2^{-16}O // J$. Mol. Spectrosc. **45** (1973) 10.
- 2.9 J.K. Messer, F.C. De Lucia, P. Helminger, Submillimeter spectroscopy of the major isotopes of water // J. Mol. Spectrosc. **105** (1984) 139.
- 2.10 J.W.C. Johns, High-resolution far-infrared (20-350 cm⁻¹) spectra of several isotopic species of H₂O // J. Opt. Soc. Am. **B2** (1985) 1340.
- 2.11 F. Matsushima, M. Matsunaga, G.Y. Qian, Y. Ohtaki, R.L. Wang, K. Takagi, Frequency measurement of pure rotational transitions of D₂O from 0.5 to 5 THz // J. Mol. Spectrosc. 206 (2001) 41.
- 2.12 E.A. Michael, C.J. Keoshian, S.K. Anderson, R.J. Saykally, Rotational transitions in excited vibrational states of D₂O // J. Mol. Spectrosc. **208** (2001) 219.
- 2.13 O.I. Baskakov, V.A. Alekseev, E.A. Alekseev, B.I. Polevoy, New submillimeter lines of water and its isotopes // Optics and Spectroscopy, **63** (1987) 1016 (in Russian).
- 2.14 N. Papineau, PhD Dissertation, Orsay (1980).
- 2.15 VI.G. Tyuterev, V.I. Starikov, V.I. Tolmachev, Asymptotic of rotational energy levels of non rigid molecules of H₂O type. The generating functions and the ranges of convergence // DAN URSS, **297** (1987) 345 (in Russian).
- 2.16 Vl.G. Tyuterev, The generating function approach to the formulation of the effective rotational Hamiltonian. // J. Mol. Spectrosc., 1992, v.151, №1, p.97-129.
- 2.17 R.A. Toth, HDO and D₂O low pressure, long path spectra in the 600-3100 cm⁻¹ region. II. D₂O line positions and strengths // J. Mol. Spectrosc. **195** (1999) 98.

- 2.18 S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Tennyson, T. Parekunnel, P.F. Bernath, Analysis of hot D_2O emission using spectroscopically determined potentials // J. Chem. Phys. **120** (2004) 206.
- 2.19 S. Brunken, H.S.P. Muller, G. Endres, F. Lewen, T. Giesen, B. Drouin, J.C. Pearson, H. Mader, High resolution rotational spectroscopy on D₂O up to 2.7 THz in its ground and first excited vibrational bending states // Phys. Chem. Chem. Phys. **9** (2007) 2103.
- 2.20 C. Camy-Peyret, J.M. Flaud. A. Mahmoudi, G. Guelachvili, J.W.C. Johns, Line positions and intensities in the v_2 band of D_2O improved pumped D_2O laser frequencies // Int. J. IR and MM Waves, **6** (1985) 199.
- 2.21 S.N. Mikhailenko, G.Ch. Mellau, E.N. Starikova, Vl.G. Tyuterev, Rotational analysis of the second triad of interacting states of $D_2^{16}O$ from hot temperature emission spectra in the 320 860 and 1750 4300 cm⁻¹ spectral ranges // Nineteenth Colloquium on High Resolution Molecular Spectroscopy, Salamanca, September 11-16, 2005 (Poster F10).
- 2.22 S.N. Mikhailenko, G.Ch. Mellau, E.N. Starikova, Vl.G. Tyuterev, Investigation of D_2O emission spectra in the ranges of 320 860 and 1750 4330 cm⁻¹ // XXIII Colloquium on Spectroscopy, Zvenigorod, October 17 21, 2005 (248-249).
- 2.23 E.N. Starikova, S.N. Mikhailenko, G.Ch. Mellau, Vl.G. Tyuterev, Analysis of (030), (110), and (011) interacting states of $D_2^{16}O$ from hot temperature emission spectra // XV Symposium on High Resolution Molecular Spectroscopy. Nizhny Novgorod, July 18-21, 2006 (Poster D12).
- 2.24 A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, Vl.G. Tyuterev, M. Carleer, A.C. Vandaele, S. Mikhailenko, S. Fally, Fourier transform measurements in the 4200-6600 cm⁻¹ region // JQSRT **105** (2007) 326.
- 2.25 P.S. Ormsby, K. Narahari Rao, M. Winnewisser, B.P. Winnewisser, A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, The 3v₂+v₃, v₁+v₂+v₃, v₁+3v₂, 2v₁+v₂, and v₂+2v₃ bands of D₂¹⁶O: The second hexade of interacting states // J. Mol. Spectrosc. **158** (1993) 109.
- 2.26 N.F. Zobov, R.I. Ovsannikov, S.V. Shirin, O.L. Polyansky, J. Tennyson, A. Janka, P.F. Bernath, Infrared emission spectra of hot D₂O //J. Mol. Spectrosc. **240** (2006) 112.
- 2.27 E.N. Starikova, S.N. Mikhailenko, G.Ch. Mellau, A. Jenouvrier, L. Daumont, Vl.G. Tyuterev, Rotation-vibration spectra of D_2O : Confirmation of assignment for the middle IR hot emission spectra by transitions observed in long path near IR absorption // 20th International Conference on High Resolution Molecular Spectroscopy, Prague, Czech Republic, September 2-6, 2008 (Poster D3).
- 2.28 S. Mikhailenko, S. Tashkun, T. Putilova, E. Starikova, A. Jenouvrier, L. Daumont, S. Fally, M. Carleer, C. Hermans, A.C. Vandaele, Critical evaluation of rotation-vibration transitions and an experimental dataset of energy levels of HD¹⁸O // JQSRT (2009) (in press).

III. Analyses des spectres CW-CRDS de ¹⁸O₃ dans la region 5930-7000 cm⁻¹.

III – 1 Contexte

La molécule d'ozone suscite un intérêt particulier, de part ses actions sur notre environnement (trou d'ozone stratosphérique, trop d'ozone troposphérique). Ceci explique partiellement le très grand nombre d'études qui lui ont été consacrées, référencées dans la banque de donnés S&MPO. En dépit d'un effort considérable de la communauté scientifique pour comprendre ses propriétés physicochimiques, de nombreux problèmes restent non résolus, comme par exemple l'enrichissement isotopique anormal. Pour espérer obtenir des informations par le biais d'analyses de spectres infrarouges sur ces propriétés, il est nécessaire d'obtenir des informations vers des énergies s'approchant de la dissociation. Or, précisément, son énergie de dissociation (vers 8600 cm⁻¹) est relativement basse, et il est maintenant possible, grâce par exemple à la technique CRDS, d'enregistrer des spectres proches de cette région. On peut ainsi avoir accès à des informations précises, puisque découlant d'analyses de spectres enregistrés à haute résolution.

Plusieurs travaux récents [3.1-3.6] ont permis d'enregistrer et d'attribuer plus de 7500 transitions de ${}^{16}O_3$ dans la gamme actuellement accessible à la technique CRDS mise au point à l'Université de Grenoble.

Vis à vis du but recherché précité, il est d'un grand intérêt d'analyser les spectres de ${}^{18}O_3$, et ce pour plusieurs raisons.

(i). La substitution est unique : chacun des trois atomes d'oxygène 16 étant remplacé par un atome d'oxygène 18. Les vibrations normales sont conservées, et l'on peut s'attendre à une distribution homothétique. Toutes les différences (et elles sont nombreuses) seront intéressantes à analyser. Nous verrons dans notre article 4 comment appréhender la principale différence entre observations et hypothèses basées sur des déplacements homothétiques.

(ii). Due à l'augmentation de masse entre ¹⁸O₃ et ¹⁶ O₃, il existe dans la région de 6500 cm⁻¹, un déplacement vers les basses fréquences des centres de bande pour les mêmes transitions vibrationnelles lorsque l'on passe de ¹⁶O₃ à ¹⁸O₃. Ce déplacement est de l'ordre de 340 cm⁻¹. Ceci permet, dans le cas de ¹⁸O₃, d'observer les transitions faisant intervenir des états vibrationnels supérieurs comme (431) ou (125), non accessibles expérimentalement, actuellement pour ¹⁶O₃.

Les schémas de résonances rovibrationnelles sont évidemment différents entre les deux molécules, puisque, d'une part, les distances entre états interagissants sont différentes, et que d'autre part, les constantes rotationnelles diffèrent dans un rapport avoisinant 16/18. Dans ces conditions, les comparaisons d'analyses apportent des informations de la plus haute importance. On citera en particulier le cas de la bande $3v_1+5v_3$, qui posait un gros problème d'attribution dans ${}^{16}O_3$, avec la non observation de $7v_3$. L'attribution hypothétique [3.6] à $3v_1+5v_3$ a été confirmée sans ambiguïté après les analyses des bandes correspondantes de ${}^{18}O_3$.

(iii). La comparaison des intensités des deux isotopes apporte elle aussi des éléments d'informations très intéressants : alors que la similitude entre les deux isotopes était très grande (mêmes bandes observées), pour les transitions en dessous de 5000 cm⁻¹ [3.7, 3.8], des différences considérables apparaissent dans la région 6000-7000 cm⁻¹ Certaines bandes comme $4v_1+2v_2+v_3$ sont observées pour ${}^{16}O_3$, et pas pour ${}^{18}O_3$; inversement 3 bandes ont été observées pour ${}^{18}O_3$ et pas pour ${}^{16}O_3$, alors qu'elles correspondaient à une zone spectrale observable.

III – 2 : Conditions experimentales

Les résultats que nous présentons pour l'ozone, ont été exclusivement obtenus à partir des spectres enregistrés par méthode CW-CRDS (Continuous Wave - Cavity Ring Down Spectroscopy). Tous les spectres CRDS ont été enregistrés par S. Kassi, A. Campargue et collaborateurs au laboratoire LSP à l'Université de Grenoble. Les conditions d'enregistrement et la technique experimentale sont décris avec précision dans les références [3.1-3.6]. Le lecteur pourra s'y reporter, nous ne donnons ici que les éléments principaux, utiles à nos analyses. Notons tout d'abord que les techniques CRDS et TF haute résolution sont deux techniques complémentaires. Le spectromètre par transformation de Fourier (TF) du G.S.M.A couvre une très large gamme spectrale (1000 à 10000 cm⁻¹). Il fonctionne avec un rapport Signal/Bruit de l'ordre de 5000 vers 5000 cm⁻¹, et les enregistrements sont effectués en quelques heures. Son système pas à pas, de type Connes, permet d'obtenir une précision absolue de 10⁻⁵ cm⁻¹ pour les positions des transitions. Une cellule spécialement conçue pour l'ozone permet d'enregistrer les spectres avec une dégradation de l'ozone inférieure à 1% pendant plusieurs heures. Le logiciel «MultiFiT» [3.9] a été mis au point à Reims et permet d'obtenir les paramètres expérimentaux (positions, intensités, élargissements) de milliers de transitions. Cet ensemble a servi à enregistrer les spectres de ${}^{16}O_3$, ${}^{18}O_3$ et des isotopomères mixtes de O_3 de 900 à 6000 cm⁻¹. La technique CRDS mise au point au LSP de Grenoble, quant à elle, permet, dans un domaine spectral allant actuellement de 5920 à 7000 cm⁻¹, d'enregistrer des spectres avec une sensibilité supérieure de 2 à 3 ordres de grandeur. Ceci correspondrait, avec le spectromètre T.F à utiliser

une cellule de plusieurs dizaines de kilomètres. La technique CRDS possède également l'avantage d'utiliser de très petits volumes d'échantillon gazeux, avantage indéniable pour les études d'ozone isotopique.

La précision, en ce qui concerne les positions, est presque toujours meilleure que 2×10^{-3} cm⁻¹. Celle-ci a été contrôlée en comparant les positions obtenues entre transitions aboutissant au même niveau ro-vibrationnel supérieur. Malheureusement, la cellule utilisée n'ayant pas été conçue pour l'ozone, on observe une dégradation significative de ce gaz lors des enregistrements. On ne peut donc pas espérer obtenir des mesures d'intensité absolue meilleures que 15%. Une autre conséquence de l'utilisation de cette cuve est l'observation de nombreuses impuretés dans les spectres. On retrouve ainsi principalement H₂O, CO et CO₂, incluant pour ¹⁸O₃ les isotopomères enrichis en ¹⁸O, comme ¹⁸O¹²C¹⁸O. Mais, à cause de la très grande sensibilité, on a également observé d'autres molécules qui avaient été étudiées auparavant comme HDO ou CH₄. On a également observé des transitions de HCN, formé en très petites quantités lors des décharges électriques pour la production d'ozone. Ceci rend évidemment les attributions des bandes faibles (souvent les bandes de type B) difficiles.

Pour obtenir les paramètres expérimentaux précités, le logiciel «MultiFiT» est utilisé. Celui-ci possède l'avantage de pouvoir calculer et visualiser des spectres synthétiques pour toutes les molécules présentes dans la cuve, permettant ainsi, après identification, de s'affranchir des impuretés qui pourraient réduire la précision sur les paramètres expérimentaux de O₃.

III – 3 : Resultats

Nous présentons les résultats de manière succincte, dans l'ordre des quatre publications parues concernant l'étude des spectres de ${}^{18}O_3$ dans la gamme spectrale 5930 à 7000 cm⁻¹. Le lecteur pourra s'y référer pour de plus amples détails. Pour chaque région spectrale étudiée, les articles donnent les paramètres ajustés des Hamiltoniens effectifs permettant de reproduire les nombres d'onde des transitions observées. Sont également transcrits les paramètres ajustés des opérateurs moment de transition qui permettent de reproduire les intensités des raies observées. Le nombre de transitions observées, les nombres quantiques rotationnels atteints et les statistiques des ajustements obtenus sont également donnés. De nombreuses figures présentent les vues globales des spectres enregistrés, les accords entre spectres observées et spectres calculés, les coefficients de mélange des niveaux rovibrationnels.

Il convient cependant de faire quatre remarques d'ordre général:

A). Ces analyses ont pu être menées à bien grâce aux connaissances acquises lors des travaux précédents, dans des domaines énergétiques allant jusqu'à 6000 cm⁻¹. La modélisation des transitions, niveaux d'énergie, intensités s'effectue à l'aide du programme G.I.P. (General Inverse Program) mis au point [3.10] au laboratoire LTS. De plus, sans un travail de navette entre les analyses des spectres et les prédictions théoriques effectuées par VI.G. Tyuterev et collaborateurs [3.11], les analyses de ce mémoire auraient été beaucoup plus difficiles, peut-être même impossibles pour certaines d'entre elles. Notons que les prédictions utilisées ne portaient, jusqu'à l'an dernier (2008) que sur les centres de bandes, permettant ainsi d'appréhender les états interagissants, lorsque des résonances rovibrationelles apparaissaient. Récemment, les prédictions théoriques ont eté effectuées sur les constantes rovibrationelles [3.12] en utilisant des transformations de contact au dixième ordre. Ces résultats très prometteurs seront certainement utiles pour des analyses encore plus fines. De même, dans le futur, il serait possible de prévoir les valeurs des coefficients de couplage entre états vibrationnels interagissants (tant pour les résonnances de type Coriolis que celle de type anharmonique)

B). Il faut également noter, dans les deux isotopomères ¹⁶O₃ et ¹⁸O₃ étudiés, l'évolution du *rms*, pour les écarts Obs.-Calc. des transitions observées. Celui-ci était de l'ordre de 0.1×10^{-3} cm⁻¹ pour les bandes fondamentales, donc proche de la précision expérimentale ; le *rms* est de l'ordre de 1 à 2×10^{-3} cm⁻¹ pour les premières bandes harmoniques ou de combinaisons (entre 2000 et 3500 cm⁻¹); il se dégrade pour atteindre environ 5×10^{-3} cm⁻¹ vers 5000 cm⁻¹. Dans la région étudiée durant cette thèse (5920 - 7000 cm⁻¹), le *rms* varie de 6 à 18×10^{-3} cm⁻¹. Il est donc 4 à 5 fois supérieur à la précision expérimentale. La principale raison est «naturellement» la prise en compte des multiples résonances rovibrationnelles. Dans ces conditions, les écarts Obs. - Calc. étant parfois significatifs, une fois le travail d'analyse totalement terminé, nous créons une liste de raies utilisée pour calculer les spectres synthétiques et que nous fournissons aux banques de données (S&MPO, HITRAN, GEISA). Dans ces listes les positions calculées des raies sont remplacées par les positions observées, tout en conservant les intensités calculées. Le programme mis au point corrige les niveaux d'énergie et calcule toutes les transitions (P, Q, R) atteignant ce niveau excité. Ceci est très important pour reproduire l'ensemble du spectre observé car majoritairement une seule transition dans la branche P (pour les bandes de type A) est observée précisément, les autres transitions (Q et R) faisant souvent l'objet de chevauchement entre raies.

C). La sensibilité du système CRDS étant très grande, on peut observer dans les spectres un nombre impressionnant de raies très faibles. Nombre d'entre elles demeurent pour l'instant non attribuées. La plupart sont probablement dues à des bandes de type B très faibles, mais permises, compte tenu de la symétrie de la molécule d'ozone. On a, par exemple, récemment identifié 5 bandes de type B (3 pour ¹⁶O₃, 2 pour ¹⁸O₃) qui avaient été considérées comme cachées («dark») lors de précédentes analyses. Nul doute qu'avec les progrès des prédictions, un grand nombre de ces raies très faibles pourra être identifié ultérieurement par un travail minutieux. Cette remarque concernant les transitions faibles non encore identifiées est d'autant plus valable dans le cas des spectres de ¹⁸O₃, car, compte tenu de l'enrichissement de l'oxygène moléculaire servant à générer l'ozone, les isotopomères de l'ozone, principalement ¹⁸O¹⁶O¹⁶O et ¹⁸O¹⁶O¹⁸O, sont présents dans la cellule.

D). La dernière remarque concerne la procédure utilisée pour les ajustements. Tous les ajustements effectués à ce jour (la liste exhaustive des publications est consultable dans le système informatique sur la spectroscopie de l'ozone S&MPO[3.13]) permettant d'obtenir les paramètres des Hamiltoniens et des moments de transitions effectifs se font en utilisant les positions et intensités des transitions observées. Ces données initiales sont obtenues à l'aide du programme «MultiFiT» qui donne les précisions, tant pour les intensités que pour les positions. Ces précisions sont utilisées pour pondérer les informations. En ce qui concerne les positions, les niveaux rotationnels de l'état fondamental (000) étant très bien connus, l'ajustement se fait en réalité sur les niveaux d'énergie supérieurs, obtenus en additionnant le nombre d'onde des transitions aux niveaux d'énergie inférieur de départ. C'est donc en réalité un ajustement sur les niveaux d'énergie, avec un nombre d'informations égal au nombre de transitions observées, et pondéré d'après l'ajustement «MultiFiT» qui est réalisé. Dans le cas présent, ainsi que pour les études précédentes, la même méthode est appliquée pour les intensités, mais diffère pour les positions. Sachant que la précision pour les positions peut varier dans un même spectre CRDS, et qu'il n'y a pas, contrairement au spectromètre T.F, de référence absolue, la précision donnée par «MultiFiT» est irréaliste et ne peut être employée pour pondérer les positions. Les positions sont données d'après des pointés de raies relativement grossiers $(1 \times 10^{-3} \text{ cm}^{-1})$. L'ajustement se fait donc sur les niveaux d'énergie, avec un nombre d'information égal au nombre de transitions, et non pondérées.

III – 3.1.- Analyse de la région 6200-6400 cm⁻¹ [article 1: A. Campargue, A. Liu, S. Kassi, D. Romanini, M-R. De-Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc, (2009) doi: 10.1016 / j.jms. 2009.02.012]

Dans cette région, les absorptions dues aux bandes $2v_1+5v_3$ et $2v_1+3v_2+3v_3$ sont prépondérantes autour de 6270.6 et 6392.2 cm⁻¹ respectivement. Nous avons pu également observer les bandes de type B, plus faibles, v_2+6v_3 , $3v_1+4v_3$ et 6 transitions seulement de la bande $3v_1+5v_2$. L'analyse de l'ensemble de ces observations nous a conduit à définir deux systèmes d'états vibrationnels interagissants: {(421), (016), (350), (205), (304)} et {(520), (233), (242)}.

Les paramètres des Hamiltoniens effectifs utilisés pour reproduire les positions des raies observées et les paramètres des opérateurs moment de transition qui permettent de modéliser les intensités des raies nous ont servi pour calculer une liste de 1619 transitions. Cette liste est utilisée pour générer un spectre calculé en très bon accord avec le spectre observé comme le montrent la figure ci-dessous.

Figure 1. Exemple d'accord entre spectre expérimental et spectre synthétique , dans la région de la brache P de la bande $2v_1+3v_2+3v_3$

Les études de ces deux systèmes montrent le très bon accord entre les centres de bandes observés et ceux prédits [3.11], confirmant implicitement les mélanges très importants des fonctions d'onde et la difficulté de donner une attribution vibrationnelle utilisant le label communément admis en mode normal (v_1 , v_2 , v_3).

De plus, nous remarquons que ce ne sont pas les mêmes bandes qui peuvent être observées pour ${}^{18}O_3$ et ${}^{16}O_3$. En effet, lors de notre étude des spectres de ${}^{16}O_3$ [3.6], la bande $4v_1+2v_2+v_3$ a été observée alors que les bandes v_2+6v_3 et $3v_1+4v_3$ ne l'ont pas été. Dans le cas de ${}^{18}O_3$, nous observons $2v_1+5v_3$, v_2+6v_3 et $3v_1+4v_3$ mais pas $4v_1+2v_2+v_3$. Cet état de fait peut s'expliquer par la difficulté de determiner les signes des termes des différents moments de transitions

contribuant à l'intensité d'une bande, celle-ci étant proportionnelle au carré du moment de transition.

III – 3.2.- Analyse de la région 5930-6080 cm⁻¹ [article 2: E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, S. Kassi, A. Campargue, A.W. Liu, S. Kassi, J. Mol. Spectrosc. (2009), doi: 10.1016 / j.jms. 2009.03.013]

Pour cette analyse très délicate, il a été nécessaire de tenir compte de 6 états vibrationnels interagissants. Pour 5 de ces états, nous avons obtenu des informations grâce à l'observation de 3 bandes de type A associées $2v_2+5v_3$, $5v_1+v_3$ et $v_1+v_2+5v_3$ et 2 bandes de type B associées $4v_1+3v_2$ et $2v_1+v_2+4v_3$. La complexité des analyses est démontrée sur le schéma de résonance suivant.

Figure 2 . Schéma de résonances dans la région 5930-6080 cm⁻¹. Les flèches pleines correspondent aux couplages anharmoniques et les pointillées aux couplages de type Coriolis . Les valeurs des K_a correspondant aux maxima de ces résonances sont également reportées.

Au final, c'est un total de 1888 transitions qui ont pu être attibuées, correspondant à 1016 niveaux d'énergie. Les paramètres de l'Hamiltonien effectif utilisé permettent de reproduire l'ensemble des observations avec un *rms* égal à 9.5×10^{-3} cm⁻¹. Cette étude a permis de générer une liste de 2795 transitions.

III – 3.3.- Analyse de la région 6490-6900 cm⁻¹ [article 3: E. Starikova, A.Barbe, Vl.G. Tyuterev, M-R De Backer-Barilly, S. Kassi, A. Campargue, J. Mol. Spectrosc, (2009) (accepté)]

Cette publication correspond à l'analyse de la région spectrale 6490-6900 cm⁻¹. Cette étude a pu être scindée en deux parties indépendantes.

La première concerne la gamme spectrale 6490-6700 cm⁻¹ où 1555 transitions ont été attribuées à 3 bandes de type A, $3v_2+5v_3$, $5v_1+v_2+v_3$ et $2v_1+3v_2+3v_3$ et une de type B $v_1+3v_2+4v_3$. L'analyse de cette région s'est avérée délicate (*rms* = 18×10^{-3} cm⁻¹) puisque l'Hamiltonien effectif permettant de modéliser les positions observées utilise 8 états vibrationnels en interaction. La figure ci-dessous illustre la complexité de cette étude.

Figure 3 : Schéma de résonances dans la région 6490-6700 cm⁻¹. Les flèches pleines correspondent aux couplages anharmoniques et les pointillées aux couplages de type Coriolis . Les valeurs des K_a correspondant aux maxima de ces résonances sont également reportées.

Par ailleurs, cette étude nous a permis de lever une ambiguïté importante relevée et mentionnée dans la publication [3.6] concernant l'observation de la bande $3v_2+5v_3$ et la non observation de la bande $7v_3$.

La seconde partie de nos analyses concerne la région spectrale 6700-6900 cm⁻¹. Dans cette gamme, deux bandes d'intensité très faible sont observées: $v_1+2v_2+5v_3$ et $4v_1+3v_2+v_3$. Il est important de remarquer que ces bandes n'ont pas pu être observées pour l'isotope principal ¹⁶O₃ car elles absorbent dans une région spectrale qui n'est pas actuellement accessible par la technique CRDS. Respectivement, 386 et 164 transitions ont été observées et attribuées. Pour
modéliser les positions ($rms = 7.3 \times 10^{-3} \text{ cm}^{-1}$) de la bande $v_1+2v_2+5v_3$ nous avons dû introduire les états vibrationnels {(054), (026), (125)} dans l'Hamiltonien effectif. La modélisation des positions ($rms = 5.7 \times 10^{-3} \text{ cm}^{-1}$) de la bande $4v_1+3v_2+v_3$ a nécessité la prise en compte des états vibrationnels {(431), (520)}.

L'intérêt majeur de cette étude dans la région 6490-6900 cm⁻¹ est d'obtenir des informations sur les états vibrationnels très élevés de l'isotope ${}^{18}O_3$, alors que ces mêmes informations ne sont pas actuellement disponibles pour ${}^{16}O_3$.

III – 3.4.- Déplacements isotopiques dus aux substitutions homogènes ${}^{16}O_3 \rightarrow {}^{18}O_3$ [article 4: E.N. Starikova, A. Barbe, M-R De Backer-Barilly, Vl.G. Tyuterev, S.A. Taskhun, S. Kassi, A. Campargue, Chem. Phys. Letter, 470 (2009) 28-34]

La publication 4 est spécialement dévolue à l'étude du déplacement isotopique des centres de bandes, lors de la substitution ${}^{16}O_3 \rightarrow {}^{18}O_3$. Il est montré que, contrairement aux déplacements observés vers les basses énergies, ils sont, dans un domaine qui correspond à 82% de l'énergie de dissociation, très irréguliers, malgré des changements de masses faibles et homogènes. Ceci reflète la complexité des interactions anharmoniques dans la molécule d'ozone. La figure 2 de l'article, reproduite ici (figure 4), en donne l'illustration.

On voit, d'une part que l'éventuelle homothétie n'est pas respectée et que les labels vibrationnels peuvent changer. Les matrices L, reliant les coordonnées internes aux coordonnées normales ((R) = (L) (Q)) sont exactement proportionnelles, ce qui a pour conséquence d'avoir les formes des vibrations normales identiques pour ¹⁶O₃ et ¹⁸O₃. On pouvait donc s'attendre, dans le schéma classique de l'ozone, compte tenu des valeurs proches de ω_1 et ω_3 , à un déplacement isotopique régulier. Le fait qu'il n'en est rien, montre que la substitution isotopique modifie profondément les schémas de résonances, allant jusqu'à modifier les labels vibrationnels.

Dans notre article 3, les résultats sur les intensités des bandes observées pour les isotopes ${}^{16}O_3$ et ${}^{18}O_3$ sont comparés. Malgré une assez faible précision (voir partie expérimentale) de la mesure des intensités, outre une similitude générale, on note des différences significatives : certaines bandes sont observées pour ${}^{16}O_3$ et pas pour ${}^{18}O_3$ et inversement. Cette constatation est à rapprocher des différences observées pour les positions, liées à des mélanges de fonctions d'onde différents pour les deux isotopes. La deuxième remarque est l'apparente diminution d'intensité systématique, lorsque l'on passe de ${}^{16}O_3$ à ${}^{18}O_3$.

Figure 4. Spectres calculés : exemple de déplacement isotopique entre $^{16}O_3$ et $^{18}O_3$ dans les régions des bandes $5\nu_1+\nu_3$

III – 4 : Conclusions

- 1. Les analyses des spectres CRDS dans la région 5900-7000 cm⁻¹ ont permis d'attribuer et d'analyser 14 nouvelles bandes de l'ozone ¹⁸O₃. Ces bandes correspondent à des grandes excitations vibrationnelles ($\Delta v = 6$ -8) et atteignent les énergies rovibrationnelles élevées jusqu'à 82% de la limite de la dissociation moléculaire. Parmi elles les deux bandes v₁ + $2v_2 + 5v_3$ et $4v_1 + 3v_2 + v_3$ correspondent aux états rovibrationnels les plus élevés jamais observés pour l'ozone par la spectroscopie à haute résolution.
- 2. Au total plus de 2000 nouveaux niveaux d'énergie ont été déterminés à partir de 5250 transitions attribuées dans les spectres observés. Les modèles des Hamiltoniens effectifs sont construits pour décrire l'ensemble des résonances observées. Les constantes spectroscopiques obtenues permettent de modéliser les positions des raies avec un *rms* de $6 \ge 10 \times 10^{-3} \text{ cm}^{-1}$ pour dix bandes et le *rms* de $18 \times 10^{-3} \text{ cm}^{-1}$ pour quatre autres bandes.
- 3. L'analyse des spectres a montré l'apparition d'anomalies d'intensités des bandes dans cette région spectrale par rapport aux séries observées précédemment dans l'intervallle 700-6000 cm⁻¹, notamment l'apparition de bandes atteignant des niveaux correspondant à de grandes valeurs de v₂ (nombre quantique de pliage), ou la diminution relative des bandes dominantes faisant intervenir les harmoniques de la vibration antisymétrique v₃. Ceci ouvre un champ d'investigation extrèmement intéressant pour des études futures, en particulier pour la fonction moment dipolaire.
- 4. L'étude a montré le comportement irrégulier des déplacements isotopiques associés aux substitutions homogènes qui peut être interprété comme une manifestation expérimentale des forts mélanges des modes normaux dus aux résonances entre-polyades dans cette région spectrale.

Bibliographie de la partie de ¹⁸O₃

- 3.1 M.-R. De Backer-Barilly, A. Barbe, Vl. G. Tyuterev, D. Romanini, B. Moeskops, and A. Campargue, Fourier transform and high sensitivity cw-cavity ringdown absorption spectroscopy of ozone in the 6030 6130 cm⁻¹ region. First observation and analysis of the $3v_1+3v_3$ and $2v_2+5v_3$ bands // J. Mol. Struct. **780-781**, 225-233, (2006).
- 3.2 A. Campargue, S. Kassi, D. Romanini, A. Barbe, M.-R. De Backer-Barilly, Vl. G. Tyuterev, CW-Cavity Ring Down Spectroscopy of the ozone molecule in the 6625-6830 cm⁻¹ region // J. Mol. Spectrosc. **240**, 1-13 (2006).
- 3.3 A. Barbe, M.-R. De Backer-Barilly, Vl. G. Tyuterev, A. Campargue, D. Romanini, and S. Kassi, CW-Cavity Ring Down Spectroscopy of the ozone molecule in the 5980-6280 cm⁻¹ region // J. Mol. Spectrosc. **242**, 156-175 (2007).
- 3.4 A. Barbe, M.-R. De Backer-Barilly, Vl. G. Tyuterev, A. Campargue, D. Romanini, and S. Kassi, CW-Cavity Ring Down Spectroscopy of the ozone molecule in the 6220-6400 cm⁻¹ region // J. Mol. Spectrosc. **246**, 22-38 (2007).
- 3.5 S. Kassi, A. Campargue, M.-R. De Backer-Barilly and A. Barbe, "The $v_1+3v_2+3v_3$ and $4v_1+v_2+v_3$ bands of ozone by CW-Cavity Ring Down Spectroscopy between 5900 and 5960 cm⁻¹ // J. Mol. Spectrosc. **244**, 122-129 (2007).
- 3.6 Campargue A., Barbe A., De Backer-Barilly M.-R., Tyuterev Vl.G., Kassi S., The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm⁻¹: New observations and exhaustive review // Physical Chemistry Chemical Physics **10**, 2925-2946 (2008).
- 3.7 A. Chichery, A. Barbe, Vl.G. Tyuterev, M.-T. Bourgeois, Analysis of High-Resolution Spectra of ¹⁸O₃: 1. Spectral Range 1300-3100 cm⁻¹ // J. Mol. Spectrosc. **206**, 1-13 (2001).
- 3.8 A. Chichery, A. Barbe, Vl.G. Tyuterev, Analysis of High-Resolution Spectra of ${}^{18}O_3$: 2. Spectral Range 3100-4900 cm⁻¹ // J. Mol. Spectrosc. **206**, 14-26 (2001).
- 3.9 J.J. Plateaux, L. Régalia, C. Boussin, A. Barbe, Multispectrum fitting technique for data recorded by Fourier transform spectrometer: application on N₂O and CH₃D // JQSRT **68**, 507-520 (2001).
- 3.10 Tashkun S.A. and Tyuterev VI.G., GIP: a program for experimental data reduction in molecular spectroscopy // SPIE 2205, 188-191 (1993).
- 3.11 Vl. Tyuterev, H. Seghir, A. Barbe, S. Tashkun, Ozone molecule: high energy resonances, consistency of variational and perturbative calculations and complete vibration assignments up to dissociation // 19th International Conference on High Resolution Molecular Spectroscopy, Prague, Czech Republic, August 29- September 2, 2006, Poster H-54
- 3.12 E. Starikova, M-R De Backer-Barilly, Vl.G. Tyuterev, A.Barbe, A. Campargue, A. Liu, S. Kassi, S.A. Tashkun, ASA proceedings, Reims, sept. 2008, and <u>http://asa.univ-reims.fr/</u> 22.
- 3.13 http://smpo.iao.ru/

IV – Conclusion générale

Le travail présenté dans ce mémoire a permis d'obtenir des résultats importants et originaux sur les molécules ${}^{18}O_3$ et $D_2{}^{16}O$.

Pour la première fois, les spectres infrarouges à haute résolution de 14 bandes vibrationnelles dans la région de 5900 à 7000 cm⁻¹ de la molécule ¹⁸O₃ ont été analysés. Nous avons obtenu de nombreuses informations sur les positions et intensités de ces transitions rovibrationnelles. La modélisation des positions observées est réalisée au moyen d'Hamiltoniens effectifs construits pour décrire l'ensemble des résonances observées et les intensités sont modélisées au moyen de moments de transitions effectifs.

Les études menées sur ¹⁸O₃ complètent celles réalisées sur l'isotope principal ¹⁶O₃, l'ensemble permettant de mieux appréhender les surfaces énergie potentielle et moment dipolaire de l'ozone. Ces analyses étaient absolument nécessaires pour les études futures qui porteront sur tous les isotopes enrichis en ¹⁸O de l'ozone dans la gamme spectrale 5900 – 7000 cm⁻¹.

En ce qui concerne la molécule $D_2^{16}O$, nous avons étudié, à partir des spectres d'émission dans les régions spectrales 320 - 860 et 1750 - 4300 cm⁻¹, les niveaux rotationnels hautement excités des 8 premiers états vibrationnels de la molécule. Pour la première fois, plus de 2300 niveaux d'énergie dont les nombres quantiques de rotation atteignent J=30 et $K_a=29$ ont été attribués.

La modélisation de l'ensemble des données expérimentales obtenues a nécessité un modèle d'Hamiltonien effectif utilisant la fonction génératrice afin d'obtenir une précision proche de la précision expérimentale.

Par ailleurs, l'analyse simultanée des spectres d'émission $(4500 - 5600 \text{ cm}^{-1})$ et des spectres d'absorption à long parcours optique $(5600 - 8800 \text{ cm}^{-1})$ nous a permis d'obtenir les niveaux d'énergie des états vibrationnels des 2 premières hexades.

Available online at www.sciencedirect.com

Journal of Molecular Spectroscopy 224 (2004) 32-60

Journal of MOLECULAR SPECTROSCOPY

www.elsevier.com/locate/jms

Rotational levels of the (000) and (010) states of $D_2^{16}O$ from hot emission spectra in the 320–860 cm⁻¹ region^{\fightarrow}

G. Mellau,^a S.N. Mikhailenko,^b E.N. Starikova,^c S.A. Tashkun,^b H. Over,^a and Vl.G. Tyuterev^{d,*}

^a Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, Giessen D-35392, Germany

^b Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, av. Akademicheskii, Tomsk 634055, Russia

^c Physics Department, Tomsk State University, 36, av. Lenina, Tomsk 634050, Russia

^d Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, Université de Reims, Faculté des Sciences,

Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France

Received 3 November 2003

Abstract

The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320–860 cm⁻¹ at a resolution of 0.0055 cm⁻¹. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the $D_2^{16}O$ molecule corresponding to transitions between highly excited rotational levels of the (000) and (010) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: $J_{max} = 26$ and $K_a (max) = 26$ for the (000) \leftarrow (000) band, $J_{max} = 25$ and $K_a (max) = 25$ for the (010) \leftarrow (010) band, and $J_{max} = 26$ and $K_a (max) = 18$ for the (010) \leftarrow (000) band. The estimated accuracy of the measured line positions is 0.0005 cm⁻¹. To our knowledge no experimentally measured rotational transitions for $D_2^{16}O$ within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (000) and (010) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm⁻¹ for 692 rotational levels of the (000) state and 0.0010 cm⁻¹ for 639 rotational levels of the (010) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (000) and (010) states is discussed.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Far-infrared spectroscopy; Hot water; D₂¹⁶O; Emission spectra; Absorption spectra; Rotational levels; Isotopic effects

1. Introduction

A detailed knowledge of line positions and energy levels of the water molecule and its isotopic species is important for various atmospheric and astrophysical spectroscopy applications. On the other hand precise experimental spectroscopic data of the water molecule stimulate theoretical investigations of non-rigid molecules with extremely strong centrifugal distortion. The calculation of water rotational energies, especially for high K_a quantum number, is commonly considered as a benchmark for many theoretical models. The aim of this study was to extend the experimental information on rotational energy levels of D₂¹⁶O from the analysis of the heated water vapour emission spectra in the 320–860 cm⁻¹ region.

Rotational energies of the ground and first excited vibrational states of $D_2^{16}O$ were determined from the analysis of microwave and infrared spectra in [1–9]. Additional transitions of pure rotational and $v_2 = 1$ rotational lines were reported for sub-millimeter range

^{*} Reported at XIV HighRus Symposium, Krasnoyarsk, July 2003 and at XVII HRMS Colloquium, Dijon, September 2003.

^{*}Corresponding author. Fax: +33-3-26-91-31-47.

E-mail address: vladimir.tyuterev@univ-reims.fr (Vl.G. Tyuterev).

[10–13] and in the far-infrared region [14,15]. Michael et al. [13] reported also rotational transitions for some excited vibrational states. The v_2 fundamental band was studied more extensively at high resolution by Camy-Peyret et al. [16] and Toth [17,18]. Absolute line intensity measurements in the v_2 band using a tunable diode laser technique were performed by Thakur et al. [19]. The most extensive sets of rotational levels of the (000) and (010) states was reported by Toth [18]. Spectra of $D_2^{16}O$ were studied further in the region of the 1st triad [20–22] and the 2nd triad [23,24] and also in a higher wavenumber range [25–32].

Note that all experimentally available rotational levels [18] as well as all ro-vibrational levels of $D_2^{16}O$ were determined by analysing room temperature spectra and thus correspond to relatively moderate values of rotational quantum numbers J, K_a . The situation is quite different from that of the major isotopomer $H_2^{16}O$ for which a lot of information on high J, K_a energy levels were deduced from hot water spectra (sf. for example [33–40] and references therein).

In this paper we report on pure rotational transitions and the $(010) \leftarrow (010)$ rotational transitions of $D_2^{16}O$ and the analysis of ro-vibrational transitions of the v_2 band from water emission spectra recorded at high temperature. These new measurements allow to improve the accuracy of highly excited rotational levels and to extend considerably the range of experimentally accessible rotational quantum numbers for $D_2^{16}O$. A reanalysis of the room temperature absorption spectrum in the v_2 region previously studied by Toth [18] allows us to confirm some of newly determined highly excited rotational levels of the (000) and (010) states. Thanks to combinations with our hot data it has been possible to find more than 180 new line assignments corresponding to high values J and K_a in that absorption spectrum for the v_2 band.

The data reduction was achieved by using the generating-function model [41–43] of the effective rotational Hamiltonian because the usual polynomial model for centrifugal distortion terms [44] employed in most of previous analyses¹ of $D_2^{16}O$ spectra [4–23,26–32] does not provide a satisfactory accuracy for our data.

2. Experimental spectra analysis

A new emission source cell was designed at the Molekülspektroskopisches Laboratorium at the Justus-Liebieg Universität Giessen for the measurement of the infrared emission of hot gases up to temperatures of 2000 K using the Bruker IFS120HR high resolution spectrometer. A description of the cell and other experimental details are given in the papers on HCN emission spectra experiments [49,50]. The new emission cell is a 1 m-long alumina tube with 46 mm inner diameter fitted with CsJ windows. The central part of the cell was enclosed in an electrically heated commercial furnace yielding a uniformly heated region of 50 cm in length and temperatures up to 2000 K. The cooling of the windows and of the cell ends was redesigned, the number of cooling elements increased from 4 to 10. Even at a temperature of 2000 K it was possible to keep the windows of the new apparatus at room temperature. For this the 28 cm long ends of the alumina tube was cooled so that the cell temperature was falling down uniformly until 60 °C at the windows. Three high temperature emission spectra of pure $D_2^{16}O$ vapour were recorded with $0.0036 \,\mathrm{cm}^{-1}$ resolution (1/MOPD) in the $320-520 \text{ cm}^{-1}$ spectral range. The temperature of the gas was up to 1950 K, although the 28 cm long segments near the windows was at much lower temperature. Table 1 lists the experimental conditions under which the emission spectra were taken. All spectra were recorded at Giessen on the Bruker IFS 120 HR Fourier transform spectrometer [47] which had previously been used to record room-temperature spectra of $D_2^{16}O$ [26] and $H_2^{16}O$ [40,48]. In addition, the $D_2^{16}O$ emission lines were identified and used in the present analysis from an emission spectrum in the 520-860 cm⁻¹ range of water with natural isotopic abundance. The analysis of $H_2^{18}O$ lines in this spectrum was reported in a recent paper [46].

More than 980 lines were assigned to $(000) \leftarrow (000)$, $(010) \leftarrow (010)$, and v_2 bands of the $D_2^{16}O$ molecule in these four emission spectra in the 321.9–860.6 cm⁻¹ spectral range. Only 13 pure rotational transitions in this spectral range have been previously reported in the literature by Paso and Horneman [15].

Low-J, K_a transitions could be readily assigned using available energy levels given by Toth [18]. An assignment

Laboratory measurement conditions for emission FTIR spectra of water vapour

Table 1

Filename	MEH2OJ	MEH2OS	MEH2OT
Date	31.03.01	08.04.01	09.04.01
Gas temperature (K)	1520	1950	1950
Total water pressure (mbar)	14.0	16.0	1.0
Resolution (1/MOPD/cm ⁻¹)	0.0055	0.0055	0.0036
Scans	1300	300	60
Length of the cell	1 m		
Diameter of the cell	46 mm		
Length of hot zone	50 cm		
Detector	Ge:Cu at 4 K		
Detector window	CsJ		
Optical filter	$0-550cm^{-1}$		
	at 4 K		
Cell window	CsJ		
Beamsplitter spectrometer	Mylar 3.5 µm		
Aperture spectrometer	3.15 mm		
Measurement range	$322 - 522 \text{cm}^{-1}$		

¹ So far an only data reduction for $D_2^{16}O$ (the $3\nu_2$ band analysis by Bykov et al. [24]) has been performed using a non-polynomial model of the effective rotational Hamiltonian [45].

of higher *J*, K_a transitions requires extrapolations based on theoretical calculations. Because the standard polynomial model of the effective Hamiltonian in the case of water-type non-rigid molecules has poor convergence and extrapolation properties, we have used the generating function model [41–43] outlined in the next section in a similar way as in our previous work on H₂¹⁶O spectra [40,48] and on H₂¹⁸O spectra [46]. Assignments of transitions for medium values of rotational quantum numbers *J*, $K_a \leq 20$ were done with the help of a calculated D₂¹⁶O linelist. The linelist is based on variational calculations using potential energy [51] and dipole moment [52] surfaces. A combination of the global predictions and successive iterations using fitted effective Hamiltonian parameters were used for the assignment of line transitions corresponding to J, $K_a > 20$. The assignment of the observed transitions was done by a step-by-step iterative extrapolation with increasing J and K_a quantum numbers. The line positions were calibrated using available literature data [5,9–15,17,18,20].

Fig. 1. Emission spectrum of the D_2O molecule in the 320-520 cm⁻¹ spectral range. Temperature 1950 K. Pressure 1 Torr.

Fig. 2. Part of the emission spectrum of the D_2O molecule near 476.5 cm⁻¹.

Table 2

Table 2	(continued

Table 2	o 1'		1.0	.1 0						Table 2 (c	ontinu	ed)							
New D_2^{10}	O line:	s assign	ed for	the fir	st tim	e in emi	ssion	spectra	ı	Freq	$\mathrm{d}F$	v'	J'	K'_a	K'_c	v''	J''	K_a''	K_c''
Freq	dF	v'	J'	K'_a	K'_c	v''	J''	K_a''	K_c''	350.4546	5	000	19	8	12	000	18	7	11
321.9611	5	000	16	8	9	000	15	7	8	351.2296	5	000	16	10	7	000	15	9	6
321.9966	15	010	17	7	11	010	16	6	10	351.2339	5	000	16	10	6	000	15	9	7
322.6946	10	000	20	6	14	000	20	3	17	351.3439	5	010	13	5	9	010	12	2	10
322.8571	5	000	16	8	8	000	15	7	9	351.3998	5	000	15	11	5	000	14	10	4
323.1886	15	000	17	1	10	000	16	6	11	351.5178	5	010	13	12	2	010	12	0	1
323.2373	10	010	14	4	10	010	13	3 7	7	351.5404	5	010	16	9	0 7	010	15	0 8	8
324.4822	10	010	15	8	7	010	14	7	8	353.3028	5	010	14	11	3	010	13	10	4
324.7001	10	000	12	12	0	000	11	11	1	353.3992	5	010	15	10	6	010	14	9	5
325.7428	10	000	15	9	7	000	14	8	6	353.7209	5	000	12	6	7	000	11	3	8
325.7634	10	000	15	9	6	000	14	8	7	354.6310	5	010	13	4	10	010	12	1	11
326.4376	5	000	25	8	17	000	25	5	20	355.0144	5	000	14	5	10	000	13	2	11
327.3076	10	010	23	7	17	010	22	6	16	356.3421	5	000	19	8	12	000	19	5	15
327.3503	5	010	18	7	12	010	17	6	11	356.3912	5	000	13	2	11	000	12	1	12
327.6014	10	010	14	9	5	010	13	8	6	356.4537	5	010	18	8	11	010	17	7	10
327.8751	10	010	12	4	9	010	11	10	10	356.9039	5	000	18	0	12	000	1/	כ ד	13
328.1090	10	010	12	10	1	010	12	0	2	357 0290	5	000	19	8 7	12	000	19	6	12
329 1680	5	010	22	7	16	010	21	6	15	357 4985	5	010	15	4	11	010	14	3	12
330.4290	5	010	19	7	13	010	18	6	12	358.2179	5	000	26	8	19	000	25	7	18
330.7731	5	010	21	7	15	010	20	6	14	358.7068	10	010	17	7	11	010	17	4	14
330.9434	10	000	17	6	11	000	16	5	12	358.7428	5	000	19	8	11	000	18	7	12
331.4109	5	010	20	7	14	010	19	6	13	359.5084	5	010	18	8	10	010	17	7	11
332.1131	8	000	26	10	16	000	26	7	19	359.8831	5	000	14	13	1	000	13	12	2
332.5200	5	000	17	8	10	000	16	7	9	360.3281	5	000	25	8	18	000	24	7	17
333.0699	5	010	20	6	14	010	20	3	17	360.3548	5	000	18	9	10	000	17	8	9
333./1/4	2	010	12	2	8	010	10	2	9	360.7687	2	000	18	9	9	000	1/	8	10
333.8239	5	000	18	2	13	000	18	2	10	360.9035	5	000	13	12	8 1	000	12	12	9
334.1380	5	010	19	9 7	10	010	19	6	13	361 3321	5	000	21	8	14	000	20	12	13
334 5531	5	000	17	8	9	000	16	7	10	361 6960	5	010	18	6	12	010	17	5	13
335.5645	10	010	16	8	9	010	15	7	8	362.2009	5	000	19	7	13	000	19	4	16
335.9445	5	010	13	3	10	010	12	2	11	362.3745	5	000	24	8	17	000	23	7	16
336.1972	10	010	16	8	8	010	15	7	9	362.5012	5	000	15	12	4	000	14	11	3
337.2395	5	010	17	6	11	010	16	5	12	363.1206	5	000	17	10	8	000	16	9	7
337.3946	10	000	13	12	2	000	12	11	1	363.1305	5	000	17	10	7	000	16	9	8
337.5192	5	000	16	5	11	000	15	4	12	363.1915	5	010	17	9	9	010	16	8	8
337.5440	5	000	16	9	87	000	15	8	0	363.3034	5	010	1/	9	8	010	16	87	9
337.0004	5 10	010	10	12	0	010	15	0 11	8 1	303.4743	5	000	22 16	8 11	15	000	21 15	10	14
338 8798	5	000	12	7	11	000	17	6	12	363 6469	5	000	23	8	16	000	22	7	15
339.0402	10	000	14	11	3	000	13	10	4	364.2051	5	010	14	12	2	010	13	11	3
339.1754	10	000	15	10	6	000	14	9	5	365.4260	5	010	19	8	12	010	18	7	11
339.6627	5	010	15	9	7	010	14	8	6	365.5171	5	010	19	7	12	010	18	6	13
339.6765	5	010	15	9	6	010	14	8	7	365.5239	5	010	16	10	6	010	15	9	7
339.6938	10	000	23	7	16	000	23	4	19	365.7357	5	010	15	11	5	010	14	10	4
340.2715	5	010	12	2	10	010	11	1	11	366.7228	5	000	14	4	11	000	13	1	12
340.4553	5	000	25	10	15	000	25	10	18	367.0596	5	000	20	8	13	000	20	5	16
340./550	5	010	13	10	3	010	12	10	2	308.0130	5	010	10) 14	2	010	9	12	8
341.1263	5	010	14	10	4	010	17	9	10	369 5464	5	000	14	14	12	000	15	15	13
342 1959	5	010	16	5	11	010	15	4	12	370 1140	5	010	14	3	11	010	13	2	12
345.0516	5	000	18	7	12	000	18	4	15	370.7174	15	000	24	7	17	000	24	4	20
345.5571	5	000	18	9	9	000	18	6	12	370.7258	15	000	14	6	9	000	13	3	10
346.3867	5	010	17	8	10	010	16	7	9	371.1807	5	000	19	9	11	000	18	8	10
346.4168	5	000	18	8	10	000	17	7	11	371.4422	5	010	19	8	11	010	18	7	12
347.1420	5	000	13	13	1	000	12	12	0	371.9393	5	010	14	5	10	010	13	2	11
347.8312	5	010	17	8	9	010	16	7	10	371.9608	5	000	20	8	12	000	19	7	13
348.8968	5	010	18	7	11	010	17	6	12	372.1306	5	000	19	9	10	000	18	8	11
349.1051	5	000	17	9	9	000	16	8	8	372.4191	5	010	13	2	11	010	12	12	12
349.2729	2 20	000	1/	9 12	х Э	000	10	8	9 2	3/2.5229	5	000	15	13	3 12	000	14 10	12	12
350 3877	20 5	000	14	12 1	2 11	000	13	3	5 12	372.0023	5	010	20 14	0 13	13	010	19	12	2
550.5022	2	000	10	-		000	1 1	5		575.6701	2	010	1.1	10	1	010	10		-

 K_c''

9

15

8

Table 2 (continued)

Table 2 (co	ontinu	ed)								Table 2 (contin	ued)						
Freq	dF	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''	Freq	dF	v'	J'	K'_a	K'_c	v''	J''	K''_a
374.2004	5	010	17	5	12	010	16	4	13	397.4551	5	000	17	13	5	000	16	12
374.5614	5	010	18	9	10	010	17	8	9	397.5029	5	010	21	8	13	010	20	7
374.8204	5	000	18	10	9	000	17	9	8	397.5201	5	000	20	10	11	000	19	9
374.8380	5	010	18	9	9	010	17	8	10	397.7058	5	000	20	10	10	000	19	9
374.8488	5	000	18	10	8	000	17	9	9	397.7907	5	000	20	10	10	000	20	7
374.8866	5	000	16	12	4	000	15	11	5	398.9676	5	000	22	9	14	000	21	8
374.9860	5	010	13	3	11	010	12	0	12	399.2253	5	010	16	13	3	010	15	12
375.7258	5	000	17	11	7	000	16	10	6	399.2551	5	000	18	12	6	000	17	11
375.8488	5	000	22	10	12	000	22	11	15	399.4232	5	000	19	11	9	000	18	10
3/6./846	5	010	15	12	4	010	14	11	3	400.0269	2	000	16	6	11	000	15	3
377.4800	5	010	17	10	8 7	010	10	9	0	400.1085	5	000	20	5 10	10	000	20	2
377.4800	5	010	1/	10	5	010	10	10	8	400.8043	5	010	19	10	10	010	18	9
378 2100	5	010	20	7	13	010	10	10	14	400.8323	5	010	19	10	9	010	16	11
378.2100	20	000	10	0	15	000	19	6	14	401.3002	5	010	23	12	15	010	23	6
378 3858	20	000	15	5	11	000	14	2	12	401.9557	5	010	18	11	7	010	17	10
378 4038	5	010	21	8	14	010	20	7	13	402 2635	5	000	16	15	1	000	15	14
379.8494	5	010	25	8	18	010	24	7	17	402.6688	5	000	21	7	14	000	20	6
380.9666	5	010	12	6	7	010	11	3	8	402.7978	5	000	18	5	13	000	17	4
381.4127	5	000	20	9	12	000	19	8	11	402.8620	5	010	15	15	1	010	14	14
381.4957	5	000	15	14	2	000	14	13	1	403.3303	5	000	16	5	12	000	15	2
381.7153	5	010	22	8	15	010	21	7	14	403.3773	5	000	22	8	14	000	21	7
382.0175	5	010	24	8	17	010	23	7	16	403.9783	5	010	14	2	12	010	13	1
382.4246	5	010	14	14	0	010	13	13	1	405.5337	5	000	23	9	15	000	22	8
382.5602	5	010	14	4	11	010	13	1	12	405.9026	5	010	21	9	13	010	20	8
382.8174	5	010	23	8	16	010	22	7	15	406.0002	5	000	12	6	6	000	11	3
383.4351	5	000	20	9	11	000	19	8	12	406.3238	5	010	15	6	10	010	14	3
383.6748	5	000	16	4	12	000	15	3	13	406.5531	5	000	22	9	13	000	21	8
383.7507	5	000	15	6	10	000	14	3	11	406.7148	5	000	17	14	4	000	16	13
383.9571	5	010	20	8	12	010	19	7	13	407.2084	5	010	21	7	14	010	20	6
384.7970	5	010	20	7	13	010	19	6	14	408.0430	5	010	18	5	13	010	17	4
385.0509	5	000	16	13	3	000	15	12	4	408.0504	5	010	16	14	12	010	15	13
385.5051	5	010	19	9	11	010	18	8	10	408.4164	·)	000	21	10	12	000	20	9
385.9120	5	000	19	0	10	000	18	2 0	14	408.0493	5	010	21	10	12	010	20	8 0
386 2632	5	010	21	9	10	010	21	0 6	16	408.8425	5	000	16	16	0	000	15	15
386 3004	5	000	19	10	10	000	18	9	9	409.3034	5	000	18	13	5	000	17	12
386 3765	5	000	19	10	9	000	18	9	10	410 1177	5	000	24	9	16	000	23	8
386 6194	5	010	15	13	ŝ	010	14	12	2	410 9920	5	000	20	11	10	000	19	10
386.6280	5	000	21	8	13	000	20	7	14	411.0047	5	000	20	11	9	000	19	10
386.8609	5	010	13	6	8	010	12	3	9	411.2118	5	000	19	12	8	000	18	11
387.0101	5	000	14	3	12	000	13	0	13	411.2666	5	010	15	4	12	010	14	1
387.1422	5	000	17	12	6	000	16	11	5	411.7002	5	010	17	13	5	010	16	12
387.6619	5	000	18	11	7	000	17	10	8	412.1123	5	010	20	10	11	010	19	9
388.1539	5	000	22	6	16	000	22	3	19	412.2302	5	010	20	10	10	010	19	9
388.4261	5	010	19	8	12	010	19	5	15	412.4352	5	000	23	8	16	000	23	5
389.2431	5	010	16	12	4	010	15	11	5	412.5183	5	000	25	9	17	000	24	8
389.2492	5	010	18	10	9	010	17	9	8	412.6298	5	010	22	8	14	010	21	7
389.2673	5	010	18	10	8	010	17	9	9	412.8155	5	000	26	9	18	000	25	8
389.3237	5	000	15	3	12	000	14	2	13	413.7415	5	010	18	12	6	010	17	11
389.4439	5	000	15	15	1	000	14	14	0	414.0163	5	010	19	11	9	010	18	10
389.5029	5	010	19	6	13	010	18	5	14	414.7732	5	010	22	9	14	010	21	8
390.1969	5	010	17	11	12	010	16	10	6	414.9598	5	000	17	15	3	000	16	14
390.7912	5	000	21	9	13	000	20	8	12	415.4998		000	15	15	13	000	14	14
392.3382	5	010	10	4	12	010	10	2	13	415.//1/	5	010	10	15	12	010	13	14
394.0055	5	000	19	14	14	000	15	13	17	415.9050	5	000	17	3	13	000	14	3
394.1000	5	000	15	14	12	000	13	15	13	410.2073	5	000	21	10	12	000	21	5 7
394 8311	5	000	21	-+ 0,	12	000	20	1	13	417 2792	5	000	$\frac{21}{20}$	6	14	000	21 19	, 5
394 9834	5	010	15	ر ج	11	010	14	2	12	417 6947	5	000	19	10	10	000	19	7
395.0643	5	010	14	6	9	010	13	3	10	418 8994	5	000	22	10	13	000	21	9
395.2969	5	010	15	14	2	010	14	13	1	418.9457	5	000	23	9	14	000	22	8
396.0764	5	010	20	9	12	010	19	8	11	419.1293	5	000	18	14	4	000	17	13
397.4400	5	010	20	9	11	010	19	8	12	419.1984	5	000	17	6	12	000	16	3

Table 2 (continued)

Table 2 (co	ontinu	ed)								_	Table 2 (co	ontinu	ed)				
Freq	$\mathrm{d}F$	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''		Freq	dF	v'	J'	K'_a	K_c'	v''
419.5800	5	000	16	3	13	000	15	2	14		437.8470	5	000	12	7	5	000
419.7104	5	000	23	10	14	000	23	7	17		437.9966	5	000	24	10	15	000
419.8144	5	000	22	10	12	000	21	9	13		438.7287	5	010	17	6	12	010
419.9200	5	010	16	5	12	010	15	2	13		439.4766	5	000	13	5	8	000
419.9902	5	010	22	9	13	010	21	8	14		439.9403	5	000	19	15	5	000
420.1853	5	010	20	6	14	010	19	5	15		440.4331	5	010	16	4	13	010
420.6/4/	15	010	1/	14	4	010	16	13	3		440.7211	2	000	18	6	13	000
420.9344	5	010	10	12	11	010	15	12	12		440./4//	5	000	17	17	11	000
421.0431	5	000	19	15	2	000	16	12	0		441.1740	5	010	17	17	1	010
422.2101	5	010	23	9	15	010	22	8	14		441.1047	5	010	18	13	1	000
422.3400	5	000	21	11	11	000	20	10	14		441 5653	5	000	24	10	14	000
422.3423	5	000	21	11	10	000	20	10	11		442 7665	5	010	19	5	14	010
422.4283	5	010	16	16	0	010	15	15	1		443 5183	5	000	20	14	6	000
422.4803	5	000	13	7	7	000	12	4	8		443 9827	5	010	23	10	14	010
422.5962	5	000	16	4	13	000	15	1	14		444 1637	5	010	24	9	15	010
422 7948	5	000	23	8	15	000	22	7	16		444 3175	5	000	23	11	13	000
423 0008	5	000	20	12	8	000	19	11	9		444 5017	5	000	23	11	12	000
423 1281	5	010	21	10	12	010	20	9	11		444 6127	10	000	16	2	14	000
423 3978	5	010	21	10	11	010	20	9	12		444 8556	5	000	16	3	14	000
424.0322	5	010	18	13	5	010	17	12	6		445,1714	5	010	23	10	13	010
424.6625	15	000	11	7	4	000	10	4	7		445.2493	5	000	24	8	16	000
425.4221	5	000	14	7	8	000	13	4	9		445.4888	5	010	19	14	6	010
425.6435	5	010	20	11	10	010	19	10	9		445.5998	5	000	21	13	9	000
425.6505	5	010	20	11	9	010	19	10	10		446.0173	5	000	22	12	11	000
425.7560	5	010	19	12	8	010	18	11	7		446.0232	5	000	22	12	10	000
425.8820	5	010	12	5	7	010	11	2	10		446.1268	5	000	25	10	16	000
426.0056	5	000	25	9	17	000	25	6	20		446.2331	5	010	17	5	13	010
426.9100	5	010	17	4	13	010	16	3	14		446.9164	5	000	18	18	0	000
427.5216	5	000	18	15	3	000	17	14	4		447.5040	5	000	19	16	4	000
428.2168	5	010	24	9	16	010	23	8	15		447.6521	5	000	25	9	16	000
428.3441	20	000	25	10	16	000	25	7	19		447.7541	5	000	18	4	14	000
428.5104	5	000	17	17	1	000	16	16	0		447.9636	5	000	23	7	17	000
428.5495	5	010	17	15	3	010	16	14	2		448.1675	5	010	18	16	2	010
428.7462	5	000	15	7	9	000	14	4	10		448.2257	10	010	20	13	7	010
428.8273	5	000	23	10	14	000	22	9	13		448.2454	5	010	22	11	12	010
429.3681	5	000	17	5	13	000	16	2	14		448.2935	5	010	22	11	11	010
429.9365	5	010	23	8	15	010	22	7	16		449.0900	5	000	17	3	14	000
430.2289	5	000	22	7	15	000	21	6	16		449.2511	5	010	21	12	10	010
430.6845	5	000	23	10	13	000	22	9	14		449.9501	5	010	24	8	16	010
431.4009	5	000	19	14	6	000	18	13	5		450.1291	5	000	21	6	15	000
431.7192	5	010	23	9	14	010	22	8	15		450.8042	5	000	17	4	14	000
432.0685	5	010	25	9	17	010	24	8	16		451.0587	5	000	18	7	12	000
432.4634	5	000	24	9	15	000	23	8	16		451.6883	25	000	25	8	18	000
432.8796	5	010	22	7	15	010	21	6	16		452.1806	8	000	13	7	6	000
433.0962	5	010	12	6	6	010	11	3	9		452.2060	5	000	20	15	5	000
433.1574	5	010	18	14	4	010	17	13	5		452.6380	5	000	25	10	15	000
433.4686	5	000	22	11	12	000	21	10	11		452.8687	5	000	26	10	17	000
433.5315	5	000	16	7	10	000	15	4	11		453.0015	5	010	21	6	15	010
433.5504	5	000	22	11	11	000	21	10	12		453.5715	5	010	24	10	15	010
433.7835	5	010	22	10	13	010	21	9	12		453.6542	5	000	14	6	8	000
433.8060	5	000	20	13	7	000	19	12	8		453.6675	5	010	19	15	5	010
434.3669	5	010	22	10	12	010	21	9	13		454.1245	5	000	19	17	3	000
434.6069	5	000	21	12	10	000	20	11	9		454.1450	5	010	18	17	1	010
434.9338	5	000	18	16	2	000	17	15	3		454.6178	5	010	13	6	7	010
435.1118	5	010	15	2	13	010	14	1	14		454.8441	5	000	24	11	14	000
435.3713	5	010	17	16	2	010	16	15	1		455.2426	5	000	24	11	13	000
435.6158	5	010	16	3	13	010	15	2	14		455.4732	5	000	21	14	8	000
435.8956	5	010	15	3	13	010	14	0	14		455.8728	5	010	24	10	14	010
436.2110	5	010	19	13	7	010	18	12	6		456.1037	5	000	18	5	14	000
436.3055	5	000	19	5	14	000	18	4	15		456.5923	5	010	13	7	7	010
437.0600	5	010	21	11	11	010	20	10	10		457.2153	5	000	22	13	9	000
437.0798	5	010	21	11	10	010	20	10	11		457.2192	5	000	23	12	12	000
437.5963	5	010	20	12	8	010	19	11	9		457.2331	5	000	23	12	11	000

 K_c''

J''

 K_a''

Table 2 (continued)

Table 2 (co	ontinu	ed)								Table 2 (a	ontinu	ved)							
Freq	dF	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''	Freq	$\mathrm{d}F$	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''
457.6594	5	010	20	14	6	010	19	13	7	478.0348	5	000	18	3	15	000	17	2	16
457.7760	5	010	25	9	16	010	24	8	17	478.0841	5	000	19	4	15	000	18	3	16
459.1047	5	010	14	7	8	010	13	4	9	478.1398	5	010	21	15	7	010	20	14	6
459.1472	5	010	18	18	0	010	17	17	1	478.8591	5	000	23	14	10	000	22	13	9
459.1725	5	010	23	11	13	010	22	10	12	478.9202	5	000	25	12	14	000	24	11	13
459.2480	5	010	18	6	13	010	17	3	14	478.9929	5	000	18	4	15	000	17	1	16
459.2828	2	010	23	10	12	010	22	10	13	4/8.99/0	2	000	25	12	13	000	24	11	14
459.8244	5	000	19	18	2	000	18	1/	1	4/9.0986	5	000	21	1/	о 0	000	20	16	4
459.9194	5	010	20	10	4	010	20	13	2 0	479.5158	5	010	14 20	17	0 2	010	10	5 16	11
460.0039	5	010	21	15	9	010	20	12	0 17	479.3890	5	010	20 14	5	9	010	19	2	12
460 5224	5	010	18	4	14	010	17	3	15	479 8649	5	000	24	13	11	000	23	12	12
460 7089	5	010	22	12	10	010	21	11	11	480 1054	30	010	25	11	15	010	23	10	14
460.8067	5	010	19	16	4	010	18	15	3	480.5762	5	010	25	11	14	010	24	10	15
461.4788	5	010	15	7	9	010	14	4	10	481.3410	10	000	20	7	14	000	19	4	15
461.5557	5	010	23	7	16	010	22	6	17	481.4804	5	010	22	14	8	010	21	13	9
462.3613	5	010	25	10	16	010	24	9	15	481.6450	5	000	20	20	0	000	19	19	1
464.0290	5	000	19	6	14	000	18	3	15	481.9307	5	010	19	6	14	010	18	3	15
464.1644	5	000	26	10	16	000	25	9	17	482.6260	5	000	12	8	4	000	11	5	7
464.3110	5	000	21	15	7	000	20	14	6	482.9716	5	010	24	12	13	010	23	11	12
464.6178	5	000	19	19	1	000	18	18	0	482.9855	5	010	24	12	12	010	23	11	13
464.6654	5	000	19	7	13	000	18	4	14	483.1050	5	000	15	6	9	000	14	3	12
464.7668	5	010	16	7	10	010	15	4	11	483.1782	5	010	23	13	11	010	22	12	10
464.9782	5	000	25	11	15	000	24	10	14	483.2258	5	000	19	5	15	000	18	2	16
465.0602	5	000	26	9	17	000	25	8	18	483.5262	5	000	22	6	16	000	21	5	17
465./934	2	000	25	11	14	000	24	10	15	484.2528	2	000	22	16	6	000	21	15	2
465.938/	5	010	10	15	14	010	15	1 14	15	484.9527	5	010	20	18	2	010	19	17	3
405.9007	3 7	010	20	13	14	010	19	14	15	403.1203	5	010	21	16	4	010	20	17	5
400.3038	5	010	25	10	14	010	24	0	15	485.5819	5	010	21 15	10	8	010	20 14	13	11
466 6954	5	000	20	17	3	000	19	16	4	487 0749	5	010	22	6	16	010	21	5	17
466 9529	5	010	19	17	3	010	18	16	2	487 8468	5	000	13	8	6	000	12	5	7
466 9622	5	010	17	3	14	010	16	2	15	488 0050	5	000	23	15	9	000	22	14	8
467.2568	5	000	22	14	8	000	21	13	9	488.6099	5	000	20	6	15	000	19	3	16
468.1351	5	000	14	7	7	000	13	4	10	489.2524	5	010	19	7	13	010	18	4	14
468.1933	5	000	24	12	13	000	23	11	12	489.3733	5	000	26	12	15	000	25	11	14
468.2262	5	000	24	12	12	000	23	11	13	489.3999	5	010	20	19	1	010	19	18	2
468.6403	5	000	23	13	11	000	22	12	10	489.5395	5	000	26	12	14	000	25	11	15
469.2285	5	000	20	5	15	000	19	4	16	490.1129	5	010	22	15	7	010	21	14	8
469.6556	5	010	21	14	8	010	20	13	7	490.2731	5	000	24	14	10	000	23	13	11
469.7343	10	000	11	8	4	000	10	5	5	490.2849	5	000	21	19	3	000	20	18	2
469.8067	5	010	24	11	14	010	23	10	13	490.8809	5	000	25	13	13	000	24	12	12
469.8236	5	010	17	4	14	010	16	1	15	491.3284	5	000	22	17	5	000	21	16	6
469.9934	5	010	17	7	11	010	16	4	12	492.0471	5	010	21	17	5	010	20	16	4
470.0431	5	010	24	11	13	010	23	10	14	492.2750	5	000	24	7	17	000	23	6	18
470.7701	5	000	25	8	17	000	24	10	18	492.6704	5	010	24	1	17	010	23	6	18
4/1./151	5	010	22	13	12	010	21	12	10	492.9287	5	010	20	20	15	010	10	3 10	10
4/1.9322	5	010	23	12	12	010	22	11	12	492.9439	5	010	20	20	10	010	19	19	0
472 1406	5	010	19	12	2	010	18	17	12	493.7506	5	010	25	14	14	010	22	13	13
472.1400	5	000	21	16	6	000	20	15	5	493 7802	5	010	25	12	13	010	24	11	14
472 5638	5	000	$\frac{21}{20}$	18	2	000	19	17	3	494 0603	5	000	14	8	7	000	13	5	8
472.9701	5	010	25	8	17	010	24	7	18	494.2318	5	000	13	8	5	000	12	5	8
473.2808	5	010	20	16	4	010	19	15	5	494.4073	5	010	24	13	11	010	23	12	12
473.4839	5	010	18	5	14	010	17	2	15	494.4286	5	010	24	13	12	010	23	12	11
473.5173	5	000	17	2	15	000	16	1	16	494.5843	5	000	21	20	2	000	20	19	1
473.6428	5	000	17	3	15	000	16	0	16	496.1580	5	000	23	16	8	000	22	15	7
474.6118	5	000	26	11	16	000	25	10	15	496.7693	5	010	17	3	15	010	16	0	16
476.2004	5	000	26	11	15	000	25	10	16	497.5130	5	000	22	18	4	000	21	17	5
476.2460	5	000	22	15	7	000	21	14	8	497.5779	5	010	21	18	4	010	20	17	3
476.3912	5	010	19	19	1	010	18	18	0	497.5995	5	010	18	3	15	010	17	2	16
477.4455	5	010	20	5	15	010	19	4	16	497.7028	5	010	22	16	6	010	21	15	7
477.5438	5	000	20	19	1	000	19	18	2	498.0304	5	000	21	21	1	000	20	20	0
477.9977	5	010	18	7	12	010	17	4	13	498.1499	5	000	15	8	8	000	14	5	9

Table 2 (continued)

Table 2 (continued)

Freq	dF	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''	Freq	dF	v'	J'	K'_a	K_c'	v''
499.0350	5	000	26	8	18	000	25	7	19	519.4131	5	000	25	16	10	000
499.2705	10	010	18	4	15	010	17	1	16	519.8528	5	000	23	20	4	000
499.5800	5	000	24	15	9	000	23	14	10	521,2836	5	010	21	7	15	010
499.6192	5	010	14	7	7	010	13	4	10	521.3665	5	010	24	16	8	010
500,4909	5	000	16	8	9	000	15	5	10	521,5029	5	010	23	6	17	010
500 5990	5	000	21	7	15	000	20	4	16	521 7203	5	000	24	18	6	000
500 9899	10	010	14	5	9	010	13	2	12	521 8737	5	010	22	21	1	010
501 0276	5	000	21	5	16	000	20	4	17	521 8812	5	000	22	7	16	000
501 3085	5	010	19	5	15	010	18	2	16	522,1542	5	000	26	15	11	000
501 4913	5	000	25	14	12	000	24	13	11	522,2451	5	010	23	18	6	010
501 6727	5	000	26	13	14	000	25	12	13	523 7036	5	000	23	21	3	000
501 6843	5	000	26	13	13	000	25	12	14	524 1396	5	010	22	22	0	010
501 8633	5	000	17	8	10	000	16	5	11	524 1580	5	010	20	4	16	010
501.9001	5	010	23	15	9	010	22	14	8	524.8904	5	010	25	15	11	010
502 2105	5	010	21	19	3	010	20	18	2	525 1309	5	000	25	7	18	000
502.2455	5	000	18	2	16	000	17	1	17	525,4687	5	010	25	7	18	010
502 3097	5	000	18	3	16	000	17	0	17	526 7535	5	000	23	22	2	000
502.8366	5	000	22	19	3	000	21	18	4	526.9162	30	000	25	17	9	000
503 2616	5	000	18	8	11	000	17	5	12	526 9581	5	010	18	2	16	010
503 3782	5	000	23	17	7	000	22	16	6	527 0828	10	010	18	3	16	010
503 7899	5	010	20	7	14	010	19	4	15	527 2156	5	010	23	19	5	010
504 3205	5	010	22	17	5	010	21	16	6	527 3545	30	000	24	19	5	000
504.5497	5	010	24	14	10	010	23	13	11	527.6953	5	010	19	3	16	010
504 5562	5	010	24	14	11	010	23	13	10	527 9700	10	000	12	9	4	000
505 2411	5	010	25	13	12	010	24	12	13	528 2041	5	000	12	9	3	000
505 4721	5	010	25	13	13	010	24	12	12	528 2506	5	000	22	8	15	000
505 7430	5	000	19	8	12	000	18	5	13	528.6597	5	010	19	4	16	010
505 9648	5	010	21	20	2	010	20	19	1	529 4313	5	010	20	5	16	010
506 0745	15	000	14	8	6	000	13	5	9	530 6505	5	000	17	7	10	000
506 2342	5	010	20	6	15	010	19	3	16	530 7524	5	000	26	16	10	000
506.5493	5	000	19	3	16	000	18	2	17	530.8104	5	000	19	2	17	000
506.8619	5	000	16	7	9	000	15	4	12	530.8443	5	000	19	3	17	000
507.0797	5	000	19	4	16	000	18	1	17	531.3454	5	010	23	20	4	010
507.3211	5	000	22	20	2	000	21	19	3	531,6780	5	010	21	6	16	010
507.4143	5	000	20	4	16	000	19	3	17	531.8812	5	000	16	8	8	000
507.7240	5	010	15	6	9	010	14	3	12	532,1763	5	000	24	20	4	000
507.8800	5	000	24	16	8	000	23	15	9	532.8719	5	010	25	16	10	010
508.8500	5	010	21	21	1	010	20	20	0	533.5340	50	000	25	18	8	000
509.6350	5	010	23	16	8	010	22	15	7	534.6568	5	010	23	21	3	010
509.7117	5	000	23	18	6	000	22	17	5	534.7214	30	000	20	3	17	000
510.0106	5	010	22	18	4	010	21	17	5	535.0140	5	000	20	4	17	000
510.2939	5	000	20	8	13	000	19	5	14	535.9487	5	000	21	4	17	000
510.5042	5	000	20	5	16	000	19	2	17	536.2065	5	000	24	21	3	000
510.9647	5	000	25	15	11	000	24	14	10	536.5986	15	010	16	7	9	010
510.9773	5	000	22	21	1	000	21	20	2	537.1587	5	010	23	22	2	010
511.3283	10	010	21	5	16	010	20	4	17	537.7745	5	000	21	5	17	000
512.5048	5	000	26	14	12	000	25	13	13	538.3957	5	000	26	17	9	000
513.4952	5	010	24	15	9	010	23	14	10	538.8453	5	010	23	23	1	010
513.8050	5	000	22	22	0	000	21	21	1	539.3156	5	000	25	19	7	000
514.0353	5	000	21	6	16	000	20	3	17	539.4033	5	010	24	19	5	010
514.8170	10	010	22	19	3	010	21	18	4	539.4608	5	000	24	22	2	000
515.1946	5	000	23	19	5	000	22	18	4	539.9588	5	000	22	6	17	000
515.2431	5	000	24	17	7	000	23	16	8	539.9919	5	010	25	17	9	010
515.7898	5	010	25	14	11	010	24	13	12	540.3556	20	010	16	6	10	010
515.8088	5	010	25	14	12	010	24	13	11	540.7890	5	010	17	8	10	010
516.0524	5	000	11	9	3	000	10	6	4	541.2254	5	010	22	7	16	010
516.4047	5	010	23	17	7	010	22	16	6	541.3658	5	010	18	8	11	010
516.5995	5	000	23	6	17	000	22	5	18	541.9406	5	000	24	23	1	000
516.9264	5	010	15	7	8	010	14	4	11	541.9894	5	000	23	8	16	000
516.9661	5	000	16	6	10	000	15	3	13	543.6446	50	000	24	24	0	000
517.6716	5	000	21	8	14	000	20	5	15	543.7025	5	010	24	20	4	010
518.4913	5	000	15	8	7	000	14	5	10	543.9723	5	010	22	5	17	010
518.7662	5	010	22	20	2	010	21	19	3	544.2836	5	000	25	20	6	000
518.9525	5	010	12	8	4	010	11	5	7	544.6579	5	000	23	7	17	000

*K*_c'' 9

J''

 K_a''

0 17

 K_a''

2

5

5

2

2

1

1

7

3

 K_c''

Table 2 (continued)

Table 2 (co	ontinu	ed)								_	Table 2 (co	ontinu	ed)					
Freq	$\mathrm{d}F$	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''		Freq	$\mathrm{d}F$	v'	J'	K'_a	K_c'	v''	J''
544.7431	15	010	20	8	13	010	19	5	14		577.6155	5	000	19	9	11	000	18
545.1481	5	000	26	18	8	000	25	17	9		577.8166	15	000	20	9	12	000	19
546.1039	5	010	25	18	8	010	24	17	7		577.9772	15	000	22	9	14	000	21
547.2017	5	010	24 25	21	5	010	23	20	4		570.0162	5	000	25	0	19	000	24
548.4805	5	000	23 24	6	18	000	24	20	19		581 5499	5	010	17	8	9	010	16
549.4524	5	010	21	8	14	010	20	5	15		582.3182	10	000	19	8	11	000	18
549.8411	5	000	14	9	6	000	13	6	7		583.8125	5	010	22	4	18	010	21
549.9181	5	010	24	22	2	010	23	21	3		584.2530	20	000	24	9	16	000	23
551.0708	5	000	26	19	7	000	25	18	8		584.4704	5	010	23	6	18	010	22
551.3772	5	010	25	19	7	010	24	18	6		584.9625	5	010	18	7	11	010	17
551.3946	15	000	14	9	5	000	13	6	8		585.7952	5	010	22	5	18	010	21
551.8529	5 5	010	24 25	23	1	010	23	22	2		586.3221	5 10	010	24	2	18	010	23
552 9941	30	010	23 24	22 24	4	010	24 23	21	5		587 0032	10	010	21	5 4	10	010	20
554.3892	10	010	21	4	17	010	20	3	18		587.3480	5	010	$\frac{21}{20}$	2	18	010	19
554.5201	5	010	15	8	7	010	14	5	10		587.3845	5	010	20	3	18	010	19
554.6226	5	000	25	23	3	000	24	22	2		587.4805	5	000	21	2	19	000	20
555.4313	5	000	17	6	11	000	16	3	14		587.4895	5	000	21	3	19	000	20
555.4748	5	010	24	6	18	010	23	5	19		588.3592	5	010	25	6	19	010	24
555.8337	5	010	25	20	6	010	24	19	5		589.6339	5	000	19	7	12	000	18
556.1853	5 20	000	26 25	20	6	000	25	19	7		590.2257	5	000	22	3	19	000	21
557 2807	20	010	25 10	24	17	010	24 18	23	18		590.5159	5	000	22	4	19	000	21
557 3666	20	010	20	3	17	010	19	2	18		591.2700	5	000	25	9	17	000	22
557.6425	10	010	20	5	17	010	20	2	18		591.8973	5	000	23	5	19	000	24
557.7811	30	000	25	25	1	000	24	24	0		592.3101	5	000	24	6	19	000	23
557.8636	5	010	22	6	17	010	21	3	18		592.9268	25	000	25	7	19	000	24
557.9191	5	010	20	4	17	010	19	1	18		594.9235	5	000	14	10	4	000	13
558.0556	5	000	26	7	19	000	25	6	20		597.2353	5	010	18	8	10	010	17
558.0861	15	000	18	7	11	000	17	4	14		597.8996	50	000	26	8	19	000	25
550 1112	5	000	24	8	17	000	23	5	18		598.2558	5	000	18	6	12	000	17
550 1850	5	010	1/	0	10	010	10	4	13		598.0121 601.0052	5	010	25 26	ð	18	010	24 25
559 2216	5	000	20	2	18	000	19	1	19		604 0920	5	000	20	8	12	000	19
559.2390	5	000	20	3	18	000	19	0	19		605.2575	5	010	24	5	19	010	23
559.5101	30	010	25	21	5	010	24	20	4		606.4222	5	000	15	10	6	000	14
560.5423	5	000	26	21	5	000	25	20	6		608.7731	5	000	26	6	20	000	25
560.7707	5	000	23	5	18	000	22	4	19		608.9218	5	000	19	9	10	000	18
562.4196	5	010	25	22	4	010	24	21	3		610.5207	5	010	25	7	19	010	24
562.7646	5	000	21	4	18	000	20	I	19		611.2513	5	010	24	6	19	010	23
563 3370	5	010	23 18	/ 8	1/	010	17	4	18		613 7802	10	010	23	4	19	010	22
563 8608	5	000	22	4	18	000	21	3	19		614 4326	5	010	17	9	9	010	16
564.1568	5	000	26	22	4	000	25	21	5		614.6262	5	010	19	7	12	010	18
564.5814	5	010	25	23	3	010	24	22	2		614.9386	5	010	19	8	11	010	18
564.9289	5	000	22	5	18	000	21	2	19		615.4540	15	000	16	7	10	000	15
565.9905	5	010	25	24	2	010	24	23	1		615.5883	15	000	22	2	20	000	21
566.1155	5	000	23	6	18	000	22	3	19		615.5943	15	000	22	3	20	000	21
566.6278	5	010	25	25	1	010	24	24	0		615.7020	5	010	22	3	19	010	21
567 0374	5 5	000	16 26	23	8	000	15	22	9 4		617 3413	5 10	000	25 21	2 2	20	000	24
567 4512	5	010	16	23	8	010	15	5	11		617 3610	5	010	21	3	19	010	20
567.9811	5	010	23	8	16	010	22	5	17		617.4093	5	000	16	10	7	000	15
568.4687	5	000	24	7	18	000	23	4	19		617.6018	5	000	23	3	20	000	22
569.2128	5	000	26	24	2	000	25	23	3		617.6533	30	000	23	4	20	000	22
570.6517	5	000	26	25	1	000	25	24	2		617.7603	5	000	26	7	20	000	25
571.3376	5	000	26	26	0	000	25	25	1		618.1623	5	000	16	10	6	000	15
572.6006	5	000	17	9	9	000	16	6	10		618.2764	5	000	24	4	20	000	23
575.2402	5	000	16	9	7	000	15	6 4	10		618.4064	5	000	25	6	20	000	24
576 0806	5 5	010	23 18	с 0	18 10	010	22 17	4	19		610 8122	10	010	10 22	0	12	010	1/ 22
577 3338	5	000	25	9 8	18	000	24	5	19		619.0132	5	010	$\frac{23}{22}$	9 9	14	010	21
577.6042	5	000	21	9	13	000	20	6	14		620.8173	5	010	21	9	13	010	20

Table 2 (continued)

Prog dF t' K' t'' T K'' K'' K'' K'' K'' K'' t'' T K'' K'' t'' K'' K'' t'' T K'' K'' t'' K'' K'' <thk''< th=""> K'' <thk''< th=""></thk''<></thk''<>	Table 2 (co	ontinı	ued)								Table 2 (contini	ued)				
c21.033 S 010 19 9 11 010 18 6 12 682.3375 S 000 18 11 7 000 621.333 S 010 20 9 12 010 19 6 13 682.3375 20 000 15 12 4 000 622.4588 20 000 25 9 17 010 24 6 18 684.3462 5 010 22 8 14 010 625.564 5 000 17 10 8 000 16 7 9 663.7877 5 000 12 18 10 00 635.104 10 10 25 10 12 10 663.7877 5 000 21 18 10 663.096 5 010 24 23 000 633.096 5 010 24 23 010 633.096 5	Freq	$\mathrm{d}F$	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''	Freq	dF	v'	J'	K'_a	K_c'	v''
c11.833 b10 24 9 16 010 23 6 17 682.8670 20 000 18 11 1 4 000 621.5131 50 010 25 9 11 000 12 10 010 25 000 12 14 000 625.3857 5 000 12 18 13 000 14 16 697.387 5 000 12 18 13 000 653.7857 5 000 12 18 13 000 14 42 697.387 5 000 14 10 010 20 11 10 000 13 000 011 13 000 010 24 42 100 10 11 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<	621.1035	5	010	19	9	11	010	18	6	12	682.337	5 5	000	18	11	8	000
621_513 5 010 20 9 12 010 9 6 13 683,1752 5 000 15 12 0 000 622_4888 20 000 22 9 17 010 24 6 18 684,5462 5 010 12 10 8 10 625,5684 5 000 17 10 8 000 16 7 9 697,9877 5 000 13 18 9 000 631,1064 10 10 25 10 10 25 10 18 9 010 17 7 10 687,3876 20 101 25 12 13 000 633,0206 5 010 18 10 8 000 17 7 11 689,8902 5 000 25 2 23 000 633,090 5 000 25 2 10 <td>621.3833</td> <td>15</td> <td>010</td> <td>24</td> <td>9</td> <td>16</td> <td>010</td> <td>23</td> <td>6</td> <td>17</td> <td>682.6870</td> <td>) 20</td> <td>000</td> <td>18</td> <td>11</td> <td>7</td> <td>000</td>	621.3833	15	010	24	9	16	010	23	6	17	682.6870) 20	000	18	11	7	000
back abox back abox <t< td=""><td>621.5131</td><td>5</td><td>010</td><td>20</td><td>9</td><td>12</td><td>010</td><td>19</td><td>6</td><td>13</td><td>683.1752</td><td>2 5</td><td>000</td><td>15</td><td>12</td><td>4</td><td>000</td></t<>	621.5131	5	010	20	9	12	010	19	6	13	683.1752	2 5	000	15	12	4	000
bar.sol bar.sol <t< td=""><td>622.4889</td><td>20</td><td>000</td><td>20</td><td>9</td><td>11</td><td>000</td><td>19</td><td>6</td><td>14</td><td>683.4020</td><td>) 5</td><td>000</td><td>22</td><td>10</td><td>12</td><td>000</td></t<>	622.4889	20	000	20	9	11	000	19	6	14	683.4020) 5	000	22	10	12	000
$\begin{array}{c} \hline 22, 324 \\ c = 5 \\ c = 0 \\ c =$	625.5684	15	010	23 20	9 7	17	010	24 19	0 4	16	690 730	2 5	000	22	0 8	14	010
$\begin{array}{c} 122 \\ 1295 \\ 123 $	627.5454	5	000	17	10	8	000	16	7	9	692.9982	2 5	000	19	11	9	000
634.1040 5 010 25 5 20 010 25 5 0 010 25 5 0 010 02 15 006 55 000 24 9 15 000 635.1785 5 010 18 10 9 000 17 7 10 698,3347 5 000 25 12 010 638,0366 5 010 25 6 20 010 23 21 698,3900 15 010 25 3 23 010 640,3580 5 010 24 4 20 010 23 21 700,4826 15 010 23 22 010 641,3580 100 12 0 000 12 0 23 101 14 010 043 23 010 23 10 10 10 010 10 010 14 10 010	629.1395	5	000	21	8	13	000	20	5	16	693.788	7 5	000	19	11	8	000
635.708 5 010 18 9 9 10 17 6 12 697.876 20 010 23 10 12 010 12 010 12 010 12 010 12 010 12 010 12 010 12 010 12 010 12 010 12 010 12 010 12 010 12 010 13 010 13 010 14 010 13 010 13 010 13 010 14 010 15 010 14 010 15 010 14 010 15 010 14 010 10 10 23 21 11 010 10	634.1406	5	010	25	5	20	010	24	4	21	695.7057	7 5	000	23	10	13	000
635.578 5 010 18 9 9 010 17 6 12 677.877 20 010 25 42 000 635.188 5 010 25 62 000 24 32 668.9900 15 010 25 22 000 638.0206 5 010 24 42 20 010 24 32 000 25 22 33 23 000 641.5650 10 010 24 5 20 010 23 21 700.8326 15 010 23 32 010 641.3633 5 000 26 6 21 000 11 9 3 0110 25 010 23 10 10 000 641.3633 5 010 24 21 000 23 2 27 702.9051 5 010 24 10 010 <th< td=""><td>635.1004</td><td>10</td><td>010</td><td>20</td><td>8</td><td>12</td><td>010</td><td>19</td><td>5</td><td>15</td><td>696.7069</td><td>) 5</td><td>000</td><td>24</td><td>9</td><td>15</td><td>000</td></th<>	635.1004	10	010	20	8	12	010	19	5	15	696.7069) 5	000	24	9	15	000
636.3188 5 000 18 10 9 000 17 7 10 698.3347 5 000 2 10 12 010 637.6324 000 12 60 10 21 000 18 0 18 000 18 21 000 689.9902 5 000 25 3 3 000 640.850 5 010 24 4 20 010 23 3 21 699.7537 5 010 22 101 15 010 641.3687 5 000 26 5 21 000 25 4 22 701.067 5 010 25 3 22 010 643.367 20 000 23 21 22 701.0635 5 010 20 10 010 010 644.312 000 23 1 22 701.0535 5 000 24	635.5758	5	010	18	9	9	010	17	6	12	697.5870	5 20	010	25	10	16	010
637.6234 20 000 21 9 12 000 20 6 15 000 15 010 21 010 025 22 000 638.006 5 010 24 42 010 23 21 698.9902 5 010 24 10 11 010 23 32 11 698.9902 5 010 24 10 13 010 641.3683 5 010 24 5 21 000 25 4 22 701.067 5 010 25 3 21 010 010 000 14 010 643.938 5 010 23 3 21 010 23 11 702.9051 5 010 23 10 10 000 11 12 703.9051 5 010 10 10 010 010 010 10 010 010 010 010 010 010	636.5188	5	000	18	10	9	000	17	7	10	698.3347	7 5	000	26	4	23	000
038.000 5 010 23 6 20 010 24 5 21 099.9902 5 000 25 2 23 23 000 640.8350 5 010 24 4 20 010 23 3 21 699.9902 5 010 23 3 21 699.7937 5 010 23 3 21 010 23 10 13 010 643.0333 5 000 25 4 22 701.037 5 010 25 4 22 101 643.393 5 010 23 1 10 000 11 10<	637.6324	20	000	21	9	12	000	20	6	15	698.5900	5 15	010	21	10	12	010
053-590 15 010 14 4 20 010 23 21 609,7337 5 010 24 10 15 010 641.5569 10 010 24 5 010 23 22 1700,8826 15 010 24 10 15 010 643.3678 5 000 12 12 0 000 11 9 3 701,1067 5 010 23 12 20 100 10 000 22 701,1057 5 010 23 12 20 10 10 000 24 12 701,1255 5 010 24 22 10 12 10 10 000 41 10 000 44 10 044 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td>638.0206</td> <td>) 15</td> <td>010</td> <td>25</td> <td>6 10</td> <td>20</td> <td>010</td> <td>24 17</td> <td>3</td> <td>21</td> <td>698.990</td> <td>2 5</td> <td>000</td> <td>25</td> <td>2</td> <td>23</td> <td>000</td>	638.0206) 15	010	25	6 10	20	010	24 17	3	21	698.990	2 5	000	25	2	23	000
Generation Generation <thgeneration< th=""> Generation Generati</thgeneration<>	640 8350	15	010	18 24	10	20	010	23	3	21	698.990	2 3	010	25 24	5 10	23 15	010
	641 5569	10	010	24	- - -	20	010	23	2	21	700 8820	5 15	010	24	10	13	010
	643.0628	5	000	26	5	21	000	25	4	22	701.0932	2 5	010	25	3	22	010
	643.0933	5	000	12	12	0	000	11	9	3	701.106	7 5	010	23	10	14	010
643.312 5 000 10 10 000 18 7 11 702.2051 5 010 20 10 10 10 010 644.312 5 010 23 4 20 010 22 1 21 702.9051 5 010 20 11 9 000 644.7533 5 000 24 3 21 000 23 12 704.4880 5 000 24 3 22 709.3732 5 010 24 3 22 709.3732 5 010 21 1 010 18 2 16 000 647.2038 5 010 22 2 00 010 18 2 16 000 00 11 10 00 11 10 00 11 10 010 18 2 11 11 10 00 11 10 010 11 11 10 00 11 10 11 10 00 11 11 <td< td=""><td>643.5479</td><td>20</td><td>000</td><td>23</td><td>3</td><td>21</td><td>000</td><td>22</td><td>0</td><td>22</td><td>701.125</td><td>5 5</td><td>010</td><td>25</td><td>4</td><td>22</td><td>010</td></td<>	643.5479	20	000	23	3	21	000	22	0	22	701.125	5 5	010	25	4	22	010
	643.9389	5	000	19	10	10	000	18	7	11	702.820	5 5	000	20	11	10	000
$\begin{array}{c} 644.388 \\ 644.7388 \\ 5 \\ 000 \\ 24 \\ 4 \\ 21 \\ 000 \\ 24 \\ 4 \\ 21 \\ 000 \\ 23 \\ 21 \\ 21 \\ 000 \\ 23 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21$	644.3112	5	000	26	6	21	000	25	3	22	702.905	5	010	20	10	10	010
	644.5523	5	010	23	4	20	010	22	1	21	703.0830	5 5	000	19	8	12	000
	644.7388	5	000	24	3	21	000	23	2	22	704.4880) 5	000	20	11	9	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	644.7654	5	000	24	4	21	000	23	1	22	706.5398	3 5	010	24	3	22	010
	644.9108	2	000	25	4	21	000	24	3	22	/09.2/32	2 3	000	24	10	14	000
$ \begin{array}{c} 47,214 & 10 & 010 & 22 & 3 & 20 & 010 & 21 & 0 & 21 & 711 & 111 & 100 & 00 & 011 & 11 & 10 & 000 \\ 647,214 & 5 & 010 & 19 & 9 & 10 & 010 & 18 & 6 & 13 & 714,8327 & 20 & 000 & 21 & 11 & 10 & 000 \\ 648,4939 & 15 & 010 & 20 & 7 & 13 & 010 & 19 & 4 & 16 & 718,8370 & 5 & 000 & 22 & 11 & 12 & 000 \\ 649,413 & 0 & 000 & 26 & 10 & 17 & 000 & 25 & 7 & 18 & 724,4107 & 5 & 010 & 22 & 10 & 12 & 010 \\ 650,5733 & 5 & 000 & 25 & 10 & 16 & 000 & 24 & 7 & 17 & 724,4107 & 5 & 010 & 22 & 10 & 15 & 010 \\ 650,5733 & 5 & 000 & 24 & 10 & 15 & 000 & 23 & 7 & 16 & 727,1957 & 5 & 010 & 15 & 1 & 15 & 000 \\ 653,560 & 5 & 000 & 24 & 10 & 15 & 000 & 23 & 7 & 16 & 727,1957 & 5 & 010 & 24 & 8 & 16 & 000 \\ 653,660 & 5 & 000 & 21 & 10 & 12 & 000 & 22 & 7 & 13 & 727,6894 & 5 & 010 & 24 & 8 & 16 & 000 \\ 653,660 & 5 & 000 & 21 & 10 & 12 & 000 & 21 & 7 & 14 & 728,3178 & 20 & 000 & 26 & 11 & 16 & 000 \\ 654,7638 & 5 & 000 & 22 & 9 & 13 & 000 & 21 & 6 & 16 & 729,0018 & 20 & 000 & 26 & 11 & 16 & 000 \\ 654,7638 & 5 & 000 & 22 & 9 & 13 & 000 & 21 & 5 & 17 & 733,1308 & 5 & 010 & 12 & 7 & 15 & 010 \\ 657,9268 & 15 & 000 & 13 & 12 & 2 & 000 & 12 & 9 & 3 & 729,1360 & 5 & 010 & 22 & 71 & 51 & 010 \\ 667,9268 & 5 & 010 & 22 & 8 & 14 & 000 & 21 & 5 & 17 & 733,1308 & 5 & 000 & 23 & 11 & 12 & 000 \\ 669,9858 & 5 & 010 & 25 & 4 & 21 & 010 & 24 & 2 & 22 & 738,4286 & 5 & 010 & 18 & 3 & 15 & 000 \\ 669,9856 & 5 & 010 & 25 & 4 & 21 & 010 & 24 & 2 & 22 & 744,6898 & 5 & 000 & 23 & 11 & 12 & 000 \\ 671,0305 & 15 & 000 & 17 & 11 & 7 & 000 & 16 & 8 & 8 & 751,6537 & 5 & 000 & 24 & 10 & 14 & 010 \\ 671,0305 & 15 & 000 & 25 & 3 & 22 & 000 & 24 & 2 & 23 & 756,5789 & 5 & 010 & 14 & 0 & 14 & 000 \\ 671,28987 & 5 & 010 & 24 & 4 & 21 & 010 & 23 & 12 & 27 & 766,9789 & 5 & 010 & 15 & 1 & 14 & 000 \\ 672,8987 & 5 & 010 & 24 & 3 & 21 & 010 & 23 & 2 & 22 & 766,9789 & 5 & 010 & 15 & 1 & 14 & 000 \\ 672,8987 & 5 & 010 & 24 & 3 & 21 & 010 & 23 & 2 & 22 & 766,9789 & 5 & 010 & 15 & 2 & 14 & 000 \\ 673,897 & 5 & 010 & 24 & 3 & 21 & 010 & 23 & 2 & 22 & 7766,978 & 5 & 010 & 15 & 2 & 14 & 000 \\ 67$	647 2038	5	010	23	2	21	010	24	2	22	709.8002	2 20 7 10	010	18	2	15	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	647 2144	10	010	22	2	20	010	21	0	21	711 5466	5 5	000	21	11	11	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	647.4748	5	010	19	9	10	010	18	6	13	714.832	7 20	000	21	11	10	000
	648.4939	15	010	20	7	13	010	19	4	16	718.8390) 5	000	22	11	12	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	649.4134	20	000	20	10	11	000	19	7	12	724.344	5	000	23	11	13	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	650.1071	5	000	26	10	17	000	25	7	18	724.4107	75	010	22	10	12	010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	650.5590	5	000	25	10	16	000	24	7	17	724.4755	5 5	000	25	10	15	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	650.5733	5	000	19	10	9	000	18	7	12	724.9137	7 20	000	22	11	11	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	651.9650	5	000	24	10	15	000	23	7	16	727.1957	7 5	010	15	1	15	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	652.6960	5	000	21	10	12	000	20	7	13	727.6894	+ 5 7 10	000	24	8	16	000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	652 8600	10	000	23	10	14	000	22	7	13	728 2179	2 20	000	24	11	14	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	654 7638	5	000	22	10	13	000	21	6	14	728.5170	$\frac{5}{20}$	000	20 25	11	15	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	656 6152	20	000	13	12	2	000	12	9	3	729.136) 20	010	22	7	15	010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	657.9082	15	000	22	8	14	000	21	5	17	733.1308	3 5	000	19	12	8	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	659.2685	15	000	16	11	5	000	15	8	8	734.1768	3 5	010	16	2	15	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	661.1583	5	000	20	10	10	000	19	7	13	734.8885	5 5	000	23	11	12	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	667.0006	5	010	17	1	17	000	18	2	16	735.9328	3 20	010	23	10	13	010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	668.6138	5	010	25	4	21	010	24	3	22	738.4280	5 5	010	18	3	15	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	669.0586	5	010	25	5	21	010	24	2	22	741.6898	3 5	000	26	10	16	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	669.5461	5	010	17	10	8	010	16	7	9	744.9600	5 20	000	24	11	13	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	609.9855	10	000	14	12	2	000	15	9	о 0	/48.3//0)) 7 5	010	24	10	14	010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671.0505	15	000	26	11	22	000	10 25	03	23	755 3784	5 5	000	20 25	11	17	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671 3286	5	000	26	5	22	000	25	2	23	755 660) 5	000	21	12	10	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671.6529	5	000	25	3	22	000	24	2	23	756.9789) 5	010	14	0	14	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671.6664	5	000	25	4	22	000	24	1	23	760.9579) 5	010	15	1	14	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671.9995	5	000	21	10	11	000	20	7	14	763.7663	3 5	010	16	2	14	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	672.8987	5	010	24	3	21	010	23	2	22	763.9925	5 5	010	15	2	14	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	672.9619	15	010	24	4	21	010	23	1	22	766.0183	3 5	000	22	12	11	000
6/4.3129 10 000 23 9 14 000 22 6 17 766.7791 5 000 22 12 10 000 675.3622 5 010 18 1 17 000 19 4 16 770.9549 5 010 23 11 13 010 675.8971 15 010 18 2 17 000 19 3 16 775.5782 5 000 23 12 12 000 676.9356 10 010 23 2 21 010 22 1 22 777.1063 10 000 23 12 11 000 676.9416 10 010 23 3 21 010 22 0 22 778.5426 20 010 25 11 15 010 681.7026 15 010 18 10 8 010 17 7 11 779.4012 20 010 25 8 18 000 <td>674.3105</td> <td>15</td> <td>010</td> <td>21</td> <td>9</td> <td>12</td> <td>010</td> <td>20</td> <td>6</td> <td>15</td> <td>766.4323</td> <td>3 5</td> <td>000</td> <td>26</td> <td>11</td> <td>15</td> <td>000</td>	674.3105	15	010	21	9	12	010	20	6	15	766.4323	3 5	000	26	11	15	000
6/5.3622 5 010 18 1 17 000 19 4 16 7/0.9549 5 010 23 11 13 010 675.8971 15 010 18 2 17 000 19 3 16 775.5782 5 000 23 12 12 000 676.9356 10 010 23 2 21 010 22 1 22 777.1063 10 000 23 12 11 000 676.9416 10 010 23 3 21 010 22 0 22 778.5426 20 010 25 11 15 010 681.7026 15 010 18 10 8 010 17 7 11 779.4012 20 010 25 8 18 000	674.3129	10	000	23	9	14	000	22	6	17	766.779	ı 5	000	22	12	10	000
676.9356 10 010 23 2 21 010 22 1 22 777.1063 10 000 23 12 12 10 000 676.9356 10 010 23 2 21 010 22 1 22 777.1063 10 000 23 12 11 000 676.9416 10 010 23 3 21 010 22 0 22 778.5426 20 010 25 11 15 010 681.7026 15 010 18 10 8 010 17 7 11 779.4012 20 010 25 8 18 000	675 8071	5	010	18	1	17	000	19	4	16	770.9549	1 5 5 5	010	23	11	13	010
676.9416 10 010 23 3 21 010 22 0 22 778.5426 20 010 25 11 10 000 676.9416 10 010 23 3 21 010 22 0 22 778.5426 20 010 25 11 15 010 681.7026 15 010 18 10 8 010 17 7 11 779.4012 20 010 25 8 18 000	0/3.89/1	15	010	18	2	1/ 21	010	19	5 1	10	//3.3/84 777 104	2 D 2 10	000	23 22	12	12	000
681.7026 15 010 18 10 8 010 17 7 11 779.4012 20 010 25 8 18 000	676 9416	10	010	23 23	∠ 3	21	010	22	0	22	778 5424	5 20	010	25 25	12	15	010
	681.7026	15	010	18	10	8	010	17	7	11	779.4012	2 20	010	25	8	18	000

 K_c''

J''

 K_a''

Table 2 (continued)

		,							
Freq	dF	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''
780.6380	10	000	20	13	7	000	19	10	10
784.1350	5	000	24	12	13	000	23	9	14
787.7192	5	010	23	7	17	000	24	8	16
787.8624	5	010	13	1	13	000	14	2	12
788.3275	15	010	24	11	13	010	23	8	16
789.2260	5	010	15	2	13	000	16	5	12
789.2617	5	010	14	1	13	000	15	4	12
791.4149	5	000	25	12	14	000	24	9	15
791.9905	15	010	21	6	16	000	22	7	15
792.7095	5	000	21	13	9	000	20	10	10
793.0521	5	010	25	9	17	000	26	10	16
794.4739	5	010	14	2	13	000	15	3	12
794.7666	5	010	19	5	15	000	20	6	14
795.7730	5	010	25	10	16	000	26	11	15
796.6370	5	000	25	12	13	000	24	9	16
797.8237	5	010	15	3	12	000	16	6	11
799.4821	5	010	17	4	14	000	18	5	13
804.4594	5	000	22	13	9	000	21	10	12
806.0220	5	000	26	12	14	000	25	9	17
806.5416	20	010	24	10	15	000	25	11	14
807.0953	20	010	24	10	14	000	25	11	15
808.4876	20	010	24	11	13	000	25	12	14
809.0231	15	010	25	14	12	000	26	15	11
809.2008	5	010	15	3	13	000	16	4	12
809.4638	5	010	22	7	16	000	23	8	15
809.6116	5	010	24	9	15	000	25	10	16
811.4502	20	010	24	12	12	000	25	13	13
811.5/50	20	010	23	8	10	000	24	9	15
812.1/18	5	010	14	3	11	000	15	6	10
812.0155	5	000	20	0	18	000	25	5	21
015.4502 014 1001	20	010	14	15	12	000	15	16	10
814.1891	20	010	23	13	11	000	20	10	10
815.0021 816.1085	10	010	23	15	11	000	24	10	14
817 3605	10	010	23	10	14	000	24	10	14
817.5095	10	010	23	10	14	000	24	11	17
818 7735	30	010	23	9	14	000	24	10	15
819 3456	10	010	23	11	13	000	24	12	12
819 3650	10	010	23	11	12	000	24	12	13
819 7246	10	010	25	16	10	000	26	17	9
820.0496	10	010	24	14	10	000	25	15	11
821.2376	10	000	17	16	2	000	16	13	3
822.4541	20	010	23	12	12	000	24	13	11
824.8216	10	010	14	1	14	000	14	4	11
825.1064	10	000	21	14	8	000	20	11	9
825.1491	30	010	24	8	16	000	25	9	17
825.2524	10	010	24	15	9	000	25	16	10
825.6991	10	010	25	17	9	000	26	18	8
826.4676	10	010	23	13	11	000	24	14	10
827.3107	10	010	22	9	14	000	23	10	13
828.3311	15	010	21	7	15	000	22	8	14
828.3985	5	010	22	10	12	000	23	11	13
828.6305	5	010	22	9	13	000	23	10	14
829.2784	15	010	23	8	15	000	24	9	16
830.3604	10	010	22	11	12	000	23	12	11
830.3661	10	010	22	11	11	000	23	12	12
830.8550	10	010	24	16	8	000	25	17	9
831.1691	10	010	23	14	10	000	24	15	9
831.8461	5	010	16	4	13	000	17	5	12
833.5610	5	010	22	12	10	000	23	13	11
835.4246	10	010	22	8	14	000	23	9	15
836.4052	10	010	23	15	9	000	24	16	8
837.4672	10	010	21	8	14	000	22	9	13
837.6347	10	010	22	13	9	000	23	14	10

Table 2 (continued)

Freq	dF	v'	J'	K'_a	K_c'	v''	J''	K_a''	K_c''
838.3492	10	010	21	9	13	000	22	10	12
839.2943	10	010	21	10	12	000	22	11	11
839.3462	10	010	21	10	11	000	22	11	12
841.4922	15	010	21	11	11	000	22	12	10
842.1497	15	010	19	6	14	000	20	7	13
842.3842	15	010	22	14	8	000	23	15	9
844.7790	15	010	21	12	10	000	22	13	9
848.9082	15	010	21	13	9	000	22	14	8
850.4305	20	010	20	10	11	000	21	11	10
850.4547	10	010	20	10	10	000	21	11	11
852.7412	20	010	20	11	9	000	21	12	10
856.1019	20	010	20	12	8	000	21	13	9
860.5760	20	010	19	9	11	000	20	10	10

Notations. Freq, wavenumber (cm⁻¹); dF, uncertinty of wavenumber (10⁻⁴ cm⁻¹); v', J', K'_a , K'_c , upper vibration and rotation numbers; v'', J'', K''_a , K''_c , lower vibration and rotation numbers.

Fig. 1 shows an overview of the emission spectrum recorded at 1950 K and with a D_2O pressure of 1 mbar. In Fig. 2 we provide a zoom-in of the spectrum near 476.5 cm⁻¹ recorded at the same temperature but at 16 mbar pressure. In Table 2 we give a list of new line positions for $D_2^{16}O$ (for transitions which have not been observed in previously reported room-temperature spectra) together with their vibrational and rotational assignments. The second column gives estimations (in 10^{-4} cm⁻¹) of the absolute uncertainties of the experimental line positions.

3. Data reduction: energy levels and Hamiltonian parameters for (000) and (010) states

To assure consistency of the energy level determinations from various sources of experimental line positions [1-22] we have applied the RITZ program [53] in a similar way as in our recent studies on H₂¹⁶O spectra [40,48]. This program uses the Ritz combination principle to recover all possible energy levels by simultaneous processing of all line positions available from literature. The procedure generates a set of energy levels and calibration factors. The transition wavenumbers generated using these energy levels are optimized in a least squares procedure sense to reproduce all transition wavenumbers considered in a the best possible way. In cases where a level is involved in many observed transitions the program provides an averaged energy level value eliminating in this way to a certain extent contributions of line shifts. This method of energy level determination from transition wavenumbers gives more reliable experimental estimates than a classical combination difference approach.

A total of 5330 observed transitions including those of [5,9-15,17,18,20] were simultaneously used to obtain a new set of rotational energies for (000) and (010)

Table 3 Experimental and calculated rotational levels of the (000) and (010) states of the $D_2^{16}O$ molecule

J	Ka	K _c	$(000) E_{obs}$ (cm ⁻¹)	$dE \ 10^{-5}$ (cm ⁻¹)	E_{calc} (cm ⁻¹)	Obs – Calc $10^{-3} (cm^{-1})$	$(0\ 1\ 0)\ E_{obs}$ (cm^{-1})	$dE \ 10^{-5}$ (cm ⁻¹)	E_{calc} (cm ⁻¹)	Obs – Calc 10^{-3} (cm ⁻¹)
0	0	0					1178.37926	16	1178.3791	0.15
1	0	1	12.11702	13	12.1171	-0.08	1190.50601	15	1190.5061	-0.14
1	1	1	20 25917	14	20 2590	0.20	1199 79321	15	1199 7933	-0.11
1	1	0	22.68428	14	22.6843	-0.06	1202.33806	13	1202.3382	-0.10
2	0	2	35 87817	12	35 8787	-0.07	1214 20745	13	1214 2074	0.04
2	1	2	42.06021	12	12 0604	-0.07	1214.29743	13	1214.2974	0.04
2	1	2	42.00951	11	42.0094	-0.08	1221.30313	12	1221.3034	-0.21
2	2	1	49.33938	12	49.5590	-0.03	1229.13302	15	1229.1334	0.27
2	2	1	/3.6/630	11	/3.0/03	-0.02	1256.85455	12	1256.8547	-0.19
2	2	0	/4.14216	12	/4.1420	0.21	1257.30951	13	1257.3095	0.01
3	0	3	70.44751	10	70.4479	-0.37	1248.92339	11	1248.9236	-0.21
3	1	3	74.50653	10	74.5065	0.08	1253.79933	11	1253.7995	-0.12
3	1	2	88.97136	10	88.9718	-0.43	1268.98396	11	1268.9838	0.14
3	2	2	110.03426	10	110.0342	0.11	1293.24917	11	1293.2489	0.30
3	2	1	112.25150	10	112.2517	-0.23	1295.42649	11	1295.4264	0.07
3	3	1	156.60567	10	156.6053	0.33	1345.58514	11	1345.5852	-0.09
3	3	0	156.66295	10	156.6627	0.20	1345.63694	11	1345.6374	-0.41
4	0	4	114.98679	9	114.9870	-0.19	1293.51282	10	1293.5131	-0.24
4	1	4	117.31217	9	117.3124	-0.24	1296.41717	9	1296.4176	-0.39
4	1	3	141.08723	9	141.0876	-0.35	1321.41375	10	1321.4134	0.39
4	2	3	158.11105	9	158.1113	-0.24	1341.38197	9	1341.3819	0.07
4	2	2	164.17804	9	164.1782	-0.12	1347.39375	10	1347.3930	0.76
4	3	2	205.88626	9	205.8863	-0.08	1394.91445	9	1394.9147	-0.21
4	3	1	206.27687	9	206.2766	0.27	1395.27012	10	1395.2699	0.25
4	4	1	269.37543	9	269.3752	0.24	1466.15414	10	1466.1548	-0.64
4	4	0	269.38136	9	269.3811	0.27	1466.15939	10	1466.1598	-0.39
5	0	5	169.03857	8	169.0390	-0.48	1347.54087	9	1347.5414	-0.58
5	1	5	170.24343	9	170.2435	-0.03	1349.10938	9	1349.1097	-0.33
5	1	4	204.93774	8	204.9383	-0.60	1385.70087	9	1385.7007	0.14
5	2	4	217.58588	9	217.5859	-0.05	1400.93718	9	1400.9368	0.39
5	2	3	229.99222	8	229.9926	-0.39	1413.35670	9	1413.3560	0.66
5	3	3	267.53083	9	267.5307	0.12	1456.63152	9	1456.6311	0.43
5	3	2	269.01029	8	269.0104	-0.10	1457.98597	9	1457.9856	0.34
5	4	2	331.07224	9	331.0719	0.35	1527.91706	9	1527.9173	-0.19
5	4	1	331.12365	8	331.1236	0.04	1527.96076	9	1527.9611	-0.33
5	5	1	411.54191	9	411.5416	0.30	1617.84341	10	1617.8438	-0.34
5	5	0	411.54224	9	411.5422	0.07	1617.84339	11	1617.8442	-0.80
6	0	6	232 52219	8	232 5223	-0.12	1410 87814	9	1410 8786	-0.47
6	1	6	233 10585	7	233 1063	-0.43	1411 67092	9	1411 6715	-0.57
6	1	5	279 56517	8	279 5655	-0.29	1460 90345	9	1460 9031	0.36
6	2	5	288 09405	7	288 0943	-0.25	1471 55201	8	1471 5520	0.04
6	2	4	309 26555	8	309 2659	-0.35	1492 95132	9	1492 9504	0.90
6	3	4	341 38880	7	341 3891	-0.31	1530 60166	8	1530 6014	0.31
6	3	3	345 44712	8	345 4472	-0.08	1534 35580	9	1534 3550	0.79
6	4	3	405 28348	8	405 2835	-0.03	1602 20239	8	1602 2026	-0.18
6	4	2	405.53200	8	405.5319	0.13	1602.41382	9	1602.4136	0.18
6	5	2	485 59391	7	485 5940	-0.10	1691 99660	9	1691 9971	-0.54
6	5	1	485 59996	8	485 5999	0.02	1692.00180	9	1692.0018	-0.04
6	6	1	582 40870	9	582,4088	-0.05	1799 65532	11	1799 6553	0.05
6	6	0	582.40899	9	582.4088	0.19	1799.65542	10	1799.6553	0.11
7	0	7	305 49517	7	305 4955	-0.35	1483 57119	8	1483 5722	-0.99
7	1	7	305 76735	8	305 7674	-0.01	1483 95665	8	1483 9570	-0.31
7	1	6	364 04680	7	364 0475	-0.66	1546 05484	8	1546 0549	-0.11
7	2	6	369 26667	, 8	369 2666	0.02	1552 85445	8	1552 8540	0.44
7	2	5	401 26233	7	401 2631	-0.77	1585 48206	8	1585 4816	0.47
7	2	5	427 10005	, 7	407.1001	-0.04	1616 58162	8	1616 5810	0.61
7	3	4	436 06027	, 7	436 0607	-0.43	1624 90217	8	1624 9015	0.68
7	4	4	492 02192	, 8	492 0218	0.10	1689 02999	8	1689 0297	0.33
7	4	3	492 88031	7	492.8216	-0.28	1689 76319	8	1689 7631	0.08

Table 3 (continued)

		,								
J	K_a	K_c	$(000) E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc	$(0\ 1\ 0)\ E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc
			(cm^{-1})	(cm^{-1})	(cm^{-1})	$10^{-3} (\text{cm}^{-1})$	(cm^{-1})	(cm^{-1})	(cm^{-1})	$10^{-3} (cm^{-1})$
7	5	2	572 120/4	0	572 1205	0.10	1770 (2752	0	1770 (275	0.04
/	5	3	5/2.13064	8	5/2.1305	0.18	1//8.63/52	9	1//8.63/5	0.04
7	5	2	572.16462	8	572.1646	-0.01	1778.66442	9	1778.6646	-0.19
7	6	2	668.85191	8	668.8517	0.24	1886.24691	10	1886.2467	0.18
7	6	1	668.85202	9	668.8523	-0.28	1886.24695	10	1886.2472	-0.24
7	7	1	781 17224	9	781 1723	-0.03	2010 48542	11	2010 4851	0.35
7	7	0	701.17224	15	701.1723	0.03	2010.40542	22	2010.4051	0.35
/	/	0	/81.1/184	15	/81.1/25	-0.43	2010.48542	22	2010.4851	0.55
Q	0	0	288 01000	7	288 0102	0.08	1565 68802	0	1565 6802	0.26
0	0	0	366.01909	7	300.0192	-0.08	1505.08895	9	1505.0895	-0.50
8	1	8	388.14219	/	388.1426	-0.44	1565.8/089	8	1565.8/15	-0.58
8	1	7	457.82338	7	457.8235	-0.17	1640.48544	8	1640.4855	-0.02
8	2	7	460.76552	7	460.7660	-0.50	1644.49427	7	1644.4944	-0.16
8	2	6	505 04912	7	505 0494	-0.28	1690 05011	8	1690 0496	0.52
õ	3	6	524 60880	7	524 6001	-0.35	1714 23377	7	1714 2337	0.12
0	2	5	540.00100	7	540.0091	-0.35	1714.23377	/ 0	1714.2337	0.12
8	3	2	540.88196	/	540.8820	-0.08	1/29.//8/5	8	1/29.//80	0.72
8	4	5	591.21838	7	591.2186	-0.19	1788.34653	8	1788.3463	0.19
8	4	4	593.58707	7	593.5870	0.10	1790.38675	8	1790.3865	0.25
8	5	4	671.19510	7	671.1952	-0.10	1877.80554	9	1877.8058	-0.27
8	5	3	671 33580	7	671 3357	0.10	1877 91770	8	1877 9176	0.06
0	6	2	767 71666	0	767 7167	0.00	1085 26270	11	1085 2627	0.12
0	0	3	/0/./1000	9	/0/./10/	-0.09	1985.20579	11	1985.2057	0.15
8	6	2	767.72095	8	767.7209	0.01	1985.26629	9	1985.2668	-0.49
8	7	2	880.05462	10	880.0549	-0.32	2109.57362	17	2109.5737	-0.12
8	7	1	880.05509	9	880.0550	0.09	2109.57418	9	2109.5738	0.40
8	8	1	1006 96180	18	1006 9624	-0.61	2249 18108	22	2249 1806	0.45
ç	0	0	1006.06212	10	1006.0624	0.28	2240 18108	11	2240 1806	0.15
0	0	0	1000.90215	9	1000.9024	-0.28	2249.10100	11	2249.1800	0.45
9	0	9	480 12516	7	480 1254	_0.22	1657 27075	8	1657 2713	-0.53
<i>,</i>	1	,	400.12510	7	400.1207	0.22	1657.25622	0	1657.2715	0.55
9	1	9	480.18066	/	480.1807	0.00	1657.35632	8	165/.3563	-0.01
9	1	8	560.75416	6	560.7547	-0.53	1743.95377	7	1743.9541	-0.36
9	2	8	562.31721	7	562.3173	-0.09	1746.17983	8	1746.1798	0.05
9	2	7	619.56166	6	619.5621	-0.40	1805.60935	7	1805.6094	-0.04
<u>o</u>	3	7	633 21678	7	633 2167	0.03	1823 16531	7	1823 1649	0.41
0	2	6	650,41720	í í	(50 417(0.05	1025.10551	7	1025.1045	0.41
9	3	0	039.41/39	0	039.41/0	-0.22	1848.01302	/	1848.0154	0.26
9	4	6	702.70246	7	702.7023	0.14	1900.00523	8	1900.0049	0.32
9	4	5	708.17007	7	708.1703	-0.24	1904.77966	8	1904.7796	0.03
9	5	5	782.80877	7	782.8089	-0.09	1989.52431	8	1989.5242	0.15
9	5	4	783 26872	7	783 2687	0.00	1989 89143	8	1989 8916	-0.18
0	6	4	970 02920	7	870.0201	0.17	2006 72250	0	2006 7226	0.10
9	0	4	079.02029	/	879.0281	0.17	2090.72559	0	2090.7250	0.04
9	6	3	8/9.04//9	8	879.0479	-0.14	2096.73821	9	2096.7384	-0.15
9	7	3	991.29686	8	991.2967	0.14	2221.02604	9	2221.0258	0.22
9	7	2	991.29700	9	991.2972	-0.20	2221.02604	12	2221.0262	-0.12
9	8	2	1118 33630	9	1118 3365	-0.16	2360 82685	10	2360 8267	0.12
ó	0	1	1110.33636	14	1110.3365	0.04	2260.02605	20	2260.0267	0.12
9	0	1	1116.55045	14	1118.3303	-0.04	2500.82085	20	2500.8207	0.12
9	9	1	1258.86984	11	1258.8701	-0.29	2514.57777	11	2514.5776	0.22
9	9	0	1258.86984	22	1258.8701	-0.29	2514.57777	22	2514.5776	0.22
10	0	10	501 00 405	-	501 0005	0.25	1550 22401	0	1550 2240	0.00
10	0	10	581.82405	7	581.8237	0.37	1758.33491	8	1758.3348	0.09
10	1	10	581.84840	8	581.8483	0.15	1758.37419	9	1758.3743	-0.07
10	1	9	672.92043	7	672.9204	0.01	1856.50043	8	1856.5004	0.05
10	2	9	673 71741	7	673 7177	-0.25	1857 68613	8	1857 6861	-0.01
10	2	0	742 90220	7	742 9024	0.23	1021 11100	0	1021 1120	0.01
10	2	8	743.80339	/	745.8034	-0.03	1931.11188	8	1931.1120	-0.14
10	3	8	752.61068	7	/52.6109	-0.18	1942.96193	7	1942.9620	-0.02
10	3	7	790.82064	7	790.8204	0.21	1980.64630	8	1980.6461	0.17
10	4	7	826.19624	7	826.1963	-0.10	2023.75526	7	2023.7554	-0.12
10	4	6	837 05115	7	837 0509	0.24	2033 41471	8	2033 4147	0.03
10	-	6	006.04462	7	006 0449	0.24	2033.414/1	0	2033.4147	0.05
10	5	0	900.94403	/	900.9448	-0.20	2115.//301	0	2113.//32	-0.10
10	5	5	908.21138	1	908.2111	0.24	2114.79360	8	2114.7935	0.08
10	6	5	1002.80642	8	1002.8063	0.13	2220.64081	9	2220.6408	0.00
10	6	4	1002.88069	7	1002.8805	0.19	2220.69643	8	2220.6963	0.10
10	7	4	1114 89534	11	1114 8954	-0.02	2344 83191	10	2344 8317	0.23
10	, 7	2	111/ 20700	0	111/ 2070	_0.01	23// 82220	0	2211.0217	_0.00
10	/	3	1114.09/09	0	1114.89/9	-0.01	2344.83339	0	2344.8333	-0.09
10	8	3	1242.00613	14	1242.0061	0.03	2484.77284	19	2484.7729	-0.07
10	8	2	1242.00602	9	1242.0061	-0.13	2484.77313	9	2484.7729	0.19
10	9	2	1382.78773	18	1382.7877	0.05	2638.84027	28	2638.8404	-0.18
10	9	1	1382.78756	11	1382.7877	-0.12	2638.84027	14	2638.8404	-0.18

Table 3 (continued)

	. (
J	Ka	K_c	$(000) E_{obs}$ (cm ⁻¹)	$dE \ 10^{-5}$	E_{calc}	Obs – Calc 10^{-3} (cm ⁻¹)	$(0\ 1\ 0)\ E_{obs}$ (cm ⁻¹)	$dE \ 10^{-5}$	E_{calc} (cm ⁻¹)	Obs – Calc 10^{-3} (cm ⁻¹)
			(em)	(em)	(em)	10 (em)	(em)	(em)	(em)	10 (cm)
10	10	1	1535.96791	28	1535.9679	0.01	2805.52534	36	2805.5254	-0.03
10	10	0	1535.96791	14	1535.9679	0.01	2805.52534	18	2805.5254	-0.03
11	0	11	693 11027	9	693 1101	0.13	1868 88089	9	1868 8808	0.09
11	1	11	603 12106	8	603 1210	0.02	1868 80030	0	1868 8001	0.09
11	1	10	704 42286	3	704 4220	0.02	1078 24102	8	1078 2412	0.34
11	1	10	794.45200	7	794.4550	-0.12	1970.24102	0	1970.2415	-0.55
11	2	10	/94.82934	7	/94.8294	0.16	19/8.83000	8	19/8.8303	0.08
11	2	9	8//.11593	/	8/7.1159	0.05	2065.75724	9	2065.7577	-0.4/
11	3	9	882.41148	/	882.4114	0.10	20/3.23206	8	20/3.2319	0.16
11	3	8	934.05177	7	934.0517	0.02	2124.88027	8	2124.8806	-0.33
11	4	8	961.33843	7	961.3383	0.17	2159.25892	8	2159.2589	0.02
11	4	7	980.25714	7	980.2570	0.18	2176.47233	8	2176.4728	-0.44
11	5	7	1043.50424	7	1043.5041	0.09	2250.47904	8	2250.4791	-0.09
11	5	6	1046.52983	7	1046.5297	0.12	2252.93678	8	2252.9371	-0.31
11	6	6	1139.06031	8	1139.0601	0.22	2357.02056	8	2357.0205	0.09
11	6	5	1139.29357	8	1139.2934	0.18	2357.19549	9	2357.1955	-0.04
11	7	5	1250.84753	9	1250.8474	0.17	2480.98019	9	2480.9799	0.32
11	7	4	1250.85833	11	1250.8580	0.30	2480.98740	11	2480.9874	0.00
11	8	4	1377.94585	9	1377.9459	-0.09	2620,98645	10	2620,9862	0.26
11	8	3	1377 94639	13	1377 9462	0.15	2620 98693	16	2620 9864	0.53
11	9	3	1518 93389	10	1518 9340	-0.14	2775 33571	12	2775 3358	-0.06
11	9	2	1518 93357	25	1518 9340	-0.46	2775 33571	24	2775 3358	-0.06
11	10	2	1672 48046	14	1672 4806	-0.16	2942 46218	15	2942 4626	-0.44
11	10	1	1672.48046	28	1672.4806	0.16	2042.40210	20	2042.4626	0.44
11	10	1	1072.46040	20	1072.4800	-0.10	2120.00592	30	2342.4020	-0.44
11	11	1	1827.22009	20	1037.3203	0.41	2120.90383	22	3120.9034	0.40
11	11	0	1837.32009	40	1837.3203	0.41	3120.90383	44	3120.9034	0.40
12	0	12	813.97372	8	813.9733	0.43	1988.90172	9	1988.9010	0.71
12	1	12	813 97830	10	813 9781	0.16	1988 90969	11	1988 9095	0.20
12	1	11	925 36941	8	925 3693	0.11	2109 27324	8	2109 2732	0.07
12	2	11	925 56333	8	925 5633	0.05	2109.27324	9	2109.2732	0.10
12	2	10	1010 28238	8 7	1010 2824	0.05	2209.17041	8	2200.1708	-0.34
12	2	10	1019.28238	/ 0	1019.2824	0.01	2209.17041	0	2209.1708	-0.34
12	2	10	1022.29792	0	1022.2979	0.02	2215.05200	9	2215.0521	-0.13
12	3	9	1087.98301	8	1087.9820	0.43	2280.21172	9	2280.2121	-0.34
12	4	9	1107.71423	8	1107.7142	0.03	2306.11603	8	2306.1165	-0.47
12	4	8	113/.300//	/	1137.3002	0.58	2333.64932	9	2333.6498	-0.43
12	5	8	1192.29783	8	1192.2978	0.00	2399.47488	9	2399.4752	-0.33
12	5	7	1198.67842	8	1198.6780	0.41	2404.73818	8	2404.7385	-0.34
12	6	7	1287.77325	9	1287.7733	-0.01	2505.84729	9	2505.8478	-0.48
12	6	6	1288.41154	7	1288.4111	0.39	2506.32841	8	2506.3286	-0.19
12	7	6	1399.14661	10	1399.1466	-0.04	2629.45547	11	2629.4562	-0.70
12	7	5	1399.18444	9	1399.1840	0.41	2629.48276	8	2629.4826	0.19
12	8	5	1526.12818	16	1526.1284	-0.22	2769.43163	16	2769.4307	0.89
12	8	4	1526.12995	9	1526.1298	0.13	2769.43196	10	2769.4317	0.27
12	9	4	1667.26396	14	1667.2641	-0.15	2924.01095	24	2924.0106	0.31
12	9	3	1667.26407	12	1667.2641	-0.08	2924.01095	12	2924.0107	0.29
12	10	3	1821.14925	28	1821.1497	-0.47	3091.55695	32	3091.5579	-0.91
12	10	2	1821.14925	14	1821.1497	-0.47	3091.55695	16	3091.5579	-0.91
12	11	2	1986.48436	34	1986.4845	-0.16	3270.57145	38	3270.5719	-0.49
12	11	1	1986.48436	17	1986.4845	-0.16	3270.57145	19	3270.5719	-0.49
12	12	1	2162.02743	44	2162.0266	0.82	3459.64226	52	3459.6423	0.00
12	12	0	2162.02743	22	2162.0266	0.82	3459.64226	26	3459.6423	0.00
		-								
13	0	13	944.39761	10	944.3973	0.32	2118.38229	15	2118.3820	0.28
13	1	13	944.39995	9	944.3995	0.50	2118.38653	10	2118.3860	0.56
13	1	12	1065.76745	10	1065.7673	0.14	2249.65210	10	2249.6521	0.01
13	2	12	1065.86147	8	1065.8614	0.09	2249.81115	9	2249.8109	0.25
13	2	11	1170.36983	9	1170.3696	0.21	2361.32886	9	2361.3292	-0.29
13	3	11	1172.02271	8	1172.0226	0.16	2363.88777	8	2363.8877	0.09
13	3	10	1251.55287	9	1251.5525	0.33	2445.53163	10	2445.5319	-0.22
13	4	10	1264.89865	8	1264.8984	0.23	2463.90473	8	2463.9050	-0.27
13	4	9	1307 30456	9	1307 3040	0.53	2504 20182	10	2504 2025	-0.71
13	5	9	1353 04458	8	1353 0444	0.21	2560 51435	8	2560 5145	-0.12
13	5	8	1365 03944	Q	1365 0380	0.52	2570 61960	10	2570 6202	-0.59
15	5	0	1000.000744	2	1505.0509	0.54	2010.01900	10	2310.0202	0.57

Table 3 (continued)

J	K_a	K_c	$(000) E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs - Calc	$(010) E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc
			(cm^{-1})	(cm^{-1})	(cm^{-1})	$10^{-3} (\text{cm}^{-1})$	(cm^{-1})	(cm^{-1})	(cm^{-1})	$10^{-3} (\text{cm}^{-1})$
13	6	8	1448.88685	8	1448.8866	0.27	2667.07303	9	2667.0733	-0.22
13	6	7	1450.43738	10	1450.4372	0.22	2668.24962	9	2668.2504	-0.78
13	7	7	1559.78131	9	1559.7811	0.26	2790.24156	9	2790.2412	0.37
13	7	6	1559.89473	12	1559.8947	-0.02	2790.32125	11	2790.3216	-0.38
13	8	6	1686.52476	10	1686.5238	0.91	2930.06969	14	2930.0680	1.67
13	8	5	1686.52910	14	1686.5293	-0.21	2930.07177	14	2930.0717	0.09
13	9	5	1827.73008	12	1827.7298	0.30	3084.80850	15	3084.8085	-0.03
13	9	4	1827.73008	24	1827.7300	0.12	3084.80850	30	3084.8086	-0.15
13	10	4	1981.91351	17	1981.9130	0.54	3252.74151	16	3252.7407	0.76
13	10	3	1981.91351	34	1981.9130	0.54	3252.74151	32	3252.7407	0.76
13	11	3	2147.71880	16	2147.7193	-0.45	3432.31236	18	3432.3133	-0.94
13	11	2	2147.71880	32	2147.7193	-0.45	3432.31236	36	3432.3133	-0.94
13	12	2	2323.87910	17	2323.8786	0.47	3622.08928	30	3622.0896	-0.27
13	12	1	2323.87910	34	2323.8786	0.47	3622.08928	60	3622.0896	-0.27
13	13	1	2509.17024	31	2509.1703	-0.04	3820.71023	32	3820.7100	0.27
13	13	0	2509.17024	62	2509.1703	-0.04	3820.71023	64	3820.7100	0.27
14	0	14	1004 26412	10	1004 2624	0.00	2257 20824	10	2257 2070	1.20
14	0	14	1084.36413	10	1084.3634	0.69	2257.30824	12	2257.3070	1.20
14	1	14	1084.30470	13	1084.3044	0.35	2237.30938	15	2257.3089	0.4/
14	1	13	1215.05/90	10	1215.03/9	0.02	2399.40302	11	2399.4029	0.10
14	2	13	1215.08554	12	1215.0854	-0.04	2599.48289	13	2599.4829	0.00
14	2	12	1330.32384	9	1330.3230	0.21	2522.30318	9	2522.3031	0.03
14	2	12	1331.40090	10	1331.4070	-0.11	2525.79555	10	2525.7955	0.00
14	3	11	1424.00295	9	1424.0027	0.20	2619.92507	9	2019.9232	-0.08
14	4	11	1432.49029	10	1432.4901	0.15	2032.21209	10	2032.2127	-0.04
14	4	10	1489.18/42	10	1489.1870	0.38	2087.12483	10	2087.1234	-0.53
14	5	10	1545 67220	10	1525.5645	-0.22	2755.20760	10	2755.2080	-0.22
14	5	9	1622 27024	12	1622 2780	0.31	2730.80143	10	2730.8023	-0.84
14	6	9	1622.27924	0	1625.6758	0.33	2840.39373	12	2840.3900	-0.20
14	7	8	1732 72603	14	1732 7250	0.13	2043.20203	13	2043.2027	-0.04
14	7	8 7	1732.72003	14	1722.0224	0.13	2903.30348	13	2903.3037	-0.24
14	8	7	1859 10031	15	1859 1003	0.06	3102 85714	21	3102 8567	-0.03
14	8	6	1850 11884	15	1859.1005	0.00	3102.85714	16	3102.8507	0.45
14	9	6	2000 27846	18	2000 2802	-1.70	3257 67109	28	3257 6697	1.43
14	9	5	2000.27840	13	2000.2802	0.02	3257 67109	14	3257.6701	0.95
14	10	5	2154 70446	30	2154 7046	-0.18	3425 93702	38	3425 9370	-0.03
14	10	4	2154 70446	15	2154 7047	-0.20	3425 93702	19	3425.9370	-0.04
14	11	4	2320 95372	38	2320 9529	0.83	3606 04405	50	3606 0435	0.51
14	11	3	2320.95372	19	2320.9529	0.83	3606 04405	25	3606.0435	0.51
14	12	3	2497 71633	38	2497 7182	-1.89	3796 51748	<u>-</u> 20 74	3796 5183	-0.85
14	12	2	2497.71633	19	2497.7182	-1.89	3796.51748	37	3796.5183	-0.85
14	13	2	2683.76283	56	2683.7615	1.33	3995.98534	88	3995,9856	-0.26
14	13	1	2683.76283	28	2683.7615	1.33	3995.98534	44	3995,9856	-0.26
14	14	1	2877.88508	94	2877.8850	0.03	4203.13484	98	4203.1350	-0.12
14	14	0	2877.88508	47	2877.8850	0.03	4203.13484	49	4203.1350	-0.12
	0		1000 05100	16	1000 0500	0.04	2 40 5 6 5 7 4 4	15	2405 6550	0.44
15	0	15	1233.85126	16	1233.8509	0.34	2405.65744	17	2405.6570	0.44
15	l	15	1233.85187	13	1233.8514	0.51	2405.65833	13	2405.6579	0.43
15	1	14	13/4.9/5/1	14	13/4.9/59	-0.18	2558.53002	14	2558.5301	-0.05
15	2	14	13/4.99/66	11	13/4.99/8	-0.18	2558.57032	12	2558.5704	-0.11
15	2	13	1499.86464	13	1499.8645	0.10	2692.42115	13	2692.4210	0.15
15	3	13	1500.32917	11	1500.3291	0.09	2693.20474	10	2693.2046	0.12
15	3	12	1605.00722	13	1605.0070	0.27	2802.85721	12	2802.8573	-0.10
15	4	12	1010.14141	10	1010.1414	-0.04	2010.00909	10	2010.0090	0.11
15	4	11	1081./8804	13	1081./890	-0.55	20017 24002	13	20017 2407	0.10
15) -	11	1740 15666	10	1740 1569	0.04	2917.34892	10	291/.348/	0.19
13	5 6	10	1/40.1000	10	1/40.1008	-0.12	2943.09324	15	2943.0933	-0.23
15	0	10	181/ 51156	11	1007.7355	-0.11	3020.24074	13	3020.2400	-0.09
15	0 7	9 0	1014.31130	10	1014.311/	-0.11	31/18 60207	13	31/8 6021	-0.90
15	7	7 8	1917.93377	13	1917.9337	-0.74	3140.13202	17	3140.0031	-0.02
15	2 2	8	2043 82210	12	2043 8221	0.03	3787 75181	11	3287 7520	-0.18
15	8	7	2043.87610	16	2043.8757	0.40	3287,78765	15	3287.7879	-0.28
	0	,				~ • • • •				

Table 3 (continued)

J	K_a	K_c	$(0\ 0\ 0) E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs - Calc	$(0\ 1\ 0)\ E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs - Calc
			(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	10^{-5} (cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	$10^{-5} (cm^{-1})$
15	9	7	2184.86200	13	2184.8620	0.04	3442.53186	16	3442.5313	0.58
15	9	6	2184.86431	19	2184.8647	-0.34	3442.53369	23	3442.5330	0.69
15	10	6	2339.45609	15	2339.4559	0.18	3611.07021	21	3611.0690	1.20
15	10	5	2339.45609	30	2339.4560	0.08	3611.07021	42	3611.0691	1.14
15	11	5	2506.10377	26	2506.1044	-0.61	3791.67202	26	3791.6729	-0.84
15	11	4	2506.10377	52	2506.1044	-0.61	3791.67202	52	3791.6729	-0.84
15	12	4	2683.45517	23	2683.4539	1.25	3982.82863	44	3982.8284	0.25
15	12	3	2683.45517	46	2683.4539	1.25	3982.82863	88	3982.8284	0.25
15	13	3	2870.23919	37	2870.2410	-1.85	4183.13691	53	4183.1378	-0.85
15	13	2	2870.23919	74	2870.2410	-1.85	4183.13691	106	4183.1378	-0.85
15	14	2	3065.25924	36	3065.2575	1.70	4391.28221	58	4391.2821	0.12
15	14	1	3065.25924	72	3065.2575	1.70	4391.28221	116	4391.2821	0.12
15	15	1	3267.32902	63	3267.3292	-0.21	4605.99685	64	4605.9964	0.47
15	15	0	3267.32902	126	3267.3292	-0.21	4605.99685	128	4605.9964	0.47
16	0	16	1392.83743	14	1392.8371	0.35	2563.41114	14	2563.4109	0.20
16	1	16	1392.83702	22	1392.8373	-0.26	2563.41106	20	2563.4114	-0.32
16	1	15	1543.76602	13	1543.7664	-0.33	2727.02596	13	2727.0262	-0.27
16	2	15	1543.77631	17	1543.7770	-0.68	2727.04664	17	2727.0467	-0.04
16	2	14	1678.46419	12	1678.4642	0.02	2871.59743	12	2871.5973	0.13
16	3	14	1678.70642	15	1678.7061	0.29	2872.02374	18	2872.0229	0.80
16	3	13	1794.57746	12	1794.5773	0.13	2994.18696	12	2994.1865	0.44
16	4	13	1797.57168	16	1797.5719	-0.24	2998.96354	14	2998.9628	0.71
16	4	12	1884.00428	12	1884.0046	-0.33	3085.56323	12	3085.5628	0.46
16	5	12	1903.19470	14	1903.1944	0.34	3112.34111	17	3112.3407	0.45
16	5	11	1947.66067	12	1947.6608	-0.13	3152.86496	13	3152.8650	0.00
16	6	11	2005.03384	14	2005.0339	-0.02	3223.79141	17	3223.7918	-0.36
16	6	10	2017.29512	13	2017.2953	-0.19	3233.56002	13	3233.5597	0.32
16	7	10	2115.31970	18	2115.3207	-0.97	3346.05879	17	3346.0585	0.30
16	7	9	2117.00351	14	2117.0038	-0.26	3347.26718	13	3347.2675	-0.29
16	8	9	2240.64716	18	2240.6475	-0.32	3484.70340	32	3484.7039	-0.55
16	8	8	2240.79083	12	2240.7906	0.20	3484.79997	12	3484.8001	-0.10
16	9	8	2381.42039	25	2381.4197	0.68	3639.32758	24	3639.3280	-0.38
16	9	7	2381.42881	13	2381.4283	0.53	3639.33340	15	3639.3334	-0.02
16	10	7	2536.09417	21	2536.0953	-1.09	3808.05574	50	3808.0557	0.01
16	10	6	2536.09621	15	2536.0956	0.58	3808.05574	25	3808.0560	-0.22
16	11	6	2703.08998	42	2703.0895	0.45	3989.10799	80	3989.1080	-0.05
10	11	5	2703.08998	21	2703.0895	0.44	3989.10799	40	3989.1081	-0.06
10	12	2	2880.99034	88	2880.9910	-0.69	4180.91516	88	4180.9160	-0.85
10	12	4	2000.99034	44	2060.9910	-0.09	4160.91310	44	4160.9100	-0.85
16	13	4	3068 50538	80 40	3068 5048	0.00	4382.05392	60	4382.0532	0.73
16	13	2	3008.30338	40	3008.3048	0.00	4502.05592	134	4382.0332	0.73
16	14	2	3204.40570	52	3204.4075	-1.77	4591.18735	67	4591.1879	-0.58
16	15	2	3467 52346	86	3467 5212	2.25	4807 05389	142	4807 0533	0.58
16	15	1	3467 52346	43	3467 5212	2.25	4807.05389	71	4807.0533	0.57
16	16	1	3676 69247	150	3676 6940	-1.57	5028 42515	154	5028 4247	0.46
16	16	0	3676.69247	75	3676.6940	-1.57	5028.42515	77	5028.4247	0.46
17	0	17	1561 29744	26	1561 2976	-0.18	2730 54602	26	2730 5463	-0.24
17	1	17	1561 29765	17	1561 2977	-0.07	2730 54614	18	2730 5465	-0.35
17	1	16	1721 98803	19	1721 9888	-0.80	2904 87656	21	2904 8767	-0.10
17	2	16	1721 99326	15	1721 9940	-0.75	2904 88665	15	2904 8871	-0.47
17	2	15	1866 35485	20	1866 3548	0.02	3059 95078	20	3059 9505	0.28
17	3	15	1866.47996	14	1866.4803	-0.30	3060.18038	14	3060.1806	-0.23
17	3	14	1992.86642	19	1992.8660	0.38	3194.00877	18	3194.0083	0.44
17	4	14	1994.56952	13	1994.5695	0.06	3196.84971	14	3196.8496	0.13
17	4	13	2094.97390	20	2094.9743	-0.44	3298.93404	19	3298.9331	0.93
17	5	13	2107.83183	13	2107.8320	-0.21	3317.83070	14	3317.8302	0.54
17	5	12	2167.11718	18	2167.1167	0.49	3373.16396	21	3373.1637	0.21
17	6	12	2213.77579	16	2213.7759	-0.14	3432.91580	15	3432.9154	0.41
17	6	11	2234.13795	19	2234.1378	0.12	3449.58100	21	3449.5804	0.57
17	7	11	2324.75243	16	2324.7524	0.02	3555.55669	15	3555.5567	0.03
17	7	10	2328.22258	20	2328.2233	-0.70	3558.07545	21	3558.0763	-0.89

Table 3 (continued)

			(0.0.0) =	1 - 10 5		~ ~ ~ .	(0.1.0) =	1 - 10 5	-	<u></u>
J	K_a	K_c	$(000) E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc	$(010) E_{obs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc
			(cm^{-1})	(cm^{-1})	(cm^{-1})	$10^{-3} (\text{cm}^{-1})$	(cm^{-1})	(cm^{-1})	(cm^{-1})	$10^{-3} (\text{cm}^{-1})$
17	0	10	2440 52200	17	2440 5224	0.54	2602 65402	16	2(02 (541	0.12
1/	8	10	2449.52398	16	2449.5234	0.54	3693.65402	16	3693.6541	-0.12
17	8	9	2449.87295	29	2449.8734	-0.42	3693.89051	25	3693.8898	0.70
17	9	9	2589.89559	14	2589.8955	0.06	3847.99189	18	3847.9916	0.28
17	9	8	2589.92040	28	2589.9201	0.25	3848.00681	45	3848.0073	-0.50
17	10	8	2744 54897	16	2744 5489	0.10	4016 81335	23	4016 8136	-0.22
17	10	7	2711.51097	25	2711.5102	0.75	4016 81416	20	4016 8144	0.20
17	10	7	2/44.55050	55	2744.3302	0.75	4010.01410	34	4010.0144	-0.20
1/	11	/	2911.82168	25	2911.8215	0.21	4198.25269	44	4198.2529	-0.18
17	11	6	2911.82168	50	2911.8215	0.16	4198.25269	88	4198.2529	-0.21
17	12	6	3090.23221	40	3090.2320	0.20	4390.67421	56	4390.6745	-0.28
17	12	5	3090.23221	80	3090.2320	0.20	4390.67421	112	4390.6745	-0.28
17	13	5	3278,44543	60	3278.4458	-0.38	4592.61531	60	4592.6157	-0.40
17	13	4	3278 44543	120	3278 4458	-0.38	4592 61531	120	4592 6157	-0.40
17	14		3475 22021	52	2475 2104	0.82	4992.01951	72	4802 7272	1 22
17	14	4	3473.22021	100	3475.2194	0.82	4002.72002	13	4002.7273	1.32
1/	14	3	34/5.22021	106	34/5.2194	0.82	4802.72862	146	4802.7273	1.32
17	15	3	3679.36553	66	3679.3672	-1.64	5019.73689	79	5019.7371	-0.24
17	15	2	3679.36553	132	3679.3672	-1.64	5019.73689	158	5019.7371	-0.24
17	16	2	3889.74227	48	3889.7395	2.73	5242.42516	83	5242.4246	0.52
17	16	1	3889 74227	96	3889 7395	2.73	5242 42516	166	5242,4246	0.52
17	17	1	4105 20201	86	4105 2048	_1.90	5460 50006	88	5460 5006	0.33
17	17	1	4105.20291	170	4105.2046	-1.90	5409.59990	170	5409.5990	0.33
1/	1/	0	4105.20291	172	4105.2048	-1.90	5469.59996	1/6	5469.5996	0.33
10	0	10	1720 20625	10	1720 2066	0.28	2007 02851	10	2007 0280	0.26
10	1	10	1739.20033	10	1739.2000	-0.28	2907.03831	19	2907.0389	-0.30
18	1	18	1/39.20680	30	1/39.206/	0.12	2907.03818	34	2907.0390	-0.82
18	1	17	1909.61866	18	1909.6191	-0.45	3092.06215	18	3092.0622	-0.04
18	2	17	1909.62096	29	1909.6217	-0.69	3092.06727	24	3092.0676	-0.35
18	2	16	2063.54274	17	2063.5425	0.20	3257.50438	17	3257.5044	-0.04
18	3	16	2063 60704	24	2063 6075	-0.46	3257 62866	23	3257 6288	-0.12
18	3	15	2200 02762	16	2200.0277	-0.05	3402 48602	17	3402 4867	-0.63
10	4	15	2200.02702	21	2200.0277	0.05	2404 14601	22	2404 1464	0.05
18	4	15	2200.98105	21	2200.9810	0.05	3404.14691	22	3404.1464	0.46
18	4	14	2314.23374	17	2314.2340	-0.29	3520.70271	16	3520.7029	-0.15
18	5	14	2322.45870	23	2322.4584	0.28	3533.43410	25	3533.4329	1.21
18	5	13	2397.36735	16	2397.3676	-0.24	3604.89228	17	3604.8918	0.48
18	6	13	2433.58745	23	2433.5875	-0.06	3653.25642	24	3653.2558	0.58
18	6	12	2464 73574	16	2464 7362	-0.46	3679 52685	19	3679 5260	0.81
18	7	12	2546 03258	24	2546.0328	-0.18	3776 03135	25	3776 0306	0.71
10	2	12	2540.05258	24	2540.0528	-0.18	3770.93133	23	3770.9300	0.71
18	/	11	2552.65544	1/	2552.6561	-0./1	3/81.81246	19	3/81.8124	0.01
18	8	11	2670.37830	25	2670.3780	0.27	3914.52959	26	3914.5303	-0.68
18	8	10	2671.16938	18	2671.1690	0.34	3915.06551	20	3915.0655	-0.02
18	9	10	2810.22793	26	2810.2282	-0.29	4068.45188	38	4068.4511	0.76
18	9	9	2810.29299	19	2810.2929	0.05	4068,49193	23	4068,4924	-0.51
18	10	Q	2964 74108	30	2964 7410	0.10	4237 25606	52	4237 2566	-0.50
10	10	0	2064.74100	20	2064.7410	0.10	4237.25000	24	4227.2500	0.00
10	10	0	2904.74394	20	2904.7449	-0.98	4257.25000	24	4257.2590	-0.09
18	11	8	3132.21043	38	3132.2110	-0.58	4419.00857	84	4419.0085	0.09
18	11	7	3132.21136	21	3132.2112	0.16	4419.00857	42	4419.0086	-0.02
18	12	7	3311.07677	92	3311.0769	-0.10	4611.99415	120	4611.9944	-0.28
18	12	6	3311.07677	46	3311.0769	-0.11	4611.99415	60	4611.9944	-0.29
18	13	6	3499.95505	116	3499.9548	0.20	4814,70641	140	4814,7067	-0.25
18	13	5	3499 95505	58	3499 9548	0.20	4814 70641	70	4814 7067	-0.25
10	14	5	2607 57472	146	2607 5752	0.20	5025 77267	149	5025 7729	0.25
10	14	5	3097.37472	140	3097.3733	-0.38	5025.77207	140	5025.7728	-0.18
18	14	4	3697.57472	73	3697.5753	-0.58	5025.77267	74	5025.7728	-0.18
18	15	4	3902.74184	134	3902.7411	0.73	5243.91332	170	5243.9119	1.45
18	15	3	3902.74184	67	3902.7411	0.73	5243.91332	85	5243.9119	1.45
18	16	3	4114.29930	158	4114.3017	-2.38	5467.90442	180	5467.9045	-0.05
18	16	2	4114,29930	79	4114 3017	-2.38	5467,90442	90	5467 9045	-0.05
18	17	2	4331 13557	122	4331 1222	2.20	5606 57019	100	5606 5702	-0.16
10	17	∠ 1	4221 12557	122	4221 1222	2.22	5090.57010	190	5090.5705	-0.10
18	1/	1	4331.1355/	01	4551.1553	2.22	5090.5/018	95	5090.5/03	-0.16
18	18	1	4552.11934	192	4552.1214	-2.01	5928.74719	194	5928.7476	-0.39
18	18	0	4552.11934	96	4552.1214	-2.01	5928.74719	97	5928.7476	-0.39
10	^	10	1000 50040	41	1006 5065	0.21	2002 07240	27	2002 0722	0.10
19	0	19	1926.53640	41	1926.5367	-0.31	3092.86348	37	3092.8633	0.19
19	1	19	1926.53655	20	1926.5367	-0.18	3092.86284	22	3092.8634	-0.53
19	2	18	2106.63028	22	2106.6303	0.85	3288.55896	33	3288.5606	-1.67
19	1	18	2106.63118	43	2106.6316	-1.31	3288.56191	21	3288.5635	-1.63
19	2	17	2270.01721	27	2270.0170	0.18	3464.26179	35	3464.2615	0.29

Table 3 (continued)

	. (
J	K_{a}	K_{c}	$(000) E_{abs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc	$(010) E_{abs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc
	u	t	(cm^{-1})	(cm^{-1})	(cm^{-1})	10^{-3} (cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm^{-1})	10^{-3} (cm ⁻¹)
			(em)	(em)	(em)	10 (em)	(em)	(em)	(em)	10 (em)
19	3	17	2270.05054	18	2270.0507	-0.19	3464.32904	20	3464.3290	0.07
19	3	16	2416.17018	29	2416.1700	0.20	3619.76224	26	3619.7624	-0.19
19	4	16	2416 69809	19	2416 6982	-0.13	3620 72116	20	3620 7214	-0.21
10	4	15	2541 60116	20	2541 6017	-0.49	3750 55731	20	3750 5575	_0.21
19	-	15	2546.76925	29	2541.0917	-0.49	2759.91202	20	2750.00122	-0.20
19	2	15	2546.76835	18	2546.7686	-0.22	3/58.81302	19	3/58.8132	-0.14
19	5	14	2637.28649	26	2637.2868	-0.28	3846.91322	30	3846.9128	0.37
19	6	14	2664.05662	17	2664.0569	-0.26	3884.41690	22	3884.4171	-0.20
19	6	13	2708.37130	27	2708.3710	0.30	3922.93665	31	3922.9356	1.04
19	7	13	2778.89907	18	2778.8999	-0.86	4009.95575	21	4009.9549	0.84
19	7	12	2790 61588	25	2790 6164	-0.48	4018 77350	27	4018 7728	0.70
10	é	12	2002 11047	18	2003 1105	0.01	4147 22855	27	4147 2287	0.18
19	0	12	2903.11047	18	2903.1103	-0.01	4147.23633	23	4147.2307	-0.18
19	8	11	2904.77611	28	2904.7757	0.43	4148.3/313	29	4148.3/34	-0.23
19	9	11	3042.35095	19	3042.3512	-0.29	4300.63063	24	4300.6312	-0.58
19	9	10	3042.50919	26	3042.5086	0.57	4300.73098	30	4300.7319	-0.88
19	10	10	3196.59366	21	3196.5940	-0.38	4469.29669	31	4469.2966	0.04
19	10	9	3196.60504	30	3196.6051	-0.03	4469.30418	50	4469.3034	0.80
19	11	9	3364 16730	25	3364 1670	0.25	4651 27443	34	4651 2738	0.61
10	11	é	2264 16702	23	2264 1676	0.62	4651 27442	68	4651 2742	0.25
19	11	0	3504.10702	34	3504.1070	-0.02	4031.27443	50	4031.2742	0.23
19	12	8	3543.42396	26	3543.4235	0.42	4844.76459	59	4844.7642	0.40
19	12	7	3543.42396	52	3543.4236	0.40	4844.76459	118	4844.7642	0.39
19	13	7	3732.91987	62	3732.9206	-0.69	5048.20520	73	5048.2053	-0.07
19	13	6	3732.91987	124	3732.9206	-0.69	5048.20520	146	5048.2053	-0.07
19	14	6	3931.35598	72	3931.3556	0.37	5260.19519	82	5260.1954	-0.19
19	14	5	3931 35598	144	3931 3556	0.37	5260 19519	164	5260 1954	-0.19
10	15	5	4127 51408	Q.4	4127 5155	0.55	5470 44010	85	5470 4402	0.02
19	15	5	4137.51490	169	4137.5155	-0.55	5479.44019	170	5479.4402	-0.03
19	15	4	413/.51498	168	4137.5155	-0.55	54/9.44019	170	54/9.4402	-0.03
19	16	4	4350.24587	80	4350.2453	0.55	5704.72006	94	5704.7187	1.39
19	16	3	4350.24587	160	4350.2453	0.55	5704.72006	188	5704.7187	1.39
19	17	3	4568.42376	91	4568.4263	-2.53	5934.85729	100	5934.8577	-0.45
19	17	2	4568.42376	182	4568.4263	-2.53	5934.85729	200	5934.8577	-0.45
19	18	2	4790 95997	74	4790 9576	2 42	6168 71076	106	6168 7111	-0.35
19	18	1	4790 95997	148	4790 9576	2.12	6168 71076	212	6168 7111	-0.35
10	10	1	5016 72715	105	5016 7277	0.51	6405 12827	107	6405 1299	0.33
19	19	1	5016./3/15	105	5016.7377	-0.51	6405.13837	107	6405.1388	-0.42
19	19	0	5016.73715	210	5016.7377	-0.51	6405.13837	214	6405.1388	-0.42
20	0	20	2122 25045	21	2122 2500	0.42	2287 00210	26	2207 0027	0.62
20	1	20	2123.23943	31	2123.2390	0.42	3287.39210	20	3267.9927	-0.03
20	1	20	2123.26006	46	2123.2590	1.02	3287.99204	48	3287.9928	-0.76
20	2	19	2312.99276	52	2312.9936	-0.43	3494.34769	25	3494.3476	0.08
20	1	19	2312.99318	29	2312.9942	-1.49	3494.35019	50	3494.3492	0.94
20	2	18	2485.75835	22	2485.7581	0.28	3680.21091	22	3680.2107	0.20
20	3	18	2485.77556	42	2485.7756	-0.07	3680.24800	40	3680.2476	0.35
20	3	17	2641 35229	21	2641 3522	0.08	3845 92882	22	3845 9286	0.18
20	4	17	2641 64528	44	2641 6434	1.02	3846 47806	36	3846 4795	_1.47
20		17	2041.04520	22	2041.0454	0.20	2000 40715	20	2000 4000	1.70
20	4	10	2777.40478	25	2777.4030	-0.20	3988.48/13	22	3900.4009	-1.79
20	2	16	2780.52109	28	2780.5211	0.01	3993.69318	38	3993.6936	-0.38
20	5	15	2885.92678	22	2885.9272	-0.44	4098.16659	26	4098.1670	-0.43
20	6	15	2904.77988	32	2904.7808	-0.92	4125.99599	35	4125.9963	-0.29
20	6	14	2964.04695	20	2964.0476	-0.67	4178.99835	24	4178.9980	0.36
20	7	14	3023.03218	32	3023.0325	-0.29	4254.34736	33	4254.3459	1.49
20	7	13	3042.26654	19	3042.2669	-0.37	4269.21477	24	4269.2141	0.63
20	8	13	3147 58038	28	3147 5804	-0.07	4391 65608	33	4391 6557	0.34
20	0	12	2150 86000	20	2150 8605	0.40	4391.03000	24	4202 0120	0.12
20	0	12	3130.80000	21	3130.8003	-0.49	4393.91307	24	4393.9129	0.13
20	9	12	3280.18854	30	3286.1891	-0.52	4544.44954	30	4544.4502	-0.00
20	9	11	3286.54538	21	3286.5459	-0.56	4544.67800	28	4544.6791	-1.11
20	10	11	3440.02945	30	3440.0286	0.86	4712.84321	38	4712.8439	-0.69
20	10	10	3440.05732	21	3440.0571	0.20	4712.86102	27	4712.8613	-0.30
20	11	10	3607.59677	34	3607.5969	-0.09	4894.94770	56	4894.9460	1.66
20	11	9	3607 59847	25	3607 5986	-0.16	4894 94749	35	4894 9471	0.41
20	12	á	3787 16800	62	3787 1682	-0.15	5088 86005	82	5088 8702	-0.27
20	12	2	2707 10000	21	2707 1602	0.15	5000.00775	41	5000.0702	0.27
20	12	8	5/8/.10800	51	3/8/.1082	-0.24	2088.80993	41	5088.8703	-0.32
20	13	8	3977.23099	60	3977.2299	1.09	5292.99033	148	5292.9890	1.33
20	13	7	3977.23099	30	3977.2299	1.08	5292.99033	74	5292.9890	1.32
20	14	7	4176.43815	150	4176.4391	-0.98	5505.86458	168	5505.8643	0.28

Table 3 (continued)

T	V	V	(0,0,0) E	1 = 10-5	E	Oha Cala	(0.1.0) E	$4E 10^{-5}$	F	Oha Cala
J	$\mathbf{\Lambda}_{a}$	$\mathbf{\Lambda}_{c}$	$(000) E_{obs}$	$dE = 10^{-1}$	E_{calc}	Obs - Calc	$(0 1 0) E_{obs}$	$dE = 10^{-1}$	E_{calc}	Obs - Calc
			(cm ·)	(cm ·)	(cm ·)	10^{-5} (cm ⁻¹)	(cm ⁻)	(cm ·)	(cm ·)	10^{-5} (cm ⁻¹)
20	14	6	4176.43815	75	4176.4391	-0.98	5505.86458	84	5505.8643	0.28
20	15	6	4383.56199	166	4383.5617	0.31	5726.18385	184	5726.1839	-0.03
20	15	5	4383.56199	83	4383.5617	0.31	5726,18385	92	5726,1839	-0.03
20	16	5	4597 43437	188	4597 4345	-0.11	5952 72097	188	5952 7213	-0.35
20	16	4	4597 43437	94	4597 4345	-0.11	5952.72097	94	5952.7213	-0.35
20	17	4	4816 94130	182	4816 9406	0.65	6184 30907	206	6184 3081	1.00
20	17	2	4816 04120	01	4816 0406	0.65	6184 20007	102	6184 2081	1.00
20	10	2	5040 08752	204	5040.0000	0.05	6410 81002	220	6410 8100	0.87
20	10	2	5040.98752	204	5040.9900	-2.44	6419.81002	220	6419.8109	-0.87
20	18	2	5040.98752	102	5040.9900	-2.44	0419.81002	110	0419.8109	-0.87
20	19	2	5268.50575	1/2	5268.5008	2.93	6658.11071	230	0038.1112	-0.53
20	19	1	5268.50375	86	5268.5008	2.93	6658.110/1	115	6658.1112	-0.53
20	20	l	5498.38216	228	5498.3812	0.95	6898.08423	230	6898.0846	-0.34
20	20	0	5498.38216	114	5498.3812	0.95	6898.08423	115	6898.0846	-0.34
21	0	21	2329 34314	52	2329 3436	-0.47	3492 40113	58	3492 3993	1.83
21	1	21	2329.34314	37	2329.3436	-0.31	3492,40115	40	3402 3004	1.00
21	1	20	2529.54551	57	2529.5450	0.80	3700 20720	40 88	3700 3070	0.20
21	2	20	2528.07700	26	2528.0785	-0.89	3709.39730	00 44	2700.2080	0.30
21	2	20	2328.07905	50	2328.0788	0.21	3709.39730	44 52	3709.3980	-0.70
21	2	19	2/10./4066	45	2/10./393	1.38	3905.33339	53	3905.3325	0.91
21	3	19	2/10./4913	35	2/10./485	0.64	3905.35257	26	3905.3530	-0.4/
21	3	18	2875.59708	51	28/5.59/3	-0.26	4081.03752	56	4081.0349	2.63
21	4	18	2875.75754	27	2875.7575	0.03	4081.35081	25	4081.3510	-0.18
21	4	17	3021.72443	42	3021.7241	0.35	4234.63720	41	4234.6373	-0.08
21	5	17	3023.53238	24	3023.5329	-0.51	4237.85353	27	4237.8551	-1.62
21	5	16	3142.67296	43	3142.6712	1.77	4357.80639	43	4357.8094	-2.99
21	6	16	3155.38804	21	3155.3883	-0.24	4377.60715	26	4377.6073	-0.17
21	6	15	3230.65029	33	3230.6501	0.17	4446.69474	40	4446.6949	-0.17
21	7	15	3278.06369	23	3278.0643	-0.63	4509.77121	26	4509.7705	0.71
21	7	14	3307.44914	37	3307.4493	-0.15	4533.20496	42	4533.2040	0.96
21	8	14	3403.59848	23	3403.5990	-0.48	4647.61891	27	4647.6186	0.27
21	8	13	3409.66048	32	3409.6602	0.31	4651.85024	38	4651.8483	1.96
21	9	13	3541.65114	22	3541.6517	-0.56	4799.81558	28	4799.8164	-0.81
21	9	12	3542.41162	33	3542.4111	0.48	4800.30553	39	4800.3057	-0.16
21	10	12	3694.96191	23	3694.9626	-0.73	4967.80557	31	4967.8063	-0.72
21	10	11	3695.03147	34	3695.0315	0.02	4967.84714	41	4967.8483	-1.18
21	11	11	3862 40644	25	3862 4064	0.01	5149 92129	34	5149 9208	0.48
21	11	10	3862 41266	32	3862 4113	1 39	5149 92296	46	5149 9237	-0.70
21	12	10	4042 20586	28	4042 2054	0.44	5344 19926	40	5344 1975	1.78
21	12	9	4042.20586	56	4042 2057	0.16	5344 19926	84	5344 1976	1.70
21	12	0	4042.20300	33	4232 7684	-0.73	5548 03348	50	5548 0330	-0.47
21	13	8	4232.76766	66	4232.7684	-0.74	5548 03348	100	5548 0340	-0.47
21	13	0	4232.70700	27	4232.7084	-0.74	5762 64500	85	5762 6470	-0.47
21	14	8 7	4432.70434	37	4432.7034	1.10	5762.04590	170	5762.0479	-1.90
21	14	7	4452.70454	/4	4452.7054	1.10	5084 00427	170	5084.0020	-1.90
21	15	í í	4040.74910	0.5 1.70	4040.7499	-0.77	5084.00457	93	5984.0039	0.51
21	15	0	4040.74910	170	4040.7499	-0.//	5964.00457	190	5984.0059	0.51
21	16	6	4855./345/	93	4855.7326	1.96	6211.76578	101	6211.7664	-0.61
21	16	2	4855./345/	186	4855./326	1.96	6211.76578	202	6211.7664	-0.61
21	17	5	5076.53298	104	5076.5333	-0.33	6444.76803	103	6444.7682	-0.21
21	17	4	50/6.53298	208	50/6.5333	-0.33	6444.76803	206	6444.7682	-0.21
21	18	4	5302.06963	101	5302.0692	0.39	6681.88695	112	6681.8865	0.49
21	18	3	5302.06963	202	5302.0692	0.39	6681.88695	224	6681.8865	0.49
21	19	3	5531.27237	112	5531.2751	-2.68	6922.02052	118	6922.0213	-0.79
21	19	2	5531.27237	224	5531.2751	-2.68	6922.02052	236	6922.0213	-0.79
21	20	2	5763.08802	97	5763.0847	3.29	7164.07552	123	7164.0758	-0.31
21	20	1	5763.08802	194	5763.0847	3.29	7164.07552	246	7164.0758	-0.31
21	21	1	5996.41254	122	5996.4119	0.64	7406.93425	124	7406.9344	-0.17
21	21	0	5996.41254	244	5996.4119	0.64	7406.93425	248	7406.9344	-0.17
~~	~	~~	2544 26020	10	0544 7507	0.00	2706 05 110	52	2706 0512	0.02
22	0	22	2544./60/0	42	2544.7597	0.99	3706.05419	53	3/06.0542	0.03
22	1	22	2544.76070	84	2544.7597	0.99	3706.05401	64	3706.0542	-0.22
22	1	21	2753.65118	42	2753.6534	-2.25	*3933.66760	110	3933.6812	-13.63
22	2	21	2753.65277	86	2753.6536	-0.83	*3933.66760	220	3933.6819	-14.32
22	2	20	2944.93150	34	2944.9304	1.10	4139.60429	53	4139.6016	2.69
22	3	20	2944.93721	49	2944.9353	1.93	4139.61557	71	4139.6134	2.19

Table 3 (continued)

		, , , ,								
J	K_{a}	K_{c}	$(000) E_{abs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc	$(010) E_{abs}$	$dE \ 10^{-5}$	E_{calc}	Obs – Calc
	u	e	(cm^{-1})	(cm^{-1})	(cm^{-1})	10^{-3} (cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm^{-1})	10^{-3} (cm ⁻¹)
			(em)	(cm)	(em)		(em)	(em)	(em)	10 (em)
22	3	19	3118.90480	31	3118.9043	0.55	4325.09932	58	4325.0989	0.41
22	4	10	3118 00152	72	3118 0025	_0.94			1325 2800	
22	7	19	3110.99132	12	3110.3923	-0.94	4400 16500	20	4323.2009	0.41
22	4	18	32/4.61013	33	3274.6095	0.67	4489.16528	30	4489.1657	-0.41
22	5	18	3275.66968	44	3275.6687	1.01	4491.12862	57	4491.1307	-2.09
22	5	17	3407 27473	32	3407 2736	1 16	4625 32269	30	4625 3238	-1.06
22	6	17	2415 55502	17	2415 5560	0.07	4628.00125	60	1629.9290	1.00
22	0	1/	3415.55592	4/	3415.5509	-0.97	4038.90125	60	4038.8998	1.48
22	6	16	3507.05883	29	3507.0589	-0.03	4724.92808	32	4724.9305	-2.42
22	7	16	3543.60575	39	3543.6060	-0.26	4775.86264	42	4775.8617	0.97
22	7	15	3585 61745	23	3585 6160	1 41	4810 48623	29	4810 4866	-0.36
22	,	15	2670 02264	40	2670.0240	0.41	4014.02020	40	4014.0105	0.50
22	8	15	36/0.92364	40	36/0.9240	-0.41	4914.92030	48	4914.9195	0.80
22	8	14	3681.44065	24	3681.4413	-0.68	4922.40021	30	4922.4000	0.21
22	9	14	3808.62757	35	3808.6275	0.02	5066.62341	42	5066.6229	0.51
22	0	13	3810 15188	24	3810 1516	0.33	5067 60026	31	5067 6112	_1.80
22	,	13	3010.13100	24	3810.1510	0.55	5007.00920	51	5007.0112	-1.09
22	10	13	3961.31045	39	3961.3102	0.23	5234.08809	45	5234.0889	-0.86
22	10	12	3961.46621	24	3961.4660	0.20	5234.18240	32	5234.1843	-1.86
22	11	12	4128 50017	37	4128 5006	-0.45	5416 09316	50	5416 0927	0.47
22	11	11	4128 51102	27	4128 5120	1.00	5416.00812	41	5416.0000	1 70
22	11	11	4126.31192	27	4126.3129	-1.00	5410.09812	41	5410.0999	-1.79
22	12	11	4308.42995	37	4308.4289	1.02	5610.63021	86	5610.6297	0.46
22	12	10	4308.42942	28	4308.4297	-0.29	5610.63021	43	5610.6302	0.02
22	13	10	4499 42093	68	4499 4204	0.56	5815 91433	104	5815 9151	-0.73
22	10	10	4400 42002	24	4400.4204	0.50	5015.01433	52	5015.0151	0.75
22	13	9	4499.42093	34	4499.4204	0.52	5815.91433	52	5815.9151	-0./5
22	14	9	4700.02479	92	4700.0251	-0.30	6030.41401	120	6030.4135	0.54
22	14	8	4700.02479	46	4700.0251	-0.30	6030.41401	60	6030.4135	0.54
22	15	õ	4008 05054	108	4008 0407	0.88	6252 75885	100	6252 7607	1.96
22	15	0	4908.93034	108	4908.9497	0.88	0232.73005	190	0232.7007	-1.80
22	15	1	4908.95054	54	4908.9497	0.88	6252.75885	95	6252.7607	-1.86
22	16	7	5125.00193	190	5125.0027	-0.79	6481.70715	208	6481.7079	-0.79
22	16	6	5125 00193	95	5125 0027	-0.79	6481 70715	104	6481 7079	-0.79
22	17	6	5247 06202	204	5247.0611	1.80	6716 08620	220	6716 0850	0.26
22	17	0	3347.00293	204	3347.0011	1.80	0/10.08030	220	0/10.0839	0.50
22	17	5	5347.06293	102	5347.0611	1.80	6/16.08630	110	6/16.0859	0.36
22	18	5	5574.04596	224	5574.0465	-0.52	6954.77868	226	6954.7791	-0.38
22	18	4	5574 04596	112	5574 0465	-0.52	6954 77868	113	6954 7791	-0.38
22	10	4	5804 00622	222	5804 0062	0.04	7106 70202	242	7106 7025	0.30
22	19	4	3804.90623	222	3804.9063	-0.04	/190./0392	242	/190./035	0.45
22	19	3	5804.90623	111	5804.9063	-0.04	7196.70392	121	7196.7035	0.43
22	20	3	6038.59349	240	6038.5963	-2.82	7440.78671	254	7440.7870	-0.27
22	20	2	6038 50340	120	6038 5063	_2 82	7440 78671	127	7440 7870	_0.27
22	20	2	0030.39349	120	0038.3903	-2.82	7440.78071	127	7440.7870	-0.27
22	21	2	62/4.06535	216	62/4.0625	2.84	/685.94922	264	/685.9480	1.21
22	21	1	6274.06535	108	6274.0625	2.84	7685.94922	132	7685.9480	1.21
22	22	1	6510 21758	2.52	6510 2204	-2.84	7931 07386	264	7931 0732	0.67
22	22	0	6510 21758	126	6510 2204	_2.84	7031 07386	132	7031 0732	0.67
22	22	0	0510.21758	120	0310.2204	-2.04	/931.0/380	132	/931.0/32	0.07
22	0	22	2760 47602	40	2760 4765	0.47	2028 02755	50	2028 0278	0.20
23	0	23	2709.47002	40	2709.4703	-0.47	3920.92733	50	3920.9270	-0.29
23	1	23	2769.47602	40	2769.4765	-0.47	3928.92755	50	3928.9279	-0.37
23	1	22	2987.88671	68	2987.8865	0.25			4167.1715	
23	2	22	2987 88542	53	2987 8866	-1 14			4167 1720	
22	2	21	2507.000.12	00	2188 2080		1282 08057	76	1282 0880	0.60
23	2	21			3100.2909	6.00	4362.96937	/0	4362.9669	0.09
23	3	21	3188.30852	42	3188.3015	6.99	4382.99574	67	4382.9960	-0.22
23	3	20	3371.25460	83	3371.2568	-2.23			4578.1168	
23	4	20	3371 30451	36	3371 3056	-1.06	4578 21993	107	4578 2225	-2.55
22	4	10	2526 21260	17	2526 2110	1.00	4752 20(10	02	4752 2022	2.00
23	4	19	3330.21300	4/	3330.2119	1.70	4/52.20019	85	4/52.2025	3.90
23	5	19	3536.82870	30	3536.8283	0.36	4753.39351	66	4753.3941	-0.59
23	5	18	3679.76224	63	3679.7631	-0.85	4900.53050	300	4900.5285	2.02
23	6	18	3685 02030	29	3685 0201	0.21	4909 56973	71	4909 5704	-0.63
23	6	17	2702.2001.5	2)	3003.0201	1.70	4707.50775	71	5010 (201	0.03
23	6	1/	3/92.26915	50	3/92.26/4	1.79	5012.63151	58	5012.6321	-0.63
23	7	17	3819.26815	28	3819.2677	0.49	5052.23591	33	5052.2374	-1.44
23	7	16	3875,90768	49	3875,9080	-0.37	5100,45707	64	5100.4556	1.44
22	e.	16	30/0 26/17	20	30/0 2622	1.01	5103 20246	34	5103 2022	0.23
23 22	0	10	3747.2041/	27	3747.2032	1.01	5155.50540	34	5155.5052	0.25
23	8	15	3966.39987	41	3966.3996	0.22	5205.79806	49	5205.7987	-0.61
23	9	15	4086.97543	28	4086.9755	-0.05	5344.74073	35	5344.7414	-0.66
23	9	14	4089,86950	44	4089,8693	0.23	5346.63958	52	5346 6348	4.77
	10	14	1220 07060	24	1720 0700	0.20	5511 50217	24	5511 5007	0.54
23	10	14	4230.9/809	20	4230.9/89	-0.20	3311.3921/	50	5511.592/	-0.54
23	10	13	4239.31231	39	4239.3119	0.41	5511.79544	48	5511.7970	-1.59
23	11	13	4405.78400	29	4405.7831	0.91	5693.35517	38	5693.3551	0.05
23	11	12	4405 81202	43	4405 8125	-0.43	5693 37048	53	5693 3724	-1.88
						5.15	20201040		2070.0147	

Table 3 (continued)

7	V	V	(0,0,0) E	$4E 10^{-5}$	F	Oba Cala	(0.1.0) E	$dE 10^{-5}$	E	Oba Cala
J	$\mathbf{\Lambda}_{a}$	$\mathbf{\Lambda}_{c}$	$(000) E_{obs}$	$dE = 10^{-1}$	E_{calc}	10^{-3} (am ⁻¹)	$(010) E_{obs}$	$dE = 10^{-1}$	E_{calc}	10^{-3} (am $^{-1}$)
			(cm ⁻)	(cm ·)	(cm ·)	10^{-5} (cm ⁻¹)	(cm ·)	(cm ·)	(cm ·)	$10^{-5} (cm^{-1})$
23	12	12	4585.73113	34	4585.7314	-0.26	5888.05013	52	5888.0499	0.24
23	12	11	4585.73331	41	4585.7335	-0.16	5888.05101	65	5888.0511	-0.06
23	13	11	4777.06898	35	4777.0693	-0.32	6093.80861	53	6093.8064	2.21
23	13	10	4777.06898	70	4777.0694	-0.44	6093.80861	106	6093.8065	2.14
23	14	10	4978 28002	47	4978 2799	0.16	6309 03004	62	6309 0278	2 23
23	14	9	4978 28002	94	4978 2799	0.16	6309.03004	124	6309.0278	2.23
23	15	0	5188 02071	56	5188 0300	-0.34	6532 31/36	60	6532 3146	_0.24
23	15	8	5188.02971	112	5188.0300	-0.34	6532 31436	138	6532.3146	-0.24
23	15	0	5405 10852	60	5405 1076	-0.34	*6762 20280	100	6762 4002	-0.24
23	16	07	5405.10852	128	5405.1076	0.90	*6762.39389	200	6762.4002	-0.27
23	10	7	5405.10852	156	5405.1070	0.90	0/02.39389	200	6762.4002	-0.27
23	17		5628.38013	104	5628.3811	-0.95	6998.11183	109	6998.1097	2.10
23	1/	6	5628.38013	208	5628.3811	-0.95	6998.11183	218	6998.1097	2.16
23	18	6	5856.77465	111	5856.7733	1.39	/238.33141	119	/238.3316	-0.18
23	18	5	5856.77465	222	5856.7733	1.39	7238.33141	238	7238.3316	-0.18
23	19	5	6089.24053	121	6089.2413	-0.73	7481.99427	121	7481.9950	-0.73
23	19	4	6089.24053	242	6089.2413	-0.73	7481.99427	242	7481.9950	-0.73
23	20	4	6324.75899	120	6324.7589	0.06	7728.04932	129	7728.0492	0.10
23	20	3	6324.75899	240	6324.7589	0.06	7728.04932	258	7728.0492	0.10
23	21	3	6562.29710	129	6562.2996	-2.46	7975.44353	135	7975.4436	-0.12
23	21	2	6562.29710	258	6562.2996	-2.46	7975.44353	270	7975.4436	-0.12
23	22	2	6800.81884	117	6800.8174	1.45	8223.10795	139	8223.1061	1.88
23	22	1	6800.81884	234	6800.8174	1.45	8223.10795	278	8223.1061	1.88
23	23	1			7039.2263		8469.91920	140	8469.9181	1.05
23	23	0			7039.2263		8469.91920	280	8469.9181	1.05
24	0	24			3003.4641				4160.9906	
24	1	24			3003.4641				4160.9907	
24	1	23			3231.3462				4409.8379	
24	2	23			3231.3462				4409.8384	
24	2	22	3440.81394	47	3440.8114	2.56			4635.4620	
24	3	22			3440.8128		4635,46750	300	4635.4666	0.87
24	3	21	3632 62425	48	3632 6300	-5 77	4840 06580	300	4840 0704	-4 57
24	4	21	3632.65214	65	3632,6571	-4.95	4840 12900	300	4840 1327	-3.71
24	4	20	3806 58485	39	3806 5783	6 59	5023 83076	78	5023 8276	3.17
24	5	20	3806 93410	71	3806 9360	-1.91	5024 54649	87	5023.0270	-2.44
24	5	19	3960 28914	44	3960 2901	-1.00	5183 47742	100	5183 4715	5.96
24	6	10	2062 56474	76	2062 5666	1.00	5180 26600	200	5180 2671	1.12
24	6	19	4085 51227	70	4085 5120	-1.64	*5208 86821	300	5208 8551	-1.12
24	7	10	4005.51527	50	4085.5129	1.67	*5220 52020	02	5228 5201	9 15
24	7	10	4104.00100	30	4104.0801	0.12	5402 24000	93	5402 2412	0.13
24	/	17	41/7.29353	54	4177.2932	0.12	5402.24009	63 75	5402.2415	-1.25
24	8	1/	4238.28185	34	4238.2820	-0.75	5482.47457	/ 3	5482.4/12	3.40
24	8	16	4264.51/50	30	4264.5168	0.69	5502.18545	40	5502.1874	-1.92
24	9	16	43/6.51852	44	43/6.51/6	0.95	5634.01488	58	5634.0153	-0.45
24	9	15	4381./2/66	30	4381.7273	0.37	5637.46685	41	5637.4663	0.55
24	10	15	4527.86625	48	4527.8660	0.24	5800.21092	62	5800.2115	-0.62
24	10	14	4528.54128	30	4528.5412	0.10	*5800.61379	40	5800.6275	-13.75
24	11	14	4694.15707	43	4694.1560	1.10	5981.60218	59	5981.6002	1.96
24	11	13	4694.22206	31	4694.2221	-0.09	5981.63531	46	5981.6391	-3.79
24	12	13	4874.00508	46	4874.0050	0.11	6176.34209	65	6176.3399	2.17
24	12	12	4874.00984	37	4874.0102	-0.33	6176.34074	49	6176.3429	-2.13
24	13	12	5065.59618	94	5065.5980	-1.85	6382.47958	79	6382.4812	-1.61
24	13	11	5065.59618	47	5065.5984	-2.19	*6382.45711	61	6382.4814	-24.27
24	14	11	5267.34184	96	5267.3430	-1.13	6598.35768	126	6598.3569	0.82
24	14	10	5267.34184	48	5267.3430	-1.15	6598.35768	63	6598.3569	0.81
24	15	10	5477.86035	116	5477.8597	0.64	6822.52541	142	6822.5253	0.14
24	15	9	5477.86035	58	5477.8597	0.64	6822.52541	71	6822.5253	0.14
24	16	9	5695.90948	130	5695.9100	-0.55	*7053.68082	154	7053.6972	-16.38
24	16	8	5695.90948	65	5695.9100	-0.55	*7053.68082	77	7053.6972	-16.38
24	17	8	5920.35159	166	5920.3504	1.18			7290.6885	
24	17	7	5920.35159	83	5920.3504	1.18			7290.6885	
24	18	7	6150.10040	228	6150.1018	-1.37			7532.3883	
24	18	6	6150.10040	114	6150.1018	-1.37			7532.3883	
24	19	6	6384.12914	240	6384.1277	1.40	7777.73474	254	7777.7354	-0.61

Table 3 (continued)

J	K _a	K_c	$(000) E_{obs}$ (cm ⁻¹)	$dE \ 10^{-5}$ (cm ⁻¹)	E_{calc} (cm ⁻¹)	Obs – Calc 10^{-3} (cm ⁻¹)	$(010) E_{obs}$ (cm ⁻¹)	$dE \ 10^{-5}$ (cm ⁻¹)	E_{calc} (cm ⁻¹)	Obs – Calc 10^{-3} (cm ⁻¹)
24	19	5	6384 12914	120	6384 1277	1 40	7777 73474	127	7777 7354	-0.61
24	20	5	6621 41684	258	6621 4167	0.14	8025 69672	258	8025 6973	-0.63
24	20	4	6621.41684	129	6621.4167	0.14	8025.69672	129	8025.6973	-0.63
24	21	4	6860.96552	256	6860.9651	0.44	8275.25099	272	8275.2511	-0.11
24	21	3	6860.96552	128	6860.9651	0.44	8275.25099	136	8275.2511	-0.11
24	22	3	7101.75794	272	7101.7601	-2.13	8525.36161	284	8525.3619	-0.34
24	22	2	7101.75794	136	7101.7601	-2.13	8525.36161	142	8525.3619	-0.34
24	23	2	7342.75948	252	7342.7607	-1.18	8774.96083	290	8774.9607	0.18
24	23	1	7342.75948	126	7342.7607	-1.18	8774.96083	145	8774.9607	0.18
24	24	1			7582.8754		9022.91329	296	9022.9160	-2.72
24	24	0			7582.8754		9022.91329	148	9022.9160	-2.72
25	0	25			3246.6954				4402.2129	
25	1	25			3246.6954				4402.2130	
25	1	24			3484.0032				4661.6497	
25	2	24			3484.0032				4661.6502	
25	2	23			3702.4350				4896.9861	
25	3	23			3/02.4358		5110 02200	200	4896.9895	1.64
25	3	22			3902.9941		5110.95500	300	5110.9514	1.04
25	4	22			3903.0093		5204 08100	200	5110.9092	0.20
25	4	21	1085 02248	44	4085.7240	1.97	5304.08100	300	5304.0807	0.50
25	5	21	4065.95546	44 62	4085.9510	2.10	3304.31900 *5474 26600	300	5474 2067	20.67
25	6	20	4249.01397	39	4251 0337	-3.06	5478 08700	300	5478 0869	-30.07
25	6	19	4231.05009	69	4386 3639	-1.97	*5612 90572	92	5612 8931	12.58
25	7	19	4399 51158	37	4399 5112	0.34	5634 35147	84	5634 3542	-2.76
25	7	18	4488 69562	69	4488 6989	-3.31	5714 83500	300	5714 8355	-0.55
25	8	18	4537 62292	41	4537 6227	0.24	5782.08948	93	5782.0903	-0.79
25	8	17	4575 45161	58	4575 4521	-0.49	5811 49836	98	5811 4977	0.62
25	9	17	4677.03620	36	4677.0346	1.58	5934.25343	45	5934.2541	-0.68
25	9	16	4685.93399	60	4685.9337	0.32	5940.25055	81	5940.2478	2.71
25	10	16	4827.85493	37	4827.8538	1.12	6099.82820	47	6099.8289	-0.70
25	10	15	4829.15706	51	4829.1569	0.18	*6100.65101	65	6100.6365	14.51
25	11	15	4993.51900	35	4993.5190	0.01	6280.71919	47	6280.7181	1.07
25	11	14	4993.65995	55	4993.6605	-0.54	*6280.78712	68	6280.8014	-14.27
25	12	14	5173.14241	36	5173.1415	0.92	6475.38588	54	6475.3810	4.90
25	12	13	5173.15480	49	5173.1538	1.04	6475.38235	67	6475.3879	-5.60
25	13	13	5364.89064	45	5364.8891	1.51	6681.81286	56	6681.8117	1.16
25	13	12	5364.89064	90	5364.8900	0.62	*6681.58321	73	6681.8122	-228.98
25	14	12	5567.08776	57	5567.0894	-1.66	6898.26560	68	6898.2656	-0.05
25	14	11	5567.08776	114	5567.0895	-1.72	6898.26935	87	6898.2657	3.67
25	15	11	5778.30722	58	5778.3072	-0.03	7123.24827	70	7123.2517	-3.40
25	15	10	5778.30722	116	5778.3073	-0.03	7123.24827	140	7123.2517	-3.40
25	16	10	5997.27321	67	5997.2729	0.31	*7355.39733	77	7355.4528	-55.42
25	16	9	5997.27321	134	5997.2729	0.31	*7355.39733	154	7355.4528	-55.42
25	17	9	6222.82571	74	6222.8269	-1.18	7593.67280	83	7593.6713	1.46
25	17	8	6222.82571	148	6222.8269	-1.18	7593.67280	166	7593.6713	1.46
25	18	8	6453.88560	94	6453.8850	0.56	7836.79300	300	7836.7939	-0.94
25	18	7	6453.88560	188	6453.8850	0.56	7836.79300	300	7836.7939	-0.94
25	19	7	6689.41604	122	6689.4145	1.50	8083.76500	300	8083.7655	-0.55
25	19	6	6689.41604	244	6689.4145	1.50	8083.76500	300	8083.7655	-0.55
25	20	6	6928.41270	128	6928.4151	-2.41	8333.56844	131	8333.5687	-0.27
25	20	5	6928.41270	256	6928.4151	-2.41	8333.56844	262	8333.5687	-0.27
25	21	5	7169.90331	136	7169.9025	0.85	8585.20683	133	8585.2041	2.74
25	21	4	7169.90331	272	7169.9025	0.85	8585.20683	266	8585.2041	2.74
25	22	4	7412.89380	135	7412.8919	1.91	8837.67061	141	8837.6707	-0.08
25	22	3	/412.89380	270	/412.8919	1.91	8837.67061	282	8837.6707	-0.08
25	23	3	7656.38053	143	7656.3809	-0.36	9089.94304	146	9089.9442	-1.15
25	23	2	/656.38053	286	/656.3809	-0.36	9089.94304	292	9089.9442	-1.15
25	24	2	/899.33208	133	/899.3295	2.57	9340.95137	150	9340.9516	-0.22
23 25	24	1	/899.33208	200	/899.3295	2.57	9340.9513/	300	9340.9516	-0.22
23 25	20 25	1			8140.6370		9589.54113	152	9389.3399	1.22
23	25	0			8140.6370		9589.54113	304	9389.5399	1.22

Table 3 (continued)

J	K _a	K_c	$(000) E_{obs}$ (cm ⁻¹)	$dE \ 10^{-5}$ (cm ⁻¹)	E_{calc} (cm ⁻¹)	Obs – Calc 10^{-3} (cm ⁻¹)	$(010) E_{obs}$ (cm^{-1})	$dE \ 10^{-5}$ (cm ⁻¹)	E_{calc} (cm ⁻¹)	Obs – Calc 10^{-3} (cm ⁻¹)
26	0	26			3499 1482					
26	1	26			3499 1482					
26	1	25			3745.8322					
26	2	25			3745 8323					
26	2	24			3973 1398					
26	3	24			3973 1402					
26	3	23			4182 3183					
26	4	23			4182 3269					
26		23			4102.5207					
26	+ 5	22			4373 7656					
20	5	22			4546.0654					
20	5	21			4547.2007					
20	6	21	4604 70659	40	434/.298/	7 71				
20	07	20	4094.70038	49	4094.0989	/./1				
20	7	20	4900 09705	41	4/03.4/3/	4.02				
20	/	19	4809.08705	41	4809.0920	-4.92				
26	8	19	4846.91352	68	4846.915/	-2.19				
26	8	18	4898.54776	43	4898.5426	5.12				
26	9	18	4988.26/07	66	4988.2659	1.1/				
26	9	17	5002.68378	43	5002.6853	-1.54				
26	10	17	5138.80266	67	5138.8037	-1.06				
26	10	16	5141.20086	41	5141.2040	-3.12				
26	11	16	5303.76909	58	5303.7679	1.20				
26	11	15	5304.05524	43	5304.0562	-0.98				
26	12	15	5483.03330	61	5483.0326	0.75				
26	12	14	5483.05839	39	5483.0600	-1.65				
26	13	14	5674.82750	55	5674.8253	2.24				
26	13	13	5674.82671	43	5674.8274	-0.72				
26	14	13	5877.39539	106	5877.3943	1.05				
26	14	12	5877.39539	53	5877.3945	0.91				
26	15	12	6089.24225	128	6089.2416	0.66				
26	15	11	6089.24225	64	6089.2416	0.65				
26	16	11	6309.05941	130	6309.0598	-0.34				
26	16	10	6309.05941	65	6309.0598	-0.34				
26	17	10	6535.66894	146	6535.6692	-0.23				
26	17	9	6535.66894	73	6535.6692	-0.23				
26	18	9	6767.97373	158	6767.9773	-3.60				
26	18	8	6767.97373	79	6767.9773	-3.60				
26	19	8	7004.95638	200	7004.9520	4.34				
26	19	7	7004.95638	100	7004.9520	4.34				
26	20	7	7245.60134	254	7245.6014	-0.05				
26	20	6	7245.60134	127	7245.6014	-0.05				
26	21	6	7488.95502	266	7488.9569	-1.93				
26	21	5	7488.95502	133	7488.9569	-1.93				
26	22	5	7734.06014	282	7734.0579	2.27				
26	22	4	7734.06014	141	7734.0579	2.27				
26	23	4	7979.93124	278	7979.9347	-3.44				
26	23	3	7979.93124	139	7979,9347	-3.44				
26	24	3	8225,59338	294	8225,5914	1.99				
26	24	2	8225 59338	147	8225 5914	1 99				
26	25	2	8469 98374	276	8469 9850	-1.23				
26	25	2 1	8469 98374	138	8469 9850	-1 23				
26	25	1	0100.00074	150	8712 0006	1.20				
26	26	0			8712.0006					

Notes. The first three columns contain rotational quantum numbers. Columns 4–7 contain experimentally determined rotational energies, its uncertainties, calculated levels, and differences between observed and calculated energies for the ground state. Columns 8–11 contain experimentally determined rotational energies, its uncertainties, calculated levels, and differences between observed and calculated energies for the (010) state.

vibration states of $D_2^{16}O$. The energy levels determined with this procedure are compiled in Table 3. We give also the full sets of calculated rotational energies up to J = 26 for (000) (column 6) and J = 25 for (010) (column 10) states as well as differences between ob-

served and calculated energies (columns 7 and 11). Note that 17 levels of the (010) state for $J = 22 \div 25$ were excluded from fitting procedure. These levels are marked by (*) in Table 3. A statistical analysis of the obtained data set, performed with the RITZ-program [53],

Table 4 Fitted values of the parameters of the effective Hamiltonian for the (000) and (010) states of the $D_2^{16}O$

Parameter		(000) state		(010) state			
		Value	SE	Value	SE		
E_{vv}				1178.37911	0.00033		
α0	$\times 10^{2}$	1.7468644	0.023	2.9249818	0.075		
α_1	$\times 10^5$	0.95753072	0.049	2.2439814	0.067		
α_2	$\times 10^{9}$	-7.0771295	0.90	5.013448	0.43		
α_3	$ imes 10^{12}$	5.1506882	0.71	2.7478	0.17		
g_{10}		6.059172847	0.0000082	6.064190464	0.000015		
g_{20}	$\times 10^4$	-3.1064795	0.0010	-3.359938	0.0017		
g_{30}	$\times 10^{8}$	6.9303662	0.050	7.8912508	0.082		
g_{40}	$\times 10^{11}$	-2.9633801	0.10	-2.8273516	0.16		
g_{50}	$\times 10^{14}$	1.1726468	0.078	0.79190907	0.12		
g_{01}		9.360738196	0.000063	10.5697761	0.000088		
g_{11}	$\times 10^{3}$	1.5242272	0.0010	1.9015806	0.0016		
g_{21}	$\times 10^{7}$	-2.2206153	0.046	1.7450925	0.11		
g ₃₁	$\times 10^{10}$	1.169283	0.059	-0.31885433	0.038		
q_{41}	$\times 10^{13}$			5.6595926	0.54		
q_{51}^{0+1}	$\times 10^{16}$			-3.0776576	0.22		
σ ₀₂	$\times 10^{2}$	3 1631549	0.054	6 3273908	0.20		
σ12	$\times 10^{5}$	2 6543332	0.12	6 7508554	0.20		
812 σ ₂₂	$\times 10^{8}$	-1.9609786	0.20	0 89744474	0.12		
822 a	$\times 10^{11}$	1.0606224	0.16	0.0777777	0.12		
832 G	× 10 ¹⁶	5 5242084	1.2				
842 a	$\times 10^{4}$	0.62442266	0.011	1 6272618	0.055		
<i>g</i> ₀₃	× 10	-0.02442200	0.011	-1.03/2018	0.035		
813	× 10	-0.043308422	0.0025	-0.19509595	0.0070		
g_{23}	× 10 ¹⁴	4.408/100	0.46	1 (221(05	0.20		
g_{33}	×10 ¹	-2.3019191	0.32	1.0221095	0.20		
g_{04}	$\times 10^{\circ}$	0.36180599	0.13	2.856459	0.76		
g_{14}	$\times 10^{11}$	0 00011054	0.015	7.9297	0.56		
g_{24}	$\times 10^{13}$	-0.222112/4	0.015	-3.0394149	0.13		
g_{05}	$\times 10^{3}$	0.17519787	0.0079	1.0526821	0.11		
g_{15}	$\times 10^{12}$	0.11742531	0.0057	1.3740659	0.075		
g_{06}	$\times 10^{12}$	-0.46148172	0.018	-4.3599655	0.33		
u_{00}	$\times 10^{1}$	6.0693445	0.00011	6.372253356	0.000055		
u_{10}	$\times 10^4$	-1.2333454	0.0020	-1.3593673	0.00052		
u_{20}	$\times 10^{8}$	3.4550294	0.12	3.7500286	0.015		
u_{30}	$\times 10^{11}$	-1.7486097	0.36	-0.9068694	0.014		
u_{40}	$\times 10^{14}$	1.3625477	0.50				
u_{50}	$\times 10^{18}$	-6.6021168	2.6				
u_{01}	$\times 10^4$	-3.4810307	0.0050	-7.5513044	0.018		
u_{11}	$\times 10^{8}$	-7.879744	0.20	-8.4797569	1.7		
u_{21}	$\times 10^{10}$			-3.4511754	0.61		
<i>u</i> ₃₁	$\times 10^{14}$	-1.5615474	0.36	8.539254	0.93		
u_{41}	$\times 10^{17}$			7.362	5.3		
<i>U</i> 02	$\times 10^{6}$	2.5064233	0.024	4,978267	0.16		
<i>U</i> 12	$\times 10^{10}$	8.2847821	0.54				
U22	$\times 10^{11}$			1.2575574	0.028		
1122 1122	$\times 10^{15}$	1.2183586	0.084	-4.568198	0.27		
1102	$\times 10^{8}$			3 120581	0.48		
14:0	$\times 10^{11}$			-5.816825	0.58		
113 1100	$\times 10^{14}$	-1 2287877	0.089	-2 442067	0.14		
u23	$\times 10^{10}$	1.2207077	0.007	-2.097886	0.16		
11.	$\times 10^{13}$	-0 33982268	0.020	3 109214	0.18		
14 11	$\times 10^{17}$	4 3073800	0.26	5.107217	5.10		
u 24	~ 10	T.JU/JU/J	0.20				

Note. All linear parameters g_{nm} , u_{nm} are in cm⁻¹. Non-linear parameters α_n are dimensionless.

indicates that information from microwave transitions [8] and particularly from very accurate microwave and submillimeter measurements [5,9–13] contribute signifi-

cantly to the precise determination of low-*J* levels, whereas complementary information from our high-temperature spectra allow to determine higher rotational energies.

It is well known that an accurate calculation of excited rotational states and the related analysis of highresolution spectra of the water molecule are complicated by an extremely strong centrifugal distortion resulting from the bending-rotational coupling. Because of this strong coupling the standard power series expansion of the effective rotational Hamiltonian H_{rot} is of limited use for the analysis of water vapor spectra. According to [41] the convergence radius of this expansion is limited to K_a values below a v_2 dependent maximal value $K_{a max}$. Using formulae (42-43) of [41] we can obtain estimations for the convergence radii of the power series expansion of H_{rot} for (000) and (010) states of D₂O which correspond to $K_{a max} = 15$ and $K_{a max} = 13$. In our D₂O emission spectra we have observed transitions with much higher values of K_a , up to 25. In order to account for the anomalous centrifugal distortion at high rotational energies, we use in the present study the generating function model [41,42]. It was shown that this model allows for the more accurate calculations of water rotational levels [40,46,48].

The reduced effective rotational Hamiltonian for an isolated vibration state of an asymmetric top molecule can be written in the form

$$H_{rot} = {}^d H_{rot} + {}^{n.d} H_{rot}.$$
 (1)

The diagonal ${}^{d}H_{rot}$ and the non-diagonal ${}^{n.d}H_{rot}$ parts of the Hamiltonian relative to $|J, K\rangle$ wavefunctions can be expanded using the generating function **G** following [42]:

$${}^{d}H_{v_1v_2v_3} = \sum_{nm} g_{nm} \mathbf{J}^{2n} \{ \mathbf{G}(\alpha^{(J)}) \}^m,$$
(2)

$${}^{nd}H_{v_1v_2v_3} = \sum_{nm} u_{nm} \mathbf{J}^{2n} \left[\left(J_+^2 + J_-^2 \right), \{ \mathbf{G}(\boldsymbol{\alpha}^{(J)}) \}^m \right]_+, \tag{3}$$

where the generating function is defined according to [41]:

Table 5				
Range of observed	data and	statistics of	the energy	level fitting

	(000) state	(010) state	
E_{max} (cm ⁻¹)	8470	9590	
$J_{max}, K_{a max}$	26, 25	25, 25	
N _{levels}	692	639	
N _{params}	42	45	
RMS (obs – calc) (cm $^{-1}$)	0.0012	0.0010	
Statistics			
$0 < O - C \leq 1$	1081 levels	81.2%	
$1 < O - C \leq 3$	219 levels	16.5%	
$3 < O - C \leq 5$	24 levels	1.8%	
5 <o-c< 8<="" td=""><td>7 levels</td><td>0.5%</td><td></td></o-c<>	7 levels	0.5%	

 $O - C = |E_{obs} - E_{calc}| \times 10^3 \,\mathrm{cm}^{-1}.$

$$\mathbf{G} \equiv \mathbf{G}(\alpha^{(J)}) = (2/\alpha^{(J)}) \left\{ \sqrt{1 + \alpha^{(J)} J_z^2} - 1 \right\}.$$
 (4)

Relations of the parameters of the generating function model to the Watson Hamiltonian constants and the extrapolation properties of this model are discussed in [42]. The *J*-dependence of $\alpha^{(J)}$ in the generating function is given by the development:

$$\alpha^{(J)} = \sum_{n} \alpha_n J^{2n}.$$
 (5)

In this study we keep non-linear α_n parameters of the generating function identical for diagonal (2) and non-

diagonal (3) rotational parts. The linear parameters g_{nm} , u_{nm} of the Hamiltonian expansion as well as non-linear parameters of the generating functions α_n for a given vibrational state were determined in a least squares fit to experimental rotational energies. The discrepancies between observed and calculated levels given in Table 3 (columns Obs – Calc in 10^{-3} cm⁻¹) show a quite good agreement for the entire range of experimentally accessible rotational quantum numbers. This proves the consistency of our assignments. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm⁻¹ for 692 rotational levels of the (000)

Fig. 3. Comparison of observed rotational levels of the (000) and (010) states of $D_2^{16}O$ with levels given by Toth [18].

state with $J_{max} = 26$, $K_{a max} = 25$ and 0.0010 cm^{-1} for 639 averaginary rotational levels of the (010) state with $J_{max} = 25$, expression outliers labelled by (*) in Table 3 (17 errors observed levels for (010) state) were excluded from the fit. Some of them (22_{1 21}, 22_{2 21}, 24_{6 18}, 24_{7 18}, 25_{5 20}, 25_{6 19}) correspond to blended or weak lines. Other out-

observed levels for (0 1 0) state) were excluded from the fit. Some of them $(22_{1 21}, 22_{2 21}, 24_{6 18}, 24_{7 18}, 25_{5 20}, 25_{6 19})$ correspond to blended or weak lines. Other outliers $(24_{13 11}, 25_{10 15}, 25_{11 14}, 25_{13 12}, \text{ and } K_a = 16$ levels of J = 23, 24, and 25) are due to accidental "resonance" perturbations of the (0 1 0) rotational levels by those of higher vibration states.

Values of the fitted Hamiltonian parameters for $(0\ 0\ 0)$ and $(0\ 1\ 0)$ states with their standard errors are given in Table 4. Our model with parameters given in Table 4 allows to achieve rather accurate data reduction (in average better than 10^{-3} cm⁻¹) for the presently available experimental data as it is seen in Table 3. The statistical errors of the fit of the energy levels are given in Table 5.

4. Discussion

The comparison with the most complete previous data sets for the (000) and (010) states given by Toth [18] are shown in Fig. 3. All our rotational levels of both vibrational states up to J = 19 are very close to published data. Only for two rotational levels $(21_{2 19})$ and $21_{3 18}$ of the (000) state and four rotational levels $(22_{1 21}, 22_{2 21}, 22_{2 20}, and 22_{3 20})$ of the (010) state

Fig. 4. Comparison of observed rotational levels of the $(0\ 0\ 0)$ and $(0\ 1\ 0)$ states of $D_2^{16}O$ with levels from global prediction using potential function of Partridge and Schwenke, [51].

_

Table 6 (continued)

dF

 J^{\prime}

 K'_a

 K'_c

J''

 K''_a

 K_c''

Freq

Table 6 New v_2 band lines of the $D_2{}^{16}O$ assigned for the first time in the absorption spectrum [18]

P	10	τ/	12/	12/	T//	1//	12//	1081.6880) 10	18	4	15	18
Freq	dF	J^{\prime}	K'_a	K_c'	$J^{\prime\prime}$	K_a''	K_c''	1088.2521	10	18	3	15	18
894.7852	10	16	9	7	17	10	8	1089.0183	3 10	17	4	14	17
894.9042	10	16	8	8	17	9	9	1095.7689) 10	16	4	13	16
896.2365	10	16	10	6	17	11	7	1099.0347	7 10	17	3	14	17
900.0541	10	15	5	11	16	6	10	1099 8461	10	18	5	14	18
906 4376	10	15	9	7	16	10	6	1102 5764	1 10	14	8	7	14
007.8120	10	15	7	0	16	0	0	1102.570	1 10	15	0	, 0	15
907.8120	10	15	10	9	10	0	0 5	1102.009	+ 10 7 10	15	0	0 7	15
907.9803	10	13	10	11	10	11	5	1102.922	7 10	13	0	7	13
915.0013	10	13	3	11	13	6	8	1102.966	10	14	9	2	14
917.9932	10	14	8	1	15	9	6	1103.0409	20	11	7	4	11
918.0077	10	14	8	6	15	9	7	1103.2364	i 10	16	9	7	16
918.2155	10	14	9	5	15	10	6	1103.3705	5 10	16	8	8	16
918.7563	10	14	5	10	15	6	9	1103.7586	5 10	17	8	10	17
919.4299	10	14	7	8	15	8	7	1104.0551	10	17	5	13	17
919.7017	10	14	7	7	15	8	8	1105.0231	10	13	10	4	13
919.8337	10	14	10	4	15	11	5	1105.4114	4 10	16	7	10	16
921.9104	10	14	6	9	15	7	8	1106.0329) 10	17	7	11	17
931.2216	10	13	7	6	14	8	7	1106.4764	4 10	16	7	9	16
931 7880	10	13	10	4	14	11	3	1107 307	3 10	16	5	12	16
934 5955	10	13	11	3	14	12	2	1108 1636	5 10	17	6	12	17
938 3265	15	13	12	2	14	13	1	1108 4330	20^{-10}	13	11	3	13
938.3203	10	15	5	10	14	6	11	1108.433	× 10	15	6	11	15
940.0014	10	10	11	10	10	12	2	1100.471.	y 10	10	2	11	10
946.6923	10	12	11	1	13	12	2	1110.1843	5 10	10	3	15	10
947.6396	10	21	1	21	22	0	22	1112.8314	+ 10	15	6	9	15
950.4712	15	12	12	0	13	13	1	1116.5569	20	16	6	10	16
958.6487	10	20	0	20	21	1	21	1123.3349) 10	18	4	14	18
958.8783	10	11	11	1	12	12	0	1131.8172	2 10	17	4	13	17
963.7215	10	21	1	21	21	2	20	1135.5702	2 10	16	5	11	16
974.9993	10	20	0	20	20	1	19	1137.9022	2 10	16	4	12	16
975.5681	10	19	2	18	20	1	19	1139.0263	3 10	17	5	12	17
976.6931	10	14	2	12	14	5	9	1140.1564	4 10	18	5	13	18
977.7315	10	16	4	12	17	5	13	1238.1991	10	11	8	4	10
978.0974	10	15	4	11	16	5	12	1268.8608	3 10	16	5	11	16
985.4327	10	18	1	17	19	2	18	1282.4642	2 10	17	6	11	17
986 2325	10	19	1	19	19	2	18	1285 8993	3 10	16	6	10	16
987 4540	10	18	2	16	19	3	17	1205.055	10	16	4	12	16
087 6111	10	18	2	16	10	2	17	1290.900	5 10	13	5	0	13
002 0280	10	17	2	14	19	4	17	1295.0100	10	13	6	9	13
995.0280	10	17	2	14	10	4	15	1515.2095	20	14	0	12	14
994.2491	10	14	3	11	14	0	8	1313.7233	5 50	10	3	13	10
995.0944	10	13	3	10	13	6	/	1320.2602	2 10	16	4	13	16
996.2899	10	13	2	11	13	5	8	1320.6748	8 10	18	4	14	18
996.3439	10	17	2	15	18	3	16	1323.2620) 10	17	5	13	17
996.6386	10	17	3	15	18	2	16	1324.4421	10	13	2	12	12
996.8222	10	17	4	14	18	3	15	1328.2483	3 30	16	3	14	16
999.6172	20	16	3	13	17	4	14	1329.9713	3 20	16	7	9	16
1005.2855	10	15	3	12	16	4	13	1334.2103	3 10	16	2	15	16
1005.6682	10	16	3	14	17	2	15	1345.1108	3 10	16	5	11	15
1006.0966	10	16	4	13	17	3	14	1361.0144	10	15	2	13	14
1018.5118	20	19	2	18	19	3	17	1369.1411	10	21	1	21	20
1018 5418	20	19	1	18	19	2	17	1369 8178	3 10	15	8	8	15
1027 2058	10	14	4	11	15	3	12	1370.0691	10	18	1	17	17
1028.4602	10	18	2	17	18	3	16	1370.0797	7 10	18	2	17	17
1028.4002	10	10	1	17	10	2	16	1276 710	10	10	0	22	21
1028.3191	20	10	5	17	10	4	10	1370.710	y 10	10	0	10	21 10
1033.3449	20	15	3	11	10	4	12	13/8.9432	2 10	19	2	18	10
1038.5222	10	1/	1	16	1/	2	15	1384.0462	2 10	16	3	13	15
1038.8585	10	20	2	18	20	3	17	1387.7175	> 10	20	1	19	19
1047.6313	10	19	3	17	19	4	16	1391.0264	i 10	18	2	16	17
1048.0915	10	19	2	17	19	3	16	1391.1162	2 10	18	5	13	17
1056.6478	10	18	3	16	18	4	15	1391.2738	3 10	18	3	16	17
1057.4769	10	18	2	16	18	3	15	1395.7397	7 10	17	4	13	16
1057.8192	10	21	4	18	21	5	17	1396.4041	10	21	2	20	20
1067.0847	10	17	2	15	17	3	14	1396.4372	2 10	17	3	14	16
1080.2793	10	16	4	13	15	7	8	1398.7094	4 10	15	9	7	15
		-		-	-		-				-		

Table 6 (continued)

Freq	dF	J'	K'_a	K_c'	J''	K''_a	K_c''
1400 7866	10	19	3	17	18	2	16
1407 9172	10	19	3	15	17	4	14
1410 1604	30	20	2	18	10	3	17
1411 2804	10	18	4	15	17	3	14
1412 8707	10	18		14	17	5	13
1412.3707	10	10	2	14	19	1	15
1410.7014	20	21	2	10	20	4 2	19
1419.3933	10	10	3	19	10	2	10
1420.0955	10	19	4	10	10	5	15
1423.0108	10	15	10	4	15	9	5 14
1428.0985	10	19	4	15	18	3	14
1429.2311	10	20	3	17	19	4	10
1430.3079	10	20	4	17	19	3	16
1430.5495	10	16	5	12	15	4	11
1433.8259	10	1/	5	13	16	4	12
1441./185	10	20	4	16	19	5	15
1444.5798	10	19	5	15	18	4	14
1483.6352	10	16	6	11	15	5	10
1485.2549	10	17	6	12	16	5	11
1524.6505	10	16	6	10	15	5	11
1531.5470	10	16	7	10	15	6	9
1539.5136	10	16	7	9	15	6	10
1554.7185	10	15	8	8	14	7	7
1555.0624	10	15	8	7	14	7	8
1562.8983	10	14	5	10	13	2	11
1566.2000	10	11	6	6	10	3	7
1566.4452	10	14	4	11	13	1	12
1566.8661	10	16	8	8	15	7	9
1571.7957	10	12	6	7	11	3	8
1575.5892	10	17	5	12	16	4	13
1577.9653	10	14	2	12	13	1	13
1579.0903	10	13	6	8	12	3	9
1579.2201	10	11	5	6	10	2	9
1579.3966	10	14	3	12	13	0	13
1583.4134	10	15	9	7	14	8	6
1583.4334	10	15	9	6	14	8	7
1584.9384	30	11	11	1	10	10	0
1585.2343	10	16	4	12	15	3	13
1586.8254	10	15	5	11	14	2	12
1587.1736	10	15	3	12	14	2	13
1589.0431	10	14	6	9	13	3	10
1595.0315	10	15	4	12	14	1	13
1595.4511	10	16	9	8	15	8	7
1595.5113	10	16	9	7	15	8	8
1598.0912	10	12	11	1	11	10	2
1598.2075	10	14	10	4	13	9	5
1602.2465	10	15	6	10	14	3	11
1608.8416	10	15	3	13	14	0	14
1610,7890	10	15	10	6	14	9	5
1611 1634	10	13	11	3	12	10	2
1619,1890	10	16	3	13	15	2	14
1622 3159	15	12	12	0	11	11	1
1623 1937	10	16	10	6	15	9	7
1624 1303	10	14	11	3	13	10	4
1636 9668	10	15	11	5	14	10	4
1658.6829	30	13	13	1	12	12	0

Notations. Freq, wavenumber (cm⁻¹); dF, uncertinity of wavenumber (10⁻⁴ cm⁻¹); J', K'_a , K'_c , upper rotation numbers; J'', K''_a , K''_c , lower rotation numbers.

deviations are larger than 0.01 cm^{-1} . We propose that at least these six levels must be corrected according to our assignment. A comparison of our observed energy levels with the global predictions from the molecular potential energy surface [51] is shown on Fig. 4. The distribution of the deviations has the same character as that for HD¹⁶O and H₂¹⁸O molecules reported in our previous studies [46,54]. Predictions from the PS [51] potential function are surprisingly good for global calculations up to $J \sim 12$ –15. For higher K_a the predictions appear to be systematically overestimated, (calc. – obs.) gradually increasing with K_a .

With these new high J, K_a data the previously published [18] room temperature absorption spectrum in the v_2 band range has been re-visited in order to confirm our assignments of the rotational energy levels for the (0 0 0) and (0 1 0) vibrational states. This spectrum was recorded by Toth [18] with a Fourier-transform spectrometer located in the McMath solar facility at the Kitt Peak National Observatory. The spectrum was obtained from Digital Library of NSO (http:///www.nso.edu). We were able to complete the assignment of [18] with more than 180 additional transitions of the v_2 band of $D_2^{16}O$. These transitions correspond to high values of J, K_a rotational numbers and were not reported in previous studies of $D_2^{16}O$ molecule. The list of these new v_2 line positions with rotational assignments is given in Table 6.

5. Conclusion

This paper reports the first analysis and accurate theoretical modelling of hot emission spectra of the $D_2^{16}O$ molecule in the spectral range of 320-860 cm⁻¹. We provide an extensive list of 1348 rotational levels of the (000) and (010) vibrational states up to maximal values of rotational quantum numbers J = 26 and $K_a = 25$. More than 1150 newly observed transitions of the $D_2^{16}O$ molecule are reported. To reproduce the rotational energy levels of the two vibrational states it was found to be necessary to use a non-polynomial effective rotational Hamiltonian. A use of effective rotational Hamiltonians in the generation function form provides a good agreement with spectroscopic accuracy between observed and calculated energy levels as it is seen in Table 3. Comparisons of the observed energy levels with the best available literature energy levels and with the global predictions from the molecular electronic potential energy surface are discussed.

Acknowledgments

S.N.M. gratefully acknowledges support from DAAD and thanks the Physikalisch-Chemischen Institut at the Justus-Liebig-Universität Giessen and Molekülspektroskopisches Laboratorium for giving him the opportunity to continue his research on emission water spectra. E.N.S. acknowledges support from Tomsk State University and Scientific School of Prof. S.D. Tvorogov, Corr. Member of RAS "Optical spectroscopy and Radiative Processes in the Atmosphere". S.A.T. and Vl.G.T. thank D. Schwenke for collaborations in global calculations and acknowledge support from the IDRIS computer centre of CNRS.

References

- [1] N. Ginsburg, Phys. Rev. 74 (1948) 1052-1057.
- [2] C.I. Beard, D.R. Bianco, J. Chem. Phys. 20 (1952) 1488-1489.
- [3] C.K. Jen, D.R. Bianko, J.T. Massey, J. Chem. Phys. 21 (1953) 520–525.
- [4] G. Erlandsson, J. Cox, J. Chem. Phys. 25 (1956) 778-779.
- [5] W.S. Benedict, S.A. Clough, L. Frenkel, T.E. Sullivan, J. Chem. Phys. 53 (1970) 2565–2570.
- [6] G. Steenbeckeliers, J. Bellet, C. R. Acad. Sci. Paris B 270 (1970) 1039–1041.
- [7] J. Bellet, G. Steenbeckeliers, C. R. Acad. Sci. Paris B 271 (1970) 1208–1211.
- [8] D.A. Stephenson, R.G. Strauch, J. Mol. Spectrosc. 35 (1970) 494– 495.
- [9] G. Steenbeckeliers, J. Bellet, J. Mol. Spectrosc. 45 (1973) 10-44.
- [10] J.K. Messer, F.C. De Lucia, P. Helminger, J. Mol. Spectrosc. 105 (1984) 139–155.
- [11] O.I. Baskakov, V.A. Alekseev, E.A. Alekseev, B.I. Polevoy, Opt. Spectrosc. 63 (1987) 1016–1018 (in Russian).
- [12] F. Matsushima, M. Matsunaga, G.Y. Qian, Y. Ohtaki, R.L. Wang, K. Takagi, J. Mol. Spectrosc. 206 (2001) 41–45.
- [13] E.A. Michael, C.J. Keoshian, S.K. Anderson, R.J. Saykally, J. Mol. Spectrosc. 208 (2001) 219–223.
- [14] J.W.C. Johns, J. Opt. Soc. Am. B 2 (1985) 1340-1354.
- [15] R. Paso, V.M. Horneman, J. Opt. Soc. Am. B 12 (1995) 1813– 1837.
- [16] C. Camy-Peyret, J.M. Flaud, A. Mahmoudi, G. Guelachvili, J.W.C. Johns, Line, Int. J. IR Millimeter Waves 6 (1985) 199–233.
- [17] R.A. Toth, J. Mol. Spectrosc. 162 (1993) 41–54.
- [18] R.A. Toth, J. Mol. Spectrosc. 195 (1999) 98–122.
- [19] K.B. Thakur, C.P. Rinsland, M.A.H. Smith, D.C. Benner, V. Malathy Devi, J. Mol. Spectrosc. 120 (1986) 239–245.
- [20] N. Papineau, Ph.D. Dissertation, Orsay, 1980.
- [21] N. Papineau, J.M. Flaud, C. Camy-Peyret, G. Guelachvili, J. Mol. Spectrosc. 87 (1981) 219–232.
- [22] V.D. Gupta, J. Phys. B 14 (1981) 1761-1770.
- [23] A.D. Bykov, V.S. Makarov, N.I. Moskalenko, O.V. Naumenko, O.N. Ulenikov, O.V. Zotov, J. Mol. Spectrosc. 123 (1987) 126–134.
- [24] A. Bykov, O. Naumenko, L. Sinitsa, B. Voronin, B.P. Winnewisser, J. Mol. Spectrosc. 199 (2000) 158–165.
- [25] T. Ohshima, H. Sasada, J. Mol. Spectrosc. 136 (1989) 250-263.
- [26] P.S. Ormsby, K.N. Rao, M. Winnewisser, B.P. Winnewisser, A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, J. Mol. Spectrosc. 158 (1993) 109–130.
- [27] A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, B.P. Winnewisser, M. Winnewisser, P.S. Ormby, K.N. Rao, J. Mol. Spectrosc. 166 (1994) 169–175.

- [28] X.H. Wang, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, S.G. He, S.M. Hu, H. Lin, Q.S. Zhu, J. Mol. Spectrosc. 200 (2000) 25–33.
- [29] S.G. He, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, X.H. Wang, S.M. Hu, H. Lin, Q.S. Zhu, J. Mol. Spectrosc. 200 (2000) 34–39.
- [30] O.N. Ulenikov, S.G. He, G.A. Onopenko, E.S. Bekhtereva, X.H. Wang, S.M. Hu, H. Lin, Q.S. Zhu, J. Mol. Spectrosc. 204 (2000) 216–225.
- [31] O.N. Ulenikov, S.M. Hu, E.S. Bekhtereva, G.A. Onopenko, S.G. He, X.H. Wang, J.J. Zheng, Q.S. Zhu, J. Mol. Spectrosc. 210 (2001) 18–27.
- [32] S.M. Hu, O.N. Ulenikov, E.S. Bekhtereva, G.A. Onopenko, S.G. He, H. Lin, J.X. Cheng, Q.S. Zhu, J. Mol. Spectrosc. 212 (2002) 89–95.
- [33] J.M. Flaud, C. Camy-Peyret, J.P. Maillard, Mol. Phys. 32 (1976) 499–521.
- [34] A.S. Pine, M.J. Coulombe, C. Camy-Peyret, J.M. Flaud, J. Phys. Chem. Ref. Data 12 (1983) 413–465.
- [35] L. Wallace, P.F. Bernath, W. Livingstone, K. Hinkle, J. Busler, B. Guo, K. Zang, Science 268 (1995) 1155–1158.
- [36] O.L. Polyansky, N.F. Zobov, J. Tennyson, J.A. Lotoski, P.F. Bernath, J. Mol. Spetrosc. 184 (1997) 35–50.
- [37] M.P. Esplin, R.B. Wattson, M.L. Hoke, L.S. Rothman, JQSRT 60 (1998) 711–739.
- [38] R. Lanquetin, L.H. Coudert, C. Camy-Peyret, J. Mol. Spectrosc. 195 (1999) 54–67.
- [39] J. Tennyson, N.F. Zobov, R. Williamson, O.L. Polyansky, P.F. Bernath, J. Phys. Chem. Ref. Data 30 (2001) 735–831.
- [40] S.N. Mikhailenko, Vl.G. Tyuterev, V.I. Starikov, K.A. Albert, B.P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, J.M. Flaud, J.W. Brault, J. Mol. Spectrosc. 213 (2002) 91–121.
- [41] Vl.G. Tyuterev, J. Mol. Spectrosc. 151 (1992) 97-129.
- [42] Vl.G. Tyuterev, V.I. Starikov, S.A. Tashkun, S.N. Mikhailenko, J. Mol. Spectrosc. 170 (1995) 38–58.
- [43] V.I. Starikov, Vl.G. Tyuterev, Intramolecular Ro-vibrational Interactions and Theoretical Models in the Spectroscopy of Nonrigid Molecules, Nauka, Tomsk, 1997, pp. 1–223 (in Russian).
- [44] J.K.G. Watson, J. Chem. Phys. 46 (1967) 1936–1949.
- [45] O.L. Polyansky, J. Mol. Spectrosc. 112 (1985) 79-87.
- [46] S.N. Mikhailenko, Vl.G. Tyuterev, G. Mellau, J. Mol. Spectrosc. 217 (2003) 195–211.
- [47] M. Birk, M. Winnewisser, E.A. Cohen, J. Mol. Spectrosc. 136 (1989) 402–445.
- [48] S.N. Mikhailenko, VI.G. Tyuterev, K.A. Keppler, B.P. Winnewisser, M. Winnewisser, G. Mellau, S. Klee, K.N. Rao, J. Mol. Spectrosc. 184 (1997) 330–349.
- [49] W. Quapp, M. Hirsch, G.Ch. Mellau, S. Klee, M. Winnewisser, A. Maki, J. Mol. Spectrosc. 195 (1999) 284–298.
- [50] A. Maki, G.Ch. Mellau, S. Klee, M. Winnewisser, W. Quapp, J. Mol. Spectrosc. 202 (2000) 67–82.
- [51] H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618– 4639.
- [52] D.W. Schwenke, H. Partridge, J. Chem. Phys. 113 (2000) 6592– 6597.
- [53] S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov, N.N. Lavrentieva, JQSRT 82 (2003) 165–196.
- [54] S. Mikhailenko, Vl.G. Tyuterev, G.Ch. Mellau, XVI Colloquium on High Resolution Molecular Spectroscopy, Dijon, 1999.

Article 2 (partie II)

Available online at www.sciencedirect.com

Journal of Molecular Spectroscopy 233 (2005) 32-59

Journal of MOLECULAR SPECTROSCOPY

www.elsevier.com/locate/jms

Analysis of the first triad of interacting states (020), (100), and (001) of $D_2^{16}O$ from hot emission spectra $\stackrel{\approx}{\sim}$

S.N. Mikhailenko^{a,*}, G.Ch. Mellau^b, E.N. Starikova^{a,c}, S.A. Tashkun^a, Vl.G. Tyuterev^d

^a Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, av. Akademicheskii, 634055, Tomsk, Russia

^b Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany

^c Physics Department, Tomsk State University, 36, av. Lenina, 634050, Tomsk, Russia

^d Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, Université de Reims, Faculté des Sciences,

Moulin de la Housse, BP 1039, 51687, Reims Cedex 2, France

Received 13 April 2005 Available online 19 July 2005

Abstract

The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320–860 and 1750–3400 cm⁻¹. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the $D_2^{16}O$ molecule corresponding to transitions from highly excited rotational levels of the (020), (100), and (001) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: $J_{max} = 29$ and $K_{a(max)} = 22$ for the (020) state, $J_{max} = 29$ and $K_{a(max)} = 25$ for the (100) state, and $J_{max} = 30$ and $K_{a(max)} = 23$ for the (001) state. The extended set of 1987 experimental rotational energy levels for the (020), (100), and (001) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm⁻¹ for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.

© 2005 Elsevier Inc. All rights reserved.

Keywords: IR spectroscopy; Hot water; D216O; Emission spectra; Rovibrational levels; First triad

1. Introduction

In this paper, we continue studies of emission spectra for isotopic species of the water molecule. In our previous paper [1] an extended set of experimental transitions and energy levels for two lowest vibrational states (000) and (010) of $D_2^{16}O$ molecule has been reported together

* Corresponding author. Fax: +7 38 22 49 20 86.

with the corresponding set of effective Hamiltonian parameters. The aim of the present study was to extend experimental information on rovibrational energy levels of $D_2^{16}O$ from the analysis of the heated water vapour emission spectra in the 320–860 and 1750–3400 cm⁻¹ regions.

A short review on microwave and infrared studies of $D_2^{16}O$ molecule can be found in [1], see also [1–32] therein. Here, we focus only on studies of the first triad of interacting states (020), (100), and (001). The spectral region of the first triad of $D_2^{16}O$ was studied in absorption in [2–4]. Later on additional line positions

^{*} Reported at 18th International Conference on High Resolution Molecular Spectroscopy, Prague, September 8–12, 2004.

E-mail address: semen@lts.iao.ru (S.N. Mikhailenko).

^{0022-2852/}\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jms.2005.05.013

33

and strengths of hot band $2v_2-v_2$ and difference bands v_1-v_2 and v_3-v_2 and a set of more precisely determined experimental rovibrational energy levels up to J = 19 and $K_a = 10$ for the first triad have been reported by Toth [5]. In a recent paper [6] the region 380–1880 cm⁻¹ has been studied in emission and an extensive set of energy levels for the (020) state up to J = 30 and $K_a = 20$ has been reported.

In this paper, we report on rotational transitions of the $2v_2-2v_2$, v_1-v_1 , and v_3-v_3 bands, rovibrational transitions of the $2v_2-v_1$, $2v_2-v_3$, v_1-v_3 , v_1-2v_2 , v_3-v_1 , and v_3-2v_2 bands of $D_2^{16}O$ in the 322–661 cm⁻¹ region and rovibrational transitions of the $2v_2-v_2$ (623–849 cm⁻¹), v_1-v_2 , and v_3-v_2 (1750–2030 cm⁻¹) bands observed in water emission spectra recorded at temperatures 1370, 1520, and 1940K. These new measurements allow to improve the accuracy of a determination of highly excited rovibrational levels and to extend considerably the range of experimentally accessible rotational quantum numbers for the (020), (100), and (001) vibration states of $D_2^{16}O$.

The data reduction was achieved by using the generating-function model [7–10] of the effective rotational Hamiltonian because the usual polynomial model for centrifugal distortion terms [11] employed in most of previous analyses of $D_2^{16}O$ spectra (see [4–23,26–32] of paper [1]) does not provide a satisfactory accuracy for our data.

2. Experimental spectra analysis

A new emission source cell was designed at the Molekülspektroskopisches Laboratorium at the Justus-Liebieg Universität Giessen for the measurement of the infrared emission of hot gases up to temperatures of 2000 K using the Bruker IFS120HR high resolution spectrometer. A description of the cell and other experimental details are given in the papers on HCN emission spectra experiments [12,13]. The new emission cell is a 1-m long alumina tube with 46 mm inner diameter fitted with CaF₂ windows. The central part of the cell was enclosed in an electrically heated commercial furnace yielding a uniformly heated region of 50 cm in length and temperatures up to 2000 K. The cooling of the windows and of the cell ends was redesigned, the number of cooling elements increased from 4 to 10. Even at a temperature of 2000 K it was possible to keep the windows of the new apparatus at room temperature. For this the 28 cm long ends of the alumina tube was cooled so that the cell temperature was falling down uniformly until 60 °C at the windows. The high temperature emission spectrum of pure D216O vapour was recorded with 0.015 cm^{-1} resolution (1/MOPD) in the 1750–7000 cm⁻¹ spectral range. The maximum temperature of the gas in our experiment was 1940 K, although the

28 cm long segments near the windows was at much lower temperature. Table 1 lists the experimental conditions under which this spectrum was taken. Spectrum was recorded at Giessen on the Bruker IFS 120 HR Fourier transform spectrometer [14] which had previously been used to record room-temperature spectra of $D_2^{16}O$ [15] and $H_2^{16}O$ [16,17] and hot emission spectra of $D_2^{16}O$ [1] and $H_2^{18}O$ [18]. In addition, the $D_2^{16}O$ emission lines were identified and used in the present analysis from the emission spectra of pure $D_2^{16}O$ in the 320–520 cm⁻¹ range [1] and an emission spectrum in the 520–860 cm⁻¹ range of water with natural isotopic abundance [18].

More than 3500 lines in five emission spectra in the 322-849 and 1750-3400 cm⁻¹ spectral ranges were assigned of 12 above mentioned bands of the $D_2^{16}O$ molecule. A lineshape analysis using the SpectramFit program [19] was done for a precise determination of the line positions.

Low-J, K_a transitions could be readily assigned using available energy levels given by Toth [5]. An assignment of higher J, K_a transitions requires extrapolations based on theoretical calculations. Because the standard polynomial model of the effective Hamiltonian in the case of water-type non-rigid molecules has poor convergence and extrapolation properties, we have used the generating function model [7–10] outlined in the next section in a similar way as in our previous work on the (000) and (010) of $D_2^{16}O$ [1]. As described in previous works on water spectra [1,17] we used for the assignment purposes a combination of successive fits and extrapolations using this effective Hamiltonian, of global variational predictions from a molecular potential function with a subsequent validation of a data consistency through a RITZ program as discussed later.

Initial rovibrational assignments for medium J, K_a are greatly helped by global variational water spectra predictions by Schwenke and Partridge (SP) [20,21] which combine line position calculations from an

Table 1	l
---------	---

Laboratory measurement conditions for emission FTIR spectra of water vapour

· · · · · · · · · · · · · · · · · · ·				
Filename	MEH20D			
Date	23.03.2001			
Gas temperature (K)	1940			
Total water pressure (mbar)	10.6			
Resolution $(1/MOPD/cm^{-1})$	0.015			
Scans	2100			
Length of the cell	1 m			
Diameter of the cell	46 mm			
Length of hot zone	50 cm			
Detector	InSb at 77 K			
Detector window	CaF ₂			
Cell window	CaF ₂			
Aperture spectrometer	2.0 mm			
Measurement range	$1800-7000 \text{ cm}^{-1}$			
empirically refined potential function and ab initio intensity calculations. These calculations which are recognized to be of high quality both for line position and line intensities provide a complete set of simulated transitions for various relevant bands and are of particular importance for an overview of spectral patterns of isotopically substituted species and for an assignment of weak transitions corresponding to highly excited rovibrational states. We have reproduced a similar line list for D₂O from the PS potential function including diagonal Born–Oppenheimer (DBOC) corrections as was defined in the original paper [20] for energies and from the new dipole moment function of [21] for intensities.

The excellent agreement with the observations up to $J \sim 10$ will be discussed in Section 4. As was discussed already in the literature despite of the high quality of global predictions, the assignment of many recorded lines still remained a non-trivial task as sometimes the accuracy of the predictions is not sufficient to unambiguously attribute rovibrational quantum numbers. On the other hand in this kind of calculations, only J and the symmetry type Γ are rigorously defined. As the choice of coordinates and wave function basis are quite different from that of the effective Hamiltonian approach, one faces a problem of "spectroscopic assignment" of the high-energy calculated levels *i.e.* of attributing normal mode quantum numbers $(V_1V_2V_3)$ as well as rotational labels K_a and K_c (for those states where such a traditional assignment makes sense).

A final assignment of the observed transitions has been achieved by a step-by-step fit of the effective Hamiltonian using the generating function model and iterative extrapolation with increasing J and K_a quantum numbers for $J \sim 20{\text{--}}30$. The line positions in the 1750-3400 cm⁻¹ spectral range were calibrated using available literature data [2].

Fig. 1 shows an overview of the emission spectrum recorded at 1940 K and with a D₂O pressure of 10.6 mbar. In Figs. 2 and 3 give a zoom in the same spectrum near 2298 and 2557 cm⁻¹, respectively. Some lines of Fig. 3 correspond to transitions from vibrational states higher than those of the first triad, note for example lines of the bands $(002) \rightarrow (001)$, $(011) \rightarrow (010)$, $(021) \rightarrow (020)$, and $(031) \rightarrow (030)$. All new observed line positions corresponding to the first triad of interacting states (020), (100), and (020) of $D_2^{16}O$ (for transitions which have not been observed in previously reported room-temperature spectra) together with their uncertainties and vibrational and rotational assignments are listed in supplementary data for this article. Some transitions of this list in the 381-848 cm⁻¹ spectral range were reported in a recent paper [6].

3. Data reduction: energy levels and Hamiltonian parameters for the (020), (100), and (001) states

To assure a consistency of the energy level determinations from various sources of experimental line positions we have applied the RITZ code, which is now routinely used to recover energy levels and calibrations factors from the CO₂ high-resolution experimental data (see, e.g. [22]). For the water molecule this code is used in a similar way as in our previous studies on $H_2^{16}O$ [17] and on the (000) and (010) of $D_2^{16}O$ [1]. This program uses the Ritz combination principle to recover all

Fig. 1. Overview of the emission FTIR spectra of $D_2^{16}O$ in the range 1750–3400 cm⁻¹.

Fig. 2. Example of emission spectra and line assignment in the 2296–2300 cm⁻¹ region.

Fig. 3. Example of emission spectra and line assignment in the $2556.2-2558.7 \text{ cm}^{-1}$ region.

possible energy levels by simultaneous processing of all line positions available from literature. In cases where a level is involved in many observed transitions the program provides for averaging, which eliminates to a certain extent contributions of line shifts. The procedure generates a set of energy levels using a least squares procedure as is described in [1,17]. This method of energy level determination aimed at achieving the greatest consistency among all available experimental spectra in various spectral ranges should give more reliable estimates both for energy levels and their experimental uncertainties than a classical combination difference approach (see the discussion in Section 2 of [17] and references therein).

A total of 10800 observed transitions including those of [1,2,5,23-31] were simultaneously used to obtain a new set of rotational energies for the (020), (100), and (010) vibration states of $D_2^{16}O$. The energy levels of the first triad determined with this procedure are listed in Table 2. We give the set of 1987 energy levels for all

Table 2	
Experimental term values for rovibrational levels of the first triad interacting states (020), (10	00), and (001) of the $D_2^{16}O$ molecule

J	Ka	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
0	0	0	2336.8389	2	0	2671.6446	2	1	2787.7176	2	1
1	0	1	2348 9707	2	_2	2683 6047	2	4	2799 7578	2	0
1	1	1	2348.9707	2	-2	2601.6050	2	12	2807 3028	2	3
1	1	0	2362.3474	2	-2 -5	2694.0104	2	7	2807.3928	2	-3 -3
-	-	-		_	-		_			_	-
2	0	2	2372.7907	2	0	2707.0520	2	6	2823.3299	1	-1
2	1	2	2381.2997	1	-5	2713.1203	1	8	2829.0286	1	-1
2	1	1	2389.2670	1	-2	2720.3286	2	4	2836.3693	2	-3
2	2	1	2421.1949	2	-9	2744.2449	1	18	2859.1939	2	-11
2	2	0	2421.6306	2	-8	2744.7094	2	17	2859.6944	1	-11
3	0	3	2407.4898	1	-4	2741.1537	1	7	2857.5512	1	-2
3	1	3	2413.4507	1	-5	2745.1156	1	12	2861.1842	1	-2
3	1	2	2429 3175	1	-3	2759 4559	1	-4	2875 7805	1	-2
3	2	2	2457 6130	1	_7	2780 1212	1	14	2895 3381	1	_9
3	2	1	2459 7098	1	-10	2782 3321	1	9	2897 7077	1	_5
3	3	1	2516 9529	2	-5	2825 9467	1	27	2039 4854	1	_17
3	3	0	2516.0083	1	-9	2826.0047	1	28	2030 5514	1	-17
5	5	0	2510.9985	1	-9	2820.0047	1	28	2939.3314	1	-10
4	0	4	2452.1780	1	-2	2785.0772	1	10	2901.5794	1	-1
4	1	4	2455.8879	1	-8	2787.3349	1	12	2903.5893	1	1
4	1	3	2482.0485	1	-4	2810.9004	1	-7	2927.5324	1	-1
4	2	3	2505.7913	1	-10	2827.5598	1	8	2943.0998	1	-4
4	2	2	2511.6382	1	$^{-2}$	2833.6034	1	0	2949.5200	1	-3
4	3	2	2566.3030	1	-8	2874.5561	1	12	2988.5730	1	-5
4	3	1	2566.6156	1	-7	2874.9513	1	17	2989.0179	1	-10
4	4	1	2646.8429	1	2	2937.0361	1	29	3048.6225	2	-16
4	4	0	2646.8467	1	0	2937.0366	2	30	3048.6298	1	-15
5	0	5	2506 2577	1	_7	2838 3743	1	10	2955 0090	1	_1
5	1	5	2508 3593	1	-6	2839 5365	1	15	2955.0090	1	_2
5	1	1	2546 7807	1	-0	2873 0136	1	6	2000 7812	1	-2
5	2	4	2540.7807	1	-3	2875.9150	1	-0	2002 1250	1	0
5	2	4	2505.4258	1	-8	2880.2420	1	0	2015 1206	1	1
5	2	2	2577.0455	1	-3	2090.3001	1	-9	2040.0526	1	1
5	2	3	2028.0303	1	-4	2935.3344	1	2	3049.9330	1	-1
5	5	2	2029.2347	1	-4	2950.8550	1	3	3031.0203	1	2
2	4	2	2708.6397	1	2	2997.8927	1	10	3110.2161	1	-2
2	4	1	2/08.6/49	1	0	2997.8930	1	9	3110.2787	1	-2
2	2	1	2809.7233	1	1/	3077.0104	2	24	3186.2216	1	-/
5	3	0	2809./24/	I	28	3077.0104	3	27	3186.2219	1	-13
6	0	6	2569.5350	1	-6	2900.9695	1	13	3017.8543	1	-6
6	1	6	2570.6500	1	-8	2901.5287	1	13	3018.2177	1	-1
6	1	5	2622.6097	1	-6	2947.5385	1	3	3064.4589	1	1
6	2	5	2636.1567	1	-7	2955.8062	1	9	3072.0619	1	3
6	2	4	2657.4557	1	-1	2976.8419	1	-11	3094.0249	1	1
6	3	4	2702.0981	1	-4	3008.1314	1	4	3123.4510	1	7
6	3	3	2705.4549	1	1	3012.3002	1	-7	3127.9739	1	3
6	4	3	2782.9550	1	1	3071.2045	1	-4	3184.2818	1	8
6	4	2	2783.1261	1	1	3071.2515	1	-1	3184.5786	1	12
6	5	2	2883.9446	1	8	3149.8698	1	3	3260.6859	1	20
6	5	1	2883.9468	1	-5	3149.8675	1	1	3260.6932	1	20
6	6	1	3004.1581	2	11	3244.8738	1	-8	3351.6501	1	1
6	6	0	3004.1581	1	11	3244.8733	1	-8	3351.6502	2	1
7	0	7	2642 0220	1	11	2072 0219	1	0	2000 2649	1	10
7	1	7	2042.0339	1	-11	27/2.9218	1	9 10	3089.2048	1	12
7	1	í F	2042.0022	1	-/	29/3.1003	1	10	2147 7204	1	-0
7	1	6	2700.3317	1	-15	2025 0027	1	2	2152 5052	1	1
7	2	0 5	2/1/.0193	1	-0	2067 6052	1	9	2105 2016	1	1
7	2	ן ב	2130.4334	1	-4	2002 5447	1	-9	2200 2207	1	2
7	5	Э 4	2/88.2088	1	-5	2101 7466	1	-14	3208.//0/	1	1
/	3	4	2193.1083	1	3	5101./400	1	-11	3218.4/90	1	8

Table 2 (continued)

J	Ka	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	$\mathrm{d}E$
7	4	4	2869.8134	1	0	3156.9219	1	-13	3270.8079	1	14
7	4	3	2870.4110	1	3	3157.3875	1	-10	3271.8158	1	13
7	5	3	2970.6444	1	5	3235.0824	1	-19	3347.5108	1	28
7	5	2	2970 6646	1	2	3235 0760	1	-13	3347 5505	1	27
7	6	2	3090 8628	1		3329 4566	1	-31	3434 9234	1	-36
7	6	- 1	3090 8628	2	-11	3329 4527	1	-28	3434 9248	1	-28
7	7	1	3228 6269	1	6	3444 3857	1	34	3544 1694	2	4
7	7	0	3228.6269	2	6	3444 3855	1	34	3544 1694	1	4
,	/	0	5220.0207	2	0	544.5055	1	54	5544.1074	1	-
8	0	8	2723.8266	1	-5	3054.2911	1	-3	3171.2850	1	5
8	1	8	2724.1085	1	$^{-8}$	3054.4079	1	4	3172.6788	1	-26
8	1	7	2803.8306	1	$^{-8}$	3123.3317	1	11	3240.2195	1	6
8	2	7	2809.4565	1	-11	3126.1404	1	7	3243.1518	1	2
8	2	6	2855.7395	1	-6	3169.0023	1	22	3288.2035	1	-2
8	3	6	2886.0747	1	-11	3189.2554	1	-5	3305.5393	1	6
8	3	5	2900.4747	1	11	3205.1898	1	-6	3323.0490	1	4
8	4	5	2969.1789	1	-1	3254.8744	1	-14	3369.6955	1	16
8	4	4	2970.8558	1	9	3256.7162	1	-8	3372.4250	1	14
8	5	4	3069.8580	1	0	3332.7470	1	-22	3446.7237	1	31
8	5	3	3069.9420	1	2	3332.7499	1	-22	3446.8810	1	31
8	6	3	3189.9874	1	1	3426.4111	1	-37	3531.2271	1	-27
8	6	2	3189,9890	1	-7	3426.3899	1	-29	3531,2294	1	-43
8	7	2	3327 8749	2	-7	3544 0177	1	33	3641 3895	1	0
8	7	1	3327 8749	1	-8	3544 0167	1	41	3641 3884	1	-13
8	8	1	3481 6001	3	_3	3665 5436	2	_7	3762 9757	1	_1
8	8	0	3481 6001	1	-5	3665 5436	1	7	3762.9757	2	-1
0	0	0	5461.0001	1	_5	5005.5450	1	_/	5102.9151	2	-1
9	0	9	2814.9636	1	-5	3145.1111	1	-1	3262.4301	1	0
9	1	9	2815.1020	1	-3	3145.1619	1	-6	3262.4044	1	1
9	1	8	2908.0727	1	-6	3224.8262	1	8	3341.8326	1	10
9	2	8	2911.3608	1	-1	3226.3047	1	13	3343.8516	1	-6
9	2	7	2972.3686	1	-10	3283.2968	1	-5	3401.3281	1	-4
9	3	7	2995.3203	1	-12	3296.3734	1	3	3413.3502	1	3
9	3	6	3019 3639	1	5	3322,0083	1	7	3441 0628	1	4
9	4	6	3080 9315	1	1	3364 9124	1	-12	3480 7417	1	11
9	4	5	3084 9078	1	12	3369 7391	1	-5	3486 9169	1	12
ó	5	5	3181 6065	1	3	3442 0538	1	28	3558 3206	1	24
9	5	1	3181.8832	1	5	3442.9558	1	-28	3558 8208	1	24
9	5	4	2201 5260	1	5	2525 9059	1	-17	2640 0064	1	42
9	0	4	2201.5509	1	-0	2525.0030	1	-24	3040.0904	1	-42
9	0	3	3301.3324	2	37	3535.7270	1	-31	3040.1141	1	-30
9	/	3	3439.4654	1	-3	3655.6852	1	31	3/50.866/	2	-2
9	1	2				3655.6743	l	23	3750.8668	I	-9
9	8	2	3593.4698	1	-23	3776.6286	1	-2	3872.8687	4	-1
9	8	1	3593.4698	3	-23	3776.6286	2	-2	3872.8687	2	-1
9	9	1	3761.5559	2	11	3913.9266	1	$^{-8}$	4007.2244	3	-11
9	9	0	3761.5559	4	11	3913.9266	3	-8	4007.2244	1	-11
10	0	10	2915.4716	1	-2	3245.3880	1	-13	3363.0365	1	-5
10	1	10	2915.5385	1	-7	3245,4101	1	-13	3363.0387	1	3
10	1	9	3021.2434	1	-2	3335,4293	1	10	3452.6345	1	8
10	2	9	3023.0851	1	1	3336 1753	1	13	3456 3788	1	-38
10	2	8	3099 2624	1	_14	3405 7662	1	2	3523 8020	1	_2
10	2	0	2115 5200	1	-14	2414 1577	1	2	2521 8405	1	-2
10	2	07	2151 7025	1	-18	2440 2870	1	0	2571 5697	1	-2
10	5 1	7	2101.1933	1	<u>_</u>	2495.38/9 2496 7027	1	44	35/1.308/	1	-5
10	4	1	3204.8333	1	-0	3480./92/	1	-/	3003.0300	1	2
10	4	6	3213.0559	1	21	3496.8139	1	5	3615.6409	1	9
10	5	6	3305.8791	1	7	3565.7006	1	-36	3682.2919	1	14
10	5	5	3306.6507	1	13	3566.2060	1	-17	3683.6420	1	15
10	6	5	3425.5225	1	25	3657.7195	1	-14	3761.4361	1	-27
10	6	4	3425.5612	1	-3	3657.5077	1	-13	3761.4955	1	-29
10	7	4	3563.3514	1	15	3779.5285	1	31	3872.6052	1	-2
10	7	3	3563.3728	1	1	3779.4868	1	25	3872.6085	1	-3
10	8	3	3717.6344	3	-28	3899.8918	2	-6	3994.9454	1	-13
										1	

Table 2 (continued)

J	Ka	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
10	8	2	3717.6344	1	-28	3899.8918	1	-3	3994,9454	2	-14
10	9	2	3886.0933	3	-4	4037.1495	2	-16	4129.6673	1	5
10	9	1	3886.0933	2	-4	4037.1495	1	-16	4129.6673	2	5
10	10	1	4066.9865	4	24	4187.5925	3	12	4276.0498	1	-13
10	10	0	4066.9865	2	24	4187.5925	2	12	4276.0498	3	-13
11	0	11	3025 3584	1	3	3355 0911	1	26	3473 1216	1	_7
11	1	11	3025.3504	1	_1	3355 1282	1	_20 _24	3473 1259	1	15
11	1	10	3143 4496	1	17	3455 2549	1		3572 6307	1	21
11	2	10	3144 4523	1	11	3455 6175	1	13	3572 7181	1	6
11	2	9	3235 5013	1	_11	3537 2032	1	3	3655 1269	1	_1
11	3	9	3246 3322	1	-33	3542 2065	1	7	3660 8675	1	-14
11	3	8	3296 8597	1	56	3594 2659	1	-13	3713 4344	1	-1
11	4	8	3340.6403	1	-12	3620.1657	1	0	3738.0663	1	-5
11	4	7	3355.6434	1	-20	3637.7191	1	21	3758.4886	1	1
11	5	7	3442.6138	1	7	3700.9378	1	-41	3818.5092	1	1
11	5	6	3444.4907	1	13	3702.5443	1	4	3821.6919	1	6
11	6	6	3561.9336	1	2	3792.2288	1	5	3895,1990	1	-14
11	6	5	3562.0619	1	2	3791.7783	1	4	3895.3733	1	-18
11	7	5	3699.3951	1	34	3915.6414	1	10	4006.6039	1	-4
11	7	4	3699.5936	1	-1	3915.5039	1	13	4006.6156	1	-25
11	8	4	3854.0535	2	-12	4035.3126	1	2	4129.1924	2	2
11	8	3	3854.0535	3	-14	4035.3112	1	4	4129.1924	1	-3
11	9	3	4022.8547	2	-8	4172.4900	1	-8	4264.2327	2	9
11	9	2	4022.8547	3	-9	4172.4900	2	-8	4264.2327	1	9
11	10	2	4204.2280	2	18	4323.1907	1	-11	4411.0952	3	38
11	10	1	4204.2280	3	18	4323.1907	2	-11	4411.0952	1	38
11	11	1	4396.2570	2	-14	4485.7737	2	30	4568.5751	4	-44
11	11	0	4396.2570	4	-14	4485.7737	3	30	4568.5751	2	-44
12	0	12	3144.6195	1	2	3474.2911	2	-32	3592.6783	1	-5
12	1	12	3144.6348	1	-5	3474.2961	1	-33	3592.6796	1	-2
12	1	11	3274.8025	1	25	3584.3571	1	14	3702.1444	1	8
12	2	11	3275.3392	1	18	3584.5435	1	0	3702.1669	1	14
12	2	10	3380.5190	1	-7	3677.3740	1	10	3795.2477	1	-4
12	3	10	3387.3424	1	-25	3680.1970	1	3	3801.9546	1	-40
12	3	9	3453.4925	1	-16	3745.8742	1	-9	3865.4667	1	-7
12	4	9	3487.9181	1	-26	3764.6208	1	5	3883.6588	1	-15
12	4	8	3512.4990	1	-3	3790.1198	1	47	3914.8261	1	-1
12	5	8	3591.6779	1	-13	3847.0838	1	-351	3966.8053	1	-7
12	5	7	3595.7839	1	35	3852.3615	1	32	3973.4479	1	-8
12	6	7	3710.7620	1	13	3939.3429	1	17	4063.7431	1	-3
12	6	6	3711.1066	1	-24	3938.6119	1	18	4064.1440	1	0
12	7	6	3848.8842	1	367	4041.7904	1	-1	4152.8552	1	-21
12	7	5	3848.1575	1	-36	4041.3499	1	-6	4152.9031	1	-9
12	8	5	4002.6798	2	1	4182.8699	1	4	4275.5834	1	-7
12	8	4	4002.6798	1	-5	4182.8626	1	4	4275.5853	1	-10
12	9	4	4171.7800	3	13	4319.8984	2	-6	4410.8829	1	7
12	9	3	4171.7800	1	13	4319.8984	1	-5	4410.8829	2	7
12	10	3	4353.6100	3	11	4470.8322	2	-11	4558.2384	1	72
12	10	2	4353.6100	2	11	4470.8322	1	-11	4558.2384	3	72
12	11	2	4546.1089	3	-18	4633.9035	3	3	4716.0516	2	-34
12	11	1	4546.1089	2	-18	4633.9035	1	3	4716.0516	3	-34
12	12	1	4/47.5907	4	-7	4808.3446	3	48	4883.9424	2	-13
12	12	0	4/4/.590/	2	-/	4808.3446	2	48	4883.9424	3	-13
13	0	13	3273.2445	1	-12	3602.8926	1	-32	3721.6908	1	-9
13	1	13	3273.2534	1	$^{-2}$	3602.8935	1	-46	3721.6920	1	$^{-2}$
13	1	12	3415.3830	1	39	3722.8099	1	2	3840.9403	1	7
13	2	12	3415.6687	1	43	3722.9003	1	3	3840.9599	1	12
13	2	11	3534.1511	1	75	3826.3482	1	10	3944.0360	1	19
13	3	11	3538.2649	1	-23	3827.8844	1	5	3944.2972	1	-8
13	3	10	3620.6067	1	4	3907.1345	1	-8	4026.6544	1	-7
13	4	10	3646.2768	1	-50	3919.7343	1	11	4040.3143	1	-22

Table 2 (continued)

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
13	4	9	3683.1720	1	57	3963.9751	1	60	4083.6528	1	-4
13	5	9	3752.8593	1	-57	4006.1520	1	-15	4126.9413	1	-14
13	5	8	3760.8969	1	59	4015.7315	1	51	4139.2913	1	-11
13	6	8	3871.9577	1	2	4098.9292	1	17	4224.1848	1	-11
13	6	7	3872.8057	1	-26	4098.1282	1	37	4225.2200	1	-14
13	7	7	4009.4582	1	27	4200.8161	1	14	4311.3477	1	-11
13	7	6	4009.0458	1	7	4199.8514	1	20	4311.4837	1	-14
13	8	6	4163,4646	2	4	4342.5513	1	12	4434.0972	2	-6
13	8	5				4342.5228	1	-14	4434,1053	1	-6
13	9	5	4332.7978	1	5	4479.3271	1	1	4569.5765	1	8
13	9	4	4332 7978	3	4	4479 3271	2	5	4569 5760	1	1
13	10	4	4515.0523	1	5	4630.4505	1	-6	4717.4673	2	92
13	10	3	4515 0523	3	5	4630 4505	2	-6	4717 4673	1	92
13	11	3	4707 9124	2	-55	4794 0006	1	-15	4875 5029	3	-35
13	11	2	4707 9124	3	-55	4794 0006	2	-15	4875 5029	1	-35
13	12	2	4910 2320	2	68	4969 2384	1	23	5044 0355	3	_14
13	12	1	4910 2320	23	68	4969 2384	3	23	5044.0355	2	-14
13	12	1	5116 5287	2	76	5157 3777	2	18	5221 2020	2	-14
13	13	0	5116 5287	5	-/0	5157.3777	4	10	5221.2929	2	4
15	15	0	5110.5287	5	-70	5157.5777	4	10	3221.2929	2	4
14	0	14	3411.2241	1	7	3740.9032	1	-33	3860.1434	1	6
14	1	14	3411.2288	3	15	3740.9050	1	-29	3860.1423	1	-6
14	1	13	3565.2336	1	40	3870.6019	1	0	3989.1056	1	-49
14	2	13	3565.3852	1	46	3870.6486	1	7	3989.1224	1	13
14	2	12	3696.4463	1	-5	3984.2734	1	14	4102.4122	1	-12
14	3	12	3698.8645	1	-20	3985.0941	1	11	4102.5282	1	6
14	3	11	3797,1645	1	-17	4077.1590	1	3	4196.4201	1	-20
14	4	11	3815 3085	1	-21	4085 1119	1	45	4208 9930	1	-21
14	4	10	3866 7384	2	-2	4142 6014	1	-13	4263 7855	1	3
14	5	10	3925 8787	-	_7	4176 4343	1	-40	4298 6724	1	-18
14	5	9	3940 1788	1	3	4191 3757	1	59	4319 2129	1	-3
14	6	9	4045 4256	1	-117	4270 7080	1	16	4396 7604	1	_19
14	6	8	4047 3343	1	23	4270.4817	1	36	4399 1771	1	-17
14	7	8	4182 4389	2	72	4372 5032	1	37	4482 0486	1	1
14	7	7	4182 2095	1	-13	4370 6570	1	31	4482 4007	1	_4
14	8	7	4336 3540	2	-15	4514 3525	1	_3	4604 7028	1	_20
14	8	6	4336 3645	1	-25	4514 2725	1	-5	4604 7203	1	17
14	0	6	4550.5045	3	3	4514.2725	2	-0 30	4004.7293	1	-17
14	0	5	4505.8422	1	1	4650 7244	1	39 7	4740.2008	2	-4
14	10	5	4505.0422	2	4	4030.7244	2	/ 8	4740.2008	1	-10
14	10	3	4000.4713	ے 1	12	4001.9775	1	-8	4000.0240	2	99
14	10	4	4000.4/15	1	12	4001.9773	2	-/	4000.0240	2	99 20
14	11	4	4881.4/12	3	-/8	4905.9878	2	-9	5046.8546	1	-38
14	11	3	4881.4/12	1	-/8	4905.9878	1	-9	5040.8540	2	-38
14	12	3	5084.7807	3	72	5142.0409	3	-/	5216.0120	1	-19
14	12	2	5084.7807	2	12	5142.0409	1	-/	5216.0120	3	-19
14	13	2	5291.2371	4	28	5331.6668	4	18	5394.0251	2	2
14	13	1	5291.2371	2	28	5331.6668	2	18	5394.0251	3	2
14	14	I	5538.8195	6	-1/5	5495.3705	2	-47	55/9./988	2	17
14	14	0	5538.8195	3	-175	5495.3705	3	-47	5579.7988	4	17
15	0	15	3558.5349	5	-10	3888.30701	3	-45	4008.0101	1	-12
15	1	15	3558.5365	1	-13	3888.3070	2	-63	4008.0101	3	-13
15	1	14	3724.3775	2	64	4027.7344	1	5	4146.6484	1	5
15	2	14	3724.4577	1	66	4027.7604	1	-18	4146.6551	1	19
15	2	13	3867.5705	5	-15	4151.2659	1	-3	4269.6822	1	-11
15	3	13	3868.9662	1	15	4151.7089	1	-8	4269.7776	1	-13
15	3	12	3982.4167	2	-4	4255.6164	1	6	4374.1729	1	20
15	4	12	3994.6154	2	7	4260.4076	1	24	4374.6525	1	-16
15	4	11	4062.1631	- 1	-11	4332,4046	1	-25	4453,9985	1	0
15	5	11	4110 3672	1	33	4357.6728	1	-63	4481,8901	1	-17
15	5	10	4133 6910	2	42	4394 0469	1	-62	4512 6544	1	_1
15	6	10	4231 0513	- 1	-20	4454 3410	1	31	4581 3540	1	_3
15	6	9	4234 9373	2	17	4455 7385	1	26	4586 4666	1	_25
1.5	0	,	12010010	-	1 /	100.1000	-	20	1200.4000		20

Table 2 (continued)

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
15	7	9	4367.6567	3	308	4556.7810	1	38	4664.9058	1	1
15	7	8	4367.6454	2	-157	4553.7328	1	36	4665.7239	1	4
15	8	8	4521.3053	2	18	4698.3004	1	-9	4787.3694	1	-16
15	8	7	4521.3277	3	31	4698.0807	1	9	4787.4445	1	-19
15	9	7	4690.8383	1	5	4834.0454	1	-1	4922.9044	3	-39
15	9	6	4690.8361	2	-28	4834.0401	1	5	4922.9104	1	-22
15	10	6	4873.7748	1	6	4985.3459	1	5	5072.4654	2	78
15	10	5	4873.7748	2	5	4985.3459	2	6	5072.4654	1	77
15	11	5	5066.4611	1	-71	5149,7808	1	-7	5230.0284	2	-36
15	11	4	5066.4611	2	-71	5149.7808	3	-7	5230.0284	1	-36
15	12	4	5271.1257	1	59	5326,6666	1	-19	5399.7830	3	-22
15	12	3	5271.1257	3	59	5326.6666	3	-19	5399.7830	1	-22
15	13	3	5477.6396	2	42	5517.8683	2	-5	5578.5417	3	-3
15	13	2	5477.6396	3	42	5517.8683	3	-5	5578.5417	2	-3
15	14	2	5727.1392	2	-20	5681.6142	2	12	5765.2050	3	12
15	14	1	5727.1392	4	-20	5681.6142	4	12	5765.2050	2	12
15	15	1	5950.2558	5	523	5884.7952	3	-3	5958.6558	5	10
15	15	0	5950.2558	9	523	5884,7952	6	-3	5958.6558	2	10
		-		-			-	-		-	
16	0	16	3715.1640	2	-7	4044.9298	1	194	4165.2734	3	-11
16	1	16	3715,1639	4	-19	4044.9579	2	165	4165.2734	1	-12
16	1	15	3892.8170	2	94	4194.2099	2	-36	4313.5365	1	10
16	2	15	3892.8521	3	19	4194.2620	2	-67	4313.5392	1	15
16	2	14	4047.8075	2	-216	4327.4024	1	-1	4446.1499	1	-21
16	3	14	4048.5750	3	-174	4327.6766	2	-8	4446.2071	1	-2
16	3	13	4175.9733	1	57	4442.5285	2	-19	4561.4819	1	-11
16	4	13	4183.8098	4	76	4445.3933	1	38	4561.8526	1	-12
16	4	12	4268 3243	1	26	4531 7849	1	-45	4653 2313	1	-8
16	5	12	4305.8948	6	-55	4549,4806	1	-69	4676.9911	1	-11
16	5	11	4341 0507	3	27	4596 6069	1	25	4718 7776	1	65
16	6	11	4428 5571	3	-63	4649 4870	1	-16	4777 8090	1	-11
16	6	10	4435 9448	2	36	4653 4199	1	1	4787 5832	1	-29
16	7	10	4564.9513	3	73	4753.3561	1	33	4859.8444	1	10
16	7	9	4565 4973	2	-34	4749.0616	1	31	4861 5600	1	22
16	8	9	4718 0997	-	-53	4894 4639	1	-19	4982.0520	1	-15
16	8	8	4718.3052	4	23	4893.9023	1	-20	4982.2476	1	-23
16	9	8	4887.7115	4	17	5029.2422	2	13	5117.4468	1	-16
16	9	7	4887.7142	1	11	5029.2226	1	-3	5117.4596	4	-22
16	10	7	5070.8723	2	8	5180.4817	1	4	5262.5095	1	-21
16	10	6	5070.8723	1	7	5180.4817	1	9	5262.5095	2	-24
16	11	6	5268.5889	4	-10	5345.2967	2	2	5424,9424	1	-25
16	11	5	5268.5904	1	9	5345.2967	1	2	5424,9424	2	-25
16	12	5	5469.1463	3	29	5523.0243	3	-16^{-1}	5595.2558	1	-25
16	12	4	5469,1463	1	29	5523.0243	1	-16	5595.2558	2	-25
16	13	4	5715.8831	3	-21	5675.6111	3	34	5774.7396	1	-14
16	13	3	5715.8831	1	-21	5675.6111	1	34	5774.7396	3	-14
16	14	3	5927.2488	4	6	5879,4344	3	12	5962.2857	2	8
16	14	2	5927.2488	2	6	5879.4344	2	12	5962.2857	3	8
16	15	2	6151.9319	6	-62	6083.2326	4	7	6156.7725	2	12
16	15	1	6151.9319	3	-62	6083.2326	2	7	6156.7725	4	12
16	16	1	6384.0146	12	338	6290.5730	6	0	6357.0910	3	-7
16	16	0	6384.0146	6	338	6290.5730	3	0	6357.0910	6	-7
17	0	17	3881.0901	3	0	4211.1408	3	17	4331.9069	1	-11
17	1	17	3881.0901	1	-5	4211.1408	1	13	4331.9069	3	-11
17	1	16	4070.5370	2	31	4369.7646	2	98	4489.7537	1	18
17	2	16	4070.5627	2	59	4369.8198	1	77	4489.7504	2	-25
17	2	15	4236.8452	3	-14	4512.7413	3	87	4631.8323	1	-11
17	3	15	4237.2880	3	-85	4514.0022	3	-79	4631.8598	2	-16
17	3	14	4378.0308	4	-102	4638.0634	2	9	4757.0779	1	-17
17	4	14	4382.9202	4	-33	4640.6855	2	-367	4757.4222	1	-13
17	4	13	4484.1093	3	6	4739.7997	2	-67	4860.8171	1	3
17	5	13	4511.0161	4	51	4751.4643	2	-82	4861.6372	1	-31

Table 2 (continued)

J	Ka	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
17	5	12	4561.5091	5	-40	4812.4987	2	16	4935.9749	1	17
17	6	12	4636.8323	2	22	4855.8207	2	-6	4986.0090	1	6
17	6	11	4650.6556	7	-54	4885.5601	2	-17	5002.7465	1	-7
17	7	11	4774.2855	4	81	4961.7591	1	21	5066.7635	1	18
17	7	10	4775.7058	2	-63	4956.6211	2	18	5070.0102	1	11
17	8	10	4927.0832	4	5	5103.0025	1	-29	5188.6949	1	-3
17	8	9	4927.2667	3	32	5101.6932	2	51	5189.1600	1	-19
17	9	9	5096.3782	4	3	5236.2690	1	-20	5323.8300	2	-30
17	9	8	5096.3875	3	-4	5236.2263	2	49	5323.8688	1	-23
17	10	8	5279.6678	1	12	5387.3135	1	-1	5469.5878	5	42
17	10	7	5279.6691	4	21	5387.3132	2	12	5469.5888	1	37
17	11	7	5477.0528	1	-47	5552.4475	1	4	5631.5110	2	-12
17	11	6	5477.0528	2	-40	5552.4475	2	4	5631.5110	1	-13
17	12	6	5678.7216	1	2	5731.0199	1	-5	5802.3352	2	-20
17	12	5	5678.7216	3	2	5731.0199	2	-5	5802.3352	1	-20
17	13	5	5925.6021	3	-26	5885.0234	2	15	5982.5134	3	-27
17	13	4	5925.6021	5	-26	5885.0234	3	15	5982.5134	1	-27
17	14	4	6139.0157	3	18	6088.7192	2	4	6170.9243	3	-8
17	14	3	6139.0157	5	18	6088.7192	4	4	6170.9243	2	-8
17	15	3	6365 3066	3	14	6293 1615	2	-16	6366 4399	4	8
17	15	2	6365 3066	6	14	6293 1615	3	-16	6366 4399	2	8
17	16	2	6598 8480	5	-55	6501 5607	3	-8	6567 9516	4	0
17	16	1	6598 8480	11	-55	6501 5607	5	-8	6567 9516	2	Ő
17	17	1	6837 0743	7	105	6714 1928	3	_7	6774 3604	7	-35
17	17	0	6837.0743	15	105	6714 1928	7	_7	6774 3604	3	-35
1,	17	0	0007.0715	15	105	0/11.1/20	,	,	0771.5001	5	55
18	0	18	4056.2902	2	-5	4386.5640	2	-7	4507.8854	3	-5
18	1	18	4056.2902	4	-8	4386.5640	3	-8	4507.8854	1	-5
18	1	17	4257.5409	2	24	4554.8810	2	25	4675.2711	2	-19
18	2	17	4257.5544	3	32	4554.8849	3	12	4675.2758	1	24
18	2	16	4435.0838	2	19	4706.1656	1	-389	4826.7209	2	-19
18	3	16	4435.3368	2	-4	4707.0670	3	42	4826.7357	1	-7
18	3	15	4588.2267	3	76	4842.3791	2	13	4961.5662	2	-31
18	4	15	4591.2459	3	24	4842.9010	2	-90	4961.7791	1	-17
18	4	14	4709.6695	4	-95	4955.9911	4	-27	5076.5411	2	-3
18	5	14	4728.9044	4	1	4963.2863	5	65	5077.8045	1	-19
18	5	13	4794.0896	5	3	5039.4512	2	-18	5163.3831	1	13
18	6	13	4858.8762	5	34	5072.9712	2	-35	5176.2686	1	-6
18	6	12	4879.2405	5	-20	5109.5070	2	-63	5231.5818	2	5
18	7	12	4995.4808	7	-7	5181.5511	3	18	5285.5489	1	22
18	7	11	4998.5633	3	202	5205.9972	1	49	5324.2240	1	-34
18	8	11	5147.7936	4	0	5291.0676	1	6	5407.2181	1	-3
18	8	10	5148.1964	5	70	5321.3522	1	16	5408.2371	1	-15
18	9	10	5316.7605	4	$^{-2}$	5455.1071	2	-9	5542.0001	1	-34
18	9	9	5316.7873	5	3	5454.9795	1	-20	5542.0983	2	-35
18	10	9	5500.0639	3	17	5605.7705	2	11	5687.9291	1	83
18	10	8	5500.0659	4	24	5605.7637	1	-11	5687.9340	3	80
18	11	8	5697.4336	2	-85	5771.1449	3	0	5849.6473	1	3
18	11	7	5697.4331	2	-76	5771.1449	1	2	5849.6473	2	0
18	12	7	5899.7296	3	-1	5950.5562	3	4	6020.9234	1	-5
18	12	6	5899.7296	2	-1	5950.5562	1	4	6020.9234	2	-5
18	13	6	6146.9086	3	-16	6105.7552	3	10	6201.7573	1	-17
18	13	5	6146.9086	2	-16	6105.7552	2	10	6201.7573	3	-17
18	14	5	6362.2884	11	-32	6309.3536	3	-1	6391.0049	2	-21
18	14	4	6362.2884	5	-32	6309.3536	1	-1	6391.0049	3	-21
18	15	4	6590.1464	8	34	6514.4618	3	-15	6587.5304	2	-16
18	15	3	6590.1464	4	34	6514.4618	2	-15	6587.5304	3	-16
18	16	3	6825.2064	10	35	6723.9118	4	-25	6790.2269	2	7
18	16	2	6825.2064	5	35	6723.9118	2	-25	6790.2269	4	7
18	17	2	7065.0150	15	-55	6937.8366	5	-19	6997.9976	2	-5
18	17	1	7065.0150	8	-55	6937.8366	2	-19	6997.9976	5	-5
18	18	1	7308.0347	17	22	7155.5522	6	3	7209.7520	4	-58
18	18	0	7308.0347	9	22	7155.5522	3	3	7209.7520	7	-58
									,		,

Table 2 (continued)

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
19	0	19	4240.7425	5	-16	4571.2737	4	-18	4693,1803	2	-7
19	1	19	4240 7425	2	-19	4571 2737	2	-19	4693 1803	3	-7
19	1	18	4453.8036	3	-22	4749.1632	2	15	4870.0741	1	20
19	2	18	4453.8084	2	-47	4749.1581	2	-53	4870.0759	2	37
19	2	17	4642.4441	3	25	4910.6502	3	9	5030.8033	1	-11
19	3	17	4642 5839	2	-32	4910 7023	1	-5	5030 8172	2	68
19	3	16	4807.0660	3	69	5055.6829	4	4	5175.0203	1	-17
19	4	16	4808 8944	2	30	5055 7842	1	-40	5175 1391	2	10
19	4	15	4941 6040	2	19	5180 2918	4	58	5300 4953	-	4
19	5	15	4955 3178	3	12	5184 6064	1	-61	5301 5295	2	-10
19	5	14	5037 5823	3	-72	5276.0683	2	44	5399 7752	-	26
19	6	14	5090 3902	3	50	5300 5634	1	-38	5407 4787	2	-40
19	6	13	5121 5137	4	-6	5348 1912	5	-64	5473 1589	-	2
19	7	13	5228 3661	6	16	5412 4137	1	1	5516 0843	2	20
19	7	12	5234 1878	6	-108	5438 1933	2	54	5558 6245	1	_9
10	8	12	5380 2781	4	212	5524 4110	1	6	5637 5199	2	12
19	8	11	5381 1042	8	84	5552 8025	3	35	5639 5793	1	_11
10	9	11	5548 7723	5	_4	5685 7445	1	_25	5771 8904	2	_26
10	9	10	5548 8372	5	_1	5685 4446	2	-23	5772 1244	1	
10	10	10	5731 9626	6	29	5835 7720	1	-46	5917 6610	2	80
10	10	0	5731.9654	5	2)	5835 7638	3		5017.6788	1	104
19	10	9	5020 4211	3	78	6001 3001	1	-5	6070 2618	2	104
19	11	9 0	5020 4165	2	-78	6001.3001	2		6070 2627	1	17
19	12	8	6132 0442	2	-93	6181 5361	1	20	6250.0182	2	2
19	12	7	6122.0442	4	-5	6181.5361	2	25	6250.0182	1	2
19	12	7	6370 6705	2	16	6337 6840	1	23	6432 3601	2	2
19	13	6	6270 6705	2	16	6227 6840	2	-7	6432.3601	1	2
19	13	6	6506 0200	3	10	6541 2222	2	-7	6622,4101	2	12
19	14	5	6506 0300	4	-35	6541.2222	4	3	6622.4101	2	-13
19	14	5	6826 2002	0	-33	6747.0060	4	5	6810 0200	4	-13
19	15	5	6826 2002	0	-20	6747.0009	2 4	5	6819.9200	4	-20
19	15	4	7062 8545	6	-20	6057 4071	4	3 7	7022 7778	4	-20
19	16	4	7062.8343	11	47	6057 4071	2 4	-7	7023.7778	4	-12
19	10	2	7002.8343	7	47	7172 6040	4	-7	7023.7778	5	-12
19	17	2	7304.2920	15	52	7172.0940	2 5	-23	7232.8944	2	-10
19	10	2	7540.0658	10	52	7201 8044	2	-23	7252.6944	5	-10
19	10	2	7549.0058	20	-51	7391.0944	5	5	7440.1937	2	-10
19	10	1	7349.0038	20	-31	7591.0944	3	22	7440.1957	5	-10
19	19	1	7705.9234	10	-18	7614.1731	4	23	7662.5851	9	-57
19	19	0	1193.9234	19	-18	/014.1/31	0	25	/002.3831	5	-37
20	0	20	4434.4253	2	-17	4765.2425	2	-39	4887.7650	4	-4
20	1	20	4434,4253	4	-20	4765.2425	4	-39	4887.7650	2	-3
20	1	19	4659.3133	3	-25	4952.6553	2	-22	5074.1226	3	11
20	2	19	4659.3145	7	-58	4952.6553	3	-30	5074.1251	2	37
20	2	18	4858.9259	4	37	5123.4382	2	-4	5244.0539	2	-14
20	3	18	4859.0049	6	-13	5123.4625	3	30	5244.0560	1	-12
20	3	17	5034.6161	2	77	5277.1800	2	-136	5397.4661	2	-13
20	4	17	5035.7147	3	44	5277.6823	3	-19	5397.5262	1	-6
20	4	16	5182.2443	3	-19	5412.8644	2	108	5532.8601	2	11
20	5	16	5191.3746	3	22	5415.2339	2	-26	5533.5327	1	25
20	5	15	5291,7719	2	89	5521.3159	2	44	5644.3653	2	31
20	6	15	5332.5737	3	-29	5538.2156	2	-37	5649.1163	1	-45
20	6	14	5376.9035	3	-5	5599,6036	2	-412	5726.2592	2	-1
20	7	14	5472,6830	4	10	5654 0891	2	3	5758 2454	-	11
20	, 7	13	5482 9190	3	-6	5683 5003	2	6	5806 7292	2	-11
20	8	13	5624 3570	7	-16	5769 3307	2	-5	5879 4605	2	-19
20	8	12	5626.0748	2	259	5795.9708	-	47	5883.3170	2	-12
20	9	12	5792 3220	4	-13	5928 2268	3	-20	6013 4211	- 1	_17
20	9	11	5792 4688	4	-24	5927 5536	1	4	6013.9375	2	-53
20	10	11	5975 2608	6	13	6077 2639	2	-20	6158,7996	-	70
20	10	10	5975 2680	4	-1	6077 2325	-	-29	6158 8397	2	69
20	11	10	6172 8231	5	55	6242 8200	3	4	6320 2648	2	39
20	11	9	6172 8088	7	-23	6242 8200	1	15	6320 2657	3	16
20	12	9	6375.5428	, 7	-4	6423.8580	3	61	6492.2199	1	23

Table 2 (continued)

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
20	12	8	6375.5428	4	-3	6423.8580	2	61	6492.2199	2	21
20	13	8	6623.7828	4	45	6580.7033	3	9	6674.2071	1	4
20	13	7	6623.7828	2	45	6580.7033	1	9	6674.2071	3	4
20	14	7	6842.7937	6	-34	6784.2069	4	-4	6865.0185	1	8
20	14	6	6842.7937	3	-34	6784.2069	2	-4	6865.0185	3	8
20	15	6	7073.5975	11	-12	6990.6671	3	14	7063.4791	2	-12
20	15	5	7073.5975	5	-12	6990.6671	2	14	7063.4791	4	-12
20	16	5	7311.6213	20	-19	7202.1782	4	7	7268.4714	2	-19
20	16	4	7311 6213	10	-19	7202 1782	2	7	7268 4714	4	-19
20	17	4	7554 6721	14	51	7418 6253	6	-15	7478 9098	2	-11
20	17	3	7554 6721	7	51	7418 6253	3	-15	7478 9098	4	-11
20	18	3	7801 2383	18	63	7639 2777	5	-33	7693 7268	3	-2
20	18	2	7801 2383	9	63	7639 2777	3	-33	7693 7268	5	_2
20	19	2	8050.0478	23	-52	7863 2256	6	-18	7911 8557	3	-5
20	19	1	8050.0478	12	-52	7863 2256	3	-18	7911.8557	6	-5
20	20	1	8200.0500	21	20	8080 4834	10	21	8132 2102	5	22
20	20	0	8299.9590	11	-20	8089.4834	5	21	8132.2102	10	-22
20	20	0	8299.9390	11	-20	0009.4054	5	21	8132.2102	10	-22
21	0	21	4637.3223	7	74	4968.4425	5	-42	5091.6277	2	47
21	1	21	4637.3150	2	$^{-2}$	4968.4425	2	-43	5091.6277	4	49
21	1	20				5165.3370	4	-41	5287.4045	2	54
21	2	20	4874.0483	2	21	5165.3390	2	-25	5287.4045	3	62
21	2	19	5084.4916	4	-31	5345.3124	4	-31	5466.4512	2	2
21	3	19	5084.5402	2	-40	5345.3314	2	62	5466.4519	3	22
21	3	18	5270.9406	3	49	5508.4203	3	0	5628.9058	1	-35
21	4	18	5271.6013	3	50	5508.6006	2	3	5628.9340	3	-22
21	4	17	5430.8555	6	-3	5654.3874	3	-26	5773.7891	1	-1
21	5	17	5436,7830	5	1	5654,9746	2	-15	5774,1830	2	27
21	5	16	5554,1289	4	33	5774.6274	3	118	5896.8048	1	27
21	6	16	5584 9932	2	-51	5785 5772	2	-12	5899 8542	2	-47
21	6	15	5644 0638	3	9	0,0010,112	-		5989 6019	-	-15
21	7	15	5728 1391	4	_4	5906 2939	2	-14	6011 8464	2	-31
21	7	14	5744 8538	4	37	5942 7341	3	55	6068 6508	1	-2
21	8	14	5880 0203	3	682	6025 0533	1	2	6132 8956	2	33
21	8	13	5883 2300	5	578	6050 8050	2	80	6130 5415	1	8
21	0	13	6047 3119	3	_13	6182 6764	2	_14	6266 4973	2	18
21	0	12	6047.6403	7	03	6181 2304	2	34	6267 5730	2	11
21	10	12	6220 8587	6	10	6330 1715	1	24	6411 3022	2	-11
21	10	12	6229.8387	5	-10	6220 1017	1	-24	6411.3022	ے 1	20
21	10	11	6427 4528	2	-02	6405 6106	1	-13	6572 5597	1	14
21	11	10	6427.4358	5	-34	0495.0100	1	-10	(572.5387	4	14
21	11	10	0427.4304	7	-94	((77.4101	2	40	03/2.30/9	1	20
21	12	10	6630.1082	15	46	6677.4101	2	40	6/44./218	3	22
21	12	9	6630.1082	15	48	6677.4101	4	41	6/44./218	1	10
21	13	9	68/9.0854	4	79	6834.6919	1	-22	6927.1884	3	16
21	13	8	68/9.0854	/	79	6834.6919	3	-22	6927.1884	2	15
21	14	8	/099./290	4	-/1	/038.1933	2	0	/118./034	3	-12
21	14	7	7099.7290	1	-71	7038.1933	3	0	/118./034	2	-12
21	15	7	7331.9148	4	23	7245.3137	2	-1	7318.0774	4	2
21	15	6	7331.9148	9	23	7245.3137	3	-1	7318.0774	2	2
21	16	6	7571.3589	7	-18	7457.8209	2	15	7524.1716	4	1
21	16	5	7571.3589	14	-18	7457.8209	4	15	7524.1716	2	1
21	17	5	7815.9774	12	-21	7675.4894	2	0	7735.8980	5	-18
21	17	4	7815.9774	23	-21	7675.4894	4	0	7735.8980	2	-18
21	18	4	8064.3068	8	10	7897.5666	3	-11	7952.2022	5	-6
21	18	3	8064.3068	16	10	7897.5666	5	-11	7952.2022	3	-6
21	19	3	8315.0970	11	54	8123.1435	3	-18	8172.0307	6	-11
21	19	2	8315.0970	21	54	8123.1435	6	-18	8172.0307	3	-11
21	20	2	8567.1697	13	-41	8351.2554	5	-7	8394.3313	7	12
21	20	1	8567.1697	16	-41	8351.2554	11	-7	8394.3313	4	12
21	21	1	8819.4390	11	35	8580.9012	6	19	8618.0092	12	24
21	21	0	8819.4390	22	35	8580.9012	12	19	8618.0092	6	24
22	0	22	1810 2026	3	0	5180 8415	2	. 15	5304 6402	4	10
<i>LL</i>	U	22	+047.3020	3	U	5100.0415	2	-13	5504.0495 (<i>co</i>	+ ntinued on	-10 next page)

ext page) (continue

Table 2 (continued)

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
22	1	22	4849.3826	5	-4	5180.8415	4	-15	5304.6493	2	-18
22	1	21	5097.9512	2	-41	5387.1808	2	7			
22	2	21				5387.1808	4	5	5509.7592	2	-29
22	2	20	5319.2022	4	19	5576.2713	2	58	5698.0264	3	128
22	3	20	5319.2325	8	18	5576.2740	3	36	5697.9868	2	25
22	3	19	5516.1717	3	-130	5748.4156	2	43	5869.3385	3	-30
22	4	19				5748.5083	3	76	5869.3437	2	-3
22	4	18	5687 5113	2	-53	5902 4541	2	-112	6023 3913	3	43
22	5	18	5691 2720	3	-52	0,0211011	-		6023 6008	2	35
22	5	17	5824 8392	2	0				6157.0953	3	22
22	6	17	5847 2624	3	36				6159.0200	2	-16
22	6	16	5924 6324	2	703				6262 0158	2	4
22	0 7	16	5004 3436	4	520				6276 5311	2	85
22	7	15	6019 7041	2	22				6343 7308	2	
22	, o	15	6146 8870	4	202	6201 1265	2	16	6207 6408	2	-24
22	0	13	6152 5866	4	392	0291.1203	5	-10	6408 1240	2	57
22	0	14	(212 (104	4	-42				6520 0082	2	-0
22	9	14	6313.0194	0	-91	(14(1210	4	22	6530.9983	2	88
22	9	13	6314.2793	4	44	6446.4318	4	32	6533.0935	3	41
22	10	13	(105 500)		21.5	6594.4467	2	-26	66/5.0926	2	-31
22	10	12	6495.7226	4	215	6594.2905	2	-18	66/5.3110	2	-25
22	11	12	6693.2551	5	303		_		6836.0496	2	-58
22	11	11	6693.2095	7	128	6759.5758	2	-16	6836.0741	3	-27
22	12	11	6895.6027	8	-21	6942.0893	4	26	7008.3201	1	9
22	12	10	6895.6050	3	6	6942.0893	2	28	7008.3206	5	-1
22	13	10	7145.4389	6	17	7099.5514	3	-14	7191.1867	2	6
22	13	9	7145.4389	3	17	7099.5514	2	-14	7191.1867	3	5
22	14	9	7367.6115	10	24	7303.0622	4	2	7383.3518	2	19
22	14	8	7367.6115	5	24	7303.0622	2	3	7383.3518	3	19
22	15	8	7601.0910	10	34	7510.8237	3	9	7583.5834	2	2
22	15	7	7601.0910	5	34	7510.8237	2	9	7583.5834	4	2
22	16	7	7841.9077	11	1	7724.2873	4	-11	7790.7369	2	3
22	16	6	7841.9077	6	1	7724.2873	2	-11	7790.7369	4	3
22	17	6	8088.0540	16	-21	7943.1432	5	-3	8003.7177	2	0
22	17	5	8088.0540	8	-21	7943.1432	2	-3	8003.7177	5	0
22	18	5	8338,1013	26	-20	8166.6109	7	23	8221,4704	3	-4
22	18	4	8338 1013	13	-20	8166 6109	3	23	8221 4704	6	_4
22	19	4	8590 8220	17	-6	8393 7757	7	5	8442 9604	3	_2
22	19	3	8590.8220	9	-6	8393 7757	4	5	8442 9604	6	_2
22	20	3	8845.0701	23	42	8623 6946	7	25	8667 1523	4	_18
22	20	2	8845 0701	12	42	8623.6946	3	25	8667 1523	7	-18
22	20	2	0000 7005	27	42	8855 3817	17	25	8802.0018	5	-10
22	21	2 1	9099.7093	27	40	0055.3017	17	-22	8893.0018	5	11
22	21	1	9099.7093	14	40	0007 0472	9	-22	0110 4120	9	11
22	22	1				9087.8472	10	-27	9119.4120	12	-13
22	22	0				9087.8472	8	-27	9119.4120	13	-13
23	0	23	5070.6094	7	48	5402.4104	6	129	5526.9150	2	0
23	1	23	5070.6094	3	44	5402.4104	3	129	5526.9150	5	0
23	1	22				5618.1316	7	-69	5741.3979	3	-112
23	2	22	5331.0127	6	2	5618.1316	4	-70	5741.3979	6	-110
23	2	21							5938.4545	2	-50
23	3	21	5563 0033	3	885	5816 2673	2	77			
23	3	20	0000100000	2	000	001012070	-		6118 0141	2	-35
23	4	20				5997 3602	3	136	6118 7417	4	7
23		10				5777.5002	5	150	6281 7213	7 2	40
23	5	19							6281.8040	4	-40
23	5	19							6425 6226	4 2	33 40
23	3 2	1ð 10							6426 5401	2	-40
23	0	18							0420.3481	3	16
23	6	17							6542.5872	2	-20
23	7	16							6630.7718	2	-26
23	8	15							6728.8025	2	501
23	9	15							6806.7752	3	202
23	9	14							6810.6101	2	122
23	10	14	6772.5450	5	108	6870.0574	3	-46	6950.1088	4	66
23	10	13							6950.5517	2	-76

Table 2 (continued)

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
23	11	13				7034.6377	2	-51	7110.6561	5	-30
23	11	12				7034.6253	3	-24	7110.7057	2	-35
23	12	12	7171.9149	8	-111	7217.7747	2	-41	7282.9059	4	-45
23	12	11	7171.9149	15	-100	7217.7747	4	-38	7282.9112	2	-32
23	13	11	7422.7063	4	-73	7375.1693	2	-18	7466.0894	3	1
23	13	10	7422.7063	7	-73	7375,1693	5	-17	7466.0894	2	-1
23	14	10	7646.2858	6	141	7578.6958	2	9	7658.8309	4	6
23	14	9	7646.2858	12	141	7578.6958	4	9	7658.8309	2	6
23	15	9	7880 9973	7	187	7787 0643	2	-1	7859 8683	4	6
23	15	8	7880 9973	13	187	7787 0643	4	-1	7859 8683	2	6
23	16	8	8123 1112	6	-24	8001 4485	2	-8	8068 0304	5	-11
23	16	7	8123 1112	12	-24	8001 4485	5	-8	8068 0304	3	-11
23	17	7	8370 7376	6	_3	8221 4453	2	-28	8282 2220	5	12
23	17	6	8370 7376	13	_3	8221.4453	5	-28	8282 2220	3	12
23	18	6	8622 4513	0	_12	8446 2538	4	_39	8501 3804	6	-6
23	18	5	8622.4513	18	12	8446 2538	7	30	8501.3804	3	-0
23	10	5	8877 0504	10	-12	8674 0716	1	-39	8724 4856	7	-0
23	19	1	8877.0504	28	-27	8674.9716	+ 0	27	8724.4856	1	- 9
23	20	4	0122 4008	20	-27	80/4.9/10	0 5	10	8724.4830	+ 7	-9
23	20	4	0122 4008	10	-19	8900.0387	5	10	8950.5214	1	-25
23	20	3	9133.4098	18	-19	8900.0387	9	10	8950.5214	4	-25
23	21	3	9390.3980	12	26	9140.3153	4	28	91/8.4/0/	8	-53
23	21	2	9390.3980	24	26	9140.3153	8	28	91/8.4/0/	4	-55
23	22	2	9647.2258	14	-33	93/5.0166	9	-66	9407.3222	10	-/3
23	22	1	9647.2258	28	-33	93/5.0166	19	-66	9407.3222	5	-/3
23	23	l				9609.7676	10	-70	9635.6495	15	-41
23	23	0				9609.7676	20	-70	9635.6495	1	-41
24	0	24	5300.9511	4	-33	5633.0589	3	-91	5758.3317	6	5
24	1	24	5300.9511	7	-38	5633.0589	7	-92	5758.3317	3	5
24	1	23	5573.1564	5	62				5982.1360	5	60
24	2	23							5982.1360	3	61
24	2	22	5815.5657	4	64	6065.2311	3	-214	6188.0825	5	-21
24	3	22				6065.2068	4	-469	6188.0825	2	-12
24	3	21							6376.9413	4	-44
24	4	21							6376.9126	2	-20
24	4	20							6548.6328	4	73
24	5	20							6548.7855	2	9
24	5	19							6701.8005	3	56
24	6	19							6702.5181	2	27
24	6	18							6830.7993	3	7
24	10	15							7236.2024	4	-87
24	10	14							7237.0978	3	-162
24	11	14				7320.6938	5	-24	7396.2678	3	-10
24	11	13				7320.6614	2	-30	7396.3757	6	-41
24	12	13				7504.3577	7	-11	7568.3752	2	-105
24	12	12				7504.3577	3	-6	7568.3908	6	-46
24	13	12	7710 7400	6	-140	7661 4404	5	-13	7751 7740	2	-61
24	13	11	7710 7400	3	-141	7661 4404	2	-11	7751 7740	4	-67
24	14	11	7935 5692	10	-44	7864 9725	5	-1	7945 0211	2	-10
24	14	10	7935 5692	5	-44	7864 9725	2	-1	7945 0211	4	-11
24	15	10	8171 4283	15	_79	8073 9114	4	18	8146 8023	2	19
24	15	9	8171 4283	8	-79	8073 9114	2	18	8146 8023	5	19
24	16	9	8414 8336	15	55	8289 1647	5	_17	8355 9205	2	11
24	16	8	8414 8336	8	55	8289.1647	2	17	8355 9205	4	11
24 24	17	0 8	8663 8660	17	_57	8510 2578	∠ 5	_17 _43	8571 2658	7	_ 2
24 24	17	0 7	8662 8660	1 / Q	-52	8510.2570	2	-45	8571 2650	5	-5
24 24	1/	7	8017 1021	0	-32	8726 2761	5	-45 71	8701 7965	2	-3
∠+ 24	10	ſ	071/.1731	10	4	0/30.3/04	0	/1	0/71./003	5	23
∠4 24	10	0	071/.1931	9 15	4	0/30.3/04	3 0	/1	0/91./003	0	23
24 24	19	0	91/3.0103	13	-3	0700.3/00	0	-3/	9010.4341	4	-8
24	19	5	91/3.6103	8	-3	8900.5/00	4	-3/	9016.4541	/	-8
24	20	5	9432.0239	28	41	9199.9458	9	45	9244.2784	4	-19
24	20	4	9432.0239	14	41	9199.9458	4	45	9244.2784	8	-19
24	21	4	9691.2865	29	20	9435.5360	11	24	94/4.2676	4	-34

Table 2 (continued)

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	dE
24	21	3	9691.2865	14	20	9435.5360	6	24	9474.2676	8	-34
24	22	3				9672.4083	9	18	9705.4891	4	72
24	22	2				9672,4083	5	18	9705,4891	9	72
24	23	2				9909 5872	19	-139			
24	23	1				9909 5872	10	-139			
24	23	1				10146 1440	22	135			
24	24	0				10146.1449	11	135			
24	24	0				10140.1449	11	155			
25	0	25	5540.4086	8	27	5872.8145	8	73	5998.8682	3	3
25	1	25	5540.4086	4	20	5872.8145	4	73	5998.8682	4	3
25	1	24				6107.2529	6	47	6231.9175	5	-85
25	2	24	5824.2962	6	-51	6107.2529	3	47	6231.9175	9	-85
25	2	23							6446.6999	5	81
25	3	23							6446.6999	11	85
25	3	22							6644.1375	3	-37
25	4	22							6644.1345	4	-29
25	4	21							6824.4106	2	-18
25	5	21				6702.9630	4	-5	6824.6689	6	-38
25	5	20							6986.5635	3	55
25	6	20							6986.9792	4	23
25	6	19							7126.4920	2	11
25	7	18							7235 4039	2	14
25	8	18							7257 7725	4	-118
25	8	10							7327 3119	3	_47
25	11	15							7602 7766	6	32
25	11	13							7692.7700	2	-32
25	11	14				7001 7020	2	124	7093.0119	2	-8
25	12	14				/801./038	2	134	7804.0329	8	-27
25	12	13	0000 2001		10	/801./126	4	229	/864.6531	2	-50
25	13	13	8009.3901	4	-12	/958.2602	2	28			
25	13	12	8009.3901	8	-14	7958.2602	5	33	8048.1375	2	-46
25	14	12				8161.7762	2	-1	8241.8225	4	225
25	14	11				8161.7762	4	-1	8241.8225	2	223
25	15	11	8472.2958	6	-44	8371.2311	2	7	8444.2483	4	-18
25	15	10	8472.2958	11	-44	8371.2311	5	7	8444.2483	2	-18
25	16	10	8716.8991	9	59	8587.3047	3	-1	8654.2641	5	6
25	16	9	8716.8991	17	59	8587.3047	5	-1	8654.2641	3	6
25	17	9	8967.3006	8	18	8809.4374	3	-71	8870.7139	5	27
25	17	8	8967.3006	15	18	8809.4374	5	-71	8870.7139	3	27
25	18	8	9222.1663	7	1	9036.7972	3	0	9092.5350	6	25
25	18	7	9222.1663	14	1	9036.7972	6	0	9092.5350	3	25
25	19	7				9268.4371	4	-54	9318.7137	6	12
25	19	6				9268.4371	7	-54	9318.7137	3	12
25	20	6				9503.4466	5	-40	9548.2633	8	-24
25	20	5				9503.4466	10	-40	9548.2633	4	-24
25	21	5				9740.9012	5	61	9780.2292	11	44
25	21	4				9740.9012	9	61	9780.2292	6	44
25	22	4				9979 8482	9	-34			
25	22	3				9979.8482	18	-34			
25	23	3				10219 3918	5	22			
25	23	2				10219.3918	10	22			
25	23	2				10458 5489	12	132			
25	24	1				10458 5489	25	122			
25	24	1				10406 2002	11	-132			
25	25	1				10090.3903	21	-18			
25	25	0				10696.3903	21	-18			
26	0	26	5788.9354	4	25	6121.5570	4	-43	6248.4883	7	1
26	1	26	5788.9354	8	16	6121.5570	9	-43	6248.4883	4	0
26	1	25							6490.7686	9	73
26	2	25							6490.7686	5	73
26	2	24							6714.2859	7	338
26	3	24							6714.2859	3	341
26	3	23							6920.1691	8	-28
26	4	23							6920.1691	4	-12
26	6	21							7279.9468	2	27

Table 2 (continued)

7	T.	,	F	SF	15	E (100)	۲ .	10	E (001)	۲. ۲.	10
J	Ka	K_c	Eobs	ðЕ	dE	$E_{\rm obs}(100)$	ðЕ	dE	$E_{\rm obs}(001)$	дE	dE
26	7	20							7431.7624	3	-167
26	8	18							7645.8405	4	-19
26	11	16				7925.4344	4	-15	8000.0930	2	133
26	11	15				7925.3150	3	23	8000.5700	4	258
26	12	15							8171.5501	2	21
26	12	14							8171.5990	7	15
26	13	14				8265.5257	5	143	8355.0479	2	-23
26	13	13				8265.5257	2	154	8355.0496	9	-49
26	14	13				8468.9861	5	-22	8549.0355	2	-22
26	14	12				8468.9861	3	-21	8549.0355	4	-25
26	15	12				8678,9028	5	28	8752.0805	3	-41
26	15	11				8678 9028	2	28	8752.0805	5	-41
26	16	11				8895 7302	5	1	8962,9266	3	1
26	16	10				8895 7302	3	1	8962 9266	5	1
26	17	10				9118 8495	5	-52	9180 4181	3	39
26	17	0				9118 8495	3	-52	9180.4181	6	39
26	18	0				0347 3070	6	-32	9100.4101	3	13
20	10	9 0				0247.3979	2	23	0402 4825	5	43
20	10	0				9347.3979	5	25	9405.4655	2	45
20	19	07				9580.4194	2	-49	9031.1019	5	-39
20	19	7				9380.4194	3	-49	9031.1019	/	-39
26	20					9817.0077	9	-51			
26	20	0				9817.0077	4	-51			
26	21	6				10056.2398	12	-40			
26	21	2				10056.2398	6	-40			
26	22	5				10297.2174	14	90			
26	22	4				10297.2174	7	90			
26	23	4				10538.9970	20	-15			
26	23	3				10538.9970	10	-15			
26	24	3				10780.7009	11	36			
26	24	2				10780.7009	6	36			
27	0	27	6046.509	10	-3				6507.1528	4	-4
27	1	27	6046.509	5	-14				6507.1528	8	-4
27	1	26							6758.5893	6	-74
27	2	26							6758 5893	12	-74
27	2	25							6990 7288	9	46
27	3	25							6990 7288	18	48
27	3	24							7204 9945	3	-64
27	4	24							7204 9945	6	-52
27	5	22							7581 2144	3	128
27	10	18				8087 4192	3	104	/501.2111	5	120
27	10	17				0007.4172	5	104	8164 6088	3	8
27	10	17				8243 0663	3	3	0104.0900	5	-0
27	11	16				8243.3003	1	-5			
27	12	15				8243.7440	-	70	8480 1067	3	41
27	12	15				0502 1176	2	104	8672 2070	3	-41
27	13	13				8383.1170	5	194	8672.3970	2	95 21
27	13	14				0706 4704	2	1.4.1	80/2.3994	3	21
27	14	14				0/00.4/94	5	-141	8866 6086	0	25
27	14	13				8/80.4/94	3	-139	8800.0080	5	10
27	15	13				8996.7919	3	-22	9070.1681	2	-22
27	15	12				8996.7919	6	-22	9070.1681	3	-23
27	16	12				9214.3122	3	18	9281.7707	6	2
27	16	11				9214.3122	5	18	9281.7707	3	2
27	17	11				9438.3492	3	-45	9500.2369	6	40
27	17	10				9438.3492	6	-45	9500.2369	3	40
27	18	10				9668.0365	3	172	9724.4816	7	37
27	18	9				9668.0365	7	172	9724.4816	4	37
27	19	9				9902.3710	4	19	9953.4915	8	9
27	19	8				9902.3710	8	19	9953.4915	4	9
27	20	8				10140.4722	4	-26			
27	20	7				10140.4722	8	-26			
27	21	7				10381.4196	5	-60			
27	21	6				10381.4196	9	-60			
									(<i>c</i>	ontinued or	next page)

Table 2	(continued)
$1 a \cup 1 \cup 1 \cup 1$	commucar

J	K_a	K_c	$E_{\rm obs}$	δE	dE	$E_{\rm obs}(100)$	δE	dE	$E_{\rm obs}(001)$	δE	$\mathrm{d}E$
27	22	6				10624.3191	7	-59			
27	22	5				10624.3191	13	-59			
27	23	5				10868.2870	7	40			
27	23	4				10868.2870	14	40			
27	24	4				11112.4022	10	-44			
27	24	3				11112.4022	21	-44			
28	0	28	6313.1084	5	-28				6774.8214	9	-12
28	1	28	6313.1084	10	-42				6774.8214	5	-12
28	1	27							7035.3965	10	57
28	2	27							7035.3965	5	56
28	2	26							7276.0940	11	303
28	3	26							7276.0940	6	304
28	11	18				8573.1946	4	-60	8646.5400	6	-45
28	11	17				8572.7572	4	-247			
28	13	16				8910.9015	5	-139			
28	14	15				9114.1861	5	36			
28	14	14				9114.1861	10	40			
29	0	29	6588.7142	10	26				7051.4538	5	-7
29	1	29	6588.7142	5	10				7051.4538	10	-7
29	1	28							7321.0917	10	-96
29	2	28							7321.0917	20	-97
29	2	27							7570.2235	11	-4
29	3	27							7570.2235	22	-4
29	3	26							7800.8634	4	-29
29	11	28				8912.4117	6	130			
30	0	30							7337.0049	11	-9
30	1	30							7337.0049	6	-9
30	1	29							7615.6897	12	52
30	2	29							7615.6897	6	51

Notations. The first three columns contain rotational quantum numbers ($J K_a K_c$). Columns 4–6 contain experimentally determined term values for rovibrational levels (E_{obs} , in cm⁻¹), its uncertainties (δE , in 10⁻⁴ cm⁻¹), and differences ($dE = E_{obs} - E_{calc}$, in 10⁻⁴ cm⁻¹) between observed and calculated term values for the (020) state. Columns 7–9 and 10–12 are the same as columns 4–6 for the (100) and (001) states respectively.

three states with their uncertainties (columns 5, 8, and 11) as well as differences between observed and calculated energies (columns 6, 9, and 12). The range of J and K_a quantum numbers, total number of determined energy levels, and maximal value of rovibrational energy for all three states are given in Table 3.

Like for other C_{2V} isotopologues of the water molecule [16,32–34], an adequate theoretical analysis requires

Table 3

Range of quantum numbers and statistics for the fit of experimental energy levels of the first triad interacting states of $D_2^{-16}O$

State	(020)	(100)	(001)
J _{max}	29	29	30
Kamax	22	25	23
Number of levels	591	676	720
$E_{\max} (\mathrm{cm}^{-1})$	9691	11112	9954
Statistics of the fit			
$0 < dE \leq 2$	1146 levels	58.7%	
$2 \leq dE \leq 5$	527 levels	27.0%	
$5 < dE \leq 10$	222 levels	11.4%	
$10 \le dE \le 20$	57 levels	2.9%	

 $dE = |E_{obs} - E_{calc}| \times 10^3 \text{ cm}^{-1}.$

RMS deviation = 0.004 cm⁻¹ for 1952 levels up to J = 30 and $K_a = 25$.

a simultaneous modeling of all three vibrational states of $D_2^{16}O$ belonging to the first triad [3]. It is well known that an accurate calculation of excited vibrational-rotational states and the related analysis of high-resolution spectra of the water molecule are complicated by an extremely strong centrifugal distortion resulting from the bending-rotational coupling [35-37] and by resonance interactions of both anharmonic and Coriolis type [32,33]. To account for the anomalous centrifugal distortion at high rotational energies and to improve the accuracy compared to global variational calculations we use in the present study the generating function model [7–9] for an effective Hamiltonian. This model allows for the more accurate calculations of water rotational levels [1,9,16–18] with respect to the usual polynomial model. The effective Hamiltonian for the first triad of interacting states (020), (100), and (001)is written in the form

$$\mathbf{H}^{\text{triad}} = \begin{bmatrix} \mathbf{H}_{020}^{G} & \mathbf{H}^{\text{anh}} & \mathbf{H}_{2}^{\text{cor}} \\ & \mathbf{H}_{100}^{G} & \mathbf{H}_{1}^{\text{cor}} \\ & \text{h.c.} & \mathbf{H}_{001}^{G} \end{bmatrix},$$
(1)

Table 4 Example of the strong coupling of three interacting states for J = 16

Eobs	$E_{\rm calc}$	$\mathrm{d}E$	V_1	V_2	V_3	J	K_a	K_c	%(020)	%(100)	%(001)
3715.1640	3715.1647	-7	0	2	0	16	0	16	98.95	1.04	0.00
3715.1639	3715.1658	-19	0	2	0	16	1	16	98.95	1.04	0.00
3892.8170	3892.8076	94	0	2	0	16	1	15	98.78	1.22	0.00
3892.8521	3892.8502	19	0	2	0	16	2	15	98.78	1.22	0.00
4047.8075	4047.8291	-216	0	2	0	16	2	14	93.90	6.00	0.11
4048.5750	4048.5924	-174	0	2	0	16	3	14	95.66	4.27	0.07
4175.9733	4175.9676	57	0	2	0	16	3	13	98.13	1.87	0.00
4183.8098	4183.8022	76	0	2	0	16	4	13	97.39	2.59	0.01
4268.3243	4268.3217	26	0	2	0	16	4	12	98.33	1.67	0.00
4305.8948	4305.9003	-55	0	2	0	16	5	12	97.76	2.23	0.00
4341.0507	4341.0480	27	0	2	0	16	5	11	98.22	1.78	0.00
4428.5571	4428.5634	-63	0	2	0	16	6	11	96.88	3.11	0.01
4435.9448	4435.9412	36	0	2	0	16	6	10	97.91	2.08	0.01
4564.9513	4564.9440	73	0	2	0	16	7	10	96.63	3.35	0.02
4565.4973	4565.5007	-34	0	2	0	16	7	9	96.76	2.61	0.63
4718.0997	4718.1050	-53	0	2	0	16	8	9	78.83	2.58	18.59
4718.3052	4718.3029	23	0	2	0	16	8	8	96.78	3.21	0.01
4887.7115	4887.7096	17	0	2	0	16	9	8	95.60	4.39	0.01
4887.7142	4887.7131	11	0	2	0	16	9	7	95.60	4.39	0.01
5070.8723	5070.8715	8	0	2	0	16	10	7	93.05	6.83	0.12
5070.8723	5070.8716	7	0	2	0	16	10	6	93.05	6.83	0.12
5268.5889	5268.5899	-10	0	2	0	16	11	6	51.25	0.49	48.26
5268.5904	5268.5895	9	0	2	0	16	11	5	51.26	0.49	48.25
5469.1463	5469.1434	29	0	2	0	16	12	5	78.40	19.89	1.70
5469.1463	5469.1434	29	0	2	0	16	12	4	78.40	19.89	1.70
5715.8831	5715.8852	-21	0	2	0	16	13	4	51.21	47.10	1.69
5715.8831	5715.8852	-21	0	2	0	16	13	3	51.21	47.10	1.69
5927.2488	5927.2482	6	0	2	0	16	14	3	83.16	16.36	0.48
5927.2488	5927.2482	6	0	2	0	16	14	2	83.16	16.36	0.48
6151.9319	6151.9381	-62	0	2	0	16	15	2	94.66	5.21	0.13
6151.9319	6151.9381	-62	0	2	0	16	15	1	94.66	5.21	0.13
6384.0146	6383.9808	338	0	2	0	16	16	1	98.09	1.88	0.03
6384.0146	6383.9808	338	0	2	0	16	16	0	98.09	1.88	0.03
4044.9298	4044.9104	194	1	0	0	16	0	16	5.75	92.39	1.86
4044.9579	4044.9414	165	1	0	0	16	1	16	3.98	94.12	1.90
4194.2099	4194.2135	-36	1	0	0	16	1	15	1.56	96.79	1.65
4194.2620	4194.2687	-67	1	0	0	16	2	15	2.25	96.10	1.64
4327.4024	4327.4025	-1	1	0	0	16	2	14	1.46	97.20	1.34
4327.6766	4327.6774	-8	1	0	0	16	3	14	1.87	96.78	1.36
4442.5285	4442.5304	-19	1	0	0	16	3	13	1.59	97.40	1.00
4445.3933	4445.3895	38	1	0	0	16	4	13	2.64	96.19	1.17
4531.7849	4531.7894	-45	1	0	0	16	4	12	1.70	97.49	0.81
4549.4806	4549.4875	-69	1	0	0	16	5	12	2.64	95.93	1.43
4596.6069	4596.6044	25	1	0	0	16	5	11	2.00	92.14	5.86
4649.4870	4649.4886	-16	1	0	0	16	6	11	1.98	94.71	3.31
4653.4199	4653.4198	1	1	0	0	16	6	10	1.18	58.55	40.28
4753.3561	4753.3528	33	1	0	0	16	7	10	2.02	79.01	18.97
4749.0616	4749.0585	31	1	0	0	16	7	9	1.44	56.68	41.87
4894.4639	4894.4658	-19	1	0	0	16	8	9	2.00	63.03	34.97
4893.9023	4893.9043	-20	1	0	0	16	8	8	2.10	66.06	31.84
5029.2422	5029.2409	13	1	0	0	16	9	8	3.56	80.64	15.80
5029.2226	5029.2229	-3	1	0	0	16	9	7	3.56	80.74	15.69
5180.4817	5180.4813	4	1	0	0	16	10	7	5.74	85.24	9.02
5180.4817	5180.4808	9	1	0	0	16	10	6	5.74	85.24	9.02
5345.2967	5345.2965	2	1	0	0	16	11	6	10.13	84.13	5.74
5345.2967	5345.2965	2	1	0	0	16	11	5	10.13	84.13	5.74
5523.0243	5523.0259	-16	1	0	0	16	12	5	21.51	74.89	3.60
5523.0243	5523.0259	-16	1	0	0	16	12	4	21.51	74.89	3.60
5675.6111	5675.6076	34	1	0	0	16	13	4	48.79	49.38	1.83
5675.6111	5675.6076	34	1	0	0	16	13	3	48.79	49.38	1.83
5879.4344	5879.4332	12	1	0	0	16	14	3	16.83	81.20	1.96
										(continued or	n next page)

Table 4 (continued)

Eobs	$E_{\rm calc}$	dE	V_1	V_2	V_3	J	K_a	K_c	%(020)	%(100)	%(001)
5879.4344	5879.4332	12	1	0	0	16	14	2	16.83	81.20	1.96
6083.2326	6083.2319	7	1	0	0	16	15	2	5.34	93.23	1.44
6083.2326	6083.2319	7	1	0	0	16	15	1	5.34	93.23	1.44
6290.5730	6290.5730	0	1	0	0	16	16	1	1.91	97.37	0.72
6290.5730	6290.5730	0	1	0	0	16	16	0	1.91	97.37	0.72
4165.2734	4165.2745	-11	0	0	1	16	0	16	0.01	1.98	98.00
4165.2734	4165.2746	-12	0	0	1	16	1	16	0.01	1.98	98.00
4313 5365	4313 5355	10	0	0	1	16	1	15	0.01	1.76	98.23
4313.5392	4313.5377	15	Ő	Ő	1	16	2	15	0.02	1.76	98.22
4446 1499	4446 1520	-21	0	0	1	16	2	14	0.02	1.67	98.31
4446.2071	4446.2073	-2	Ő	Ő	1	16	3	14	0.02	1.82	98.17
4561.4819	4561,4830	-11	0	0	1	16	3	13	0.02	1.71	98.27
4561.8526	4561.8538	-12	0	0	1	16	4	13	0.48	6.88	92.64
4653.2313	4653.2321	-8	0	0	1	16	4	12	0.02	1.43	98.55
4676.9911	4676.9922	-11	0	0	1	16	5	12	0.84	39.75	59.41
4718.7776	4718.7712	65	0	0	1	16	5	11	18.03	3.26	78.71
4777.8090	4777.8101	-11	0	0	1	16	6	11	1.00	40.87	58.13
4787.5832	4787.5861	-29	0	0	1	16	6	10	0.44	18.17	81.39
4859.8444	4859.8434	10	0	0	1	16	7	10	1.07	30.73	68.20
4861.5600	4861.5578	22	0	0	1	16	7	9	1.17	33.72	65.11
4982.0520	4982.0535	-15	0	0	1	16	8	9	0.84	14.82	84.34
4982.2476	4982.2499	-23	0	0	1	16	8	8	0.84	14.93	84.23
5117.4468	5117.4484	-16	0	0	1	16	9	8	1.21	7.89	90.90
5117.4596	5117,4618	-22	0	0	1	16	9	7	1.21	7.90	90.90
5262.5095	5262.5116	-21	0	0	1	16	10	7	38.61	15.35	46.04
5262.5095	5262.5119	-24	0	0	1	16	10	6	38.61	15.35	46.04
5424.9424	5424,9449	-25	0	0	1	16	11	6	0.08	5.19	94.73
5424.9424	5424,9449	-25	0	0	1	16	11	5	0.08	5.19	94.73
5595.2558	5595.2583	-25	0	0	1	16	12	5	0.00	3.50	96.50
5595.2558	5595.2583	-25	0	0	1	16	12	4	0.00	3.50	96.50
5774.7396	5774.7410	-14	0	0	1	16	13	4	0.00	2.44	97.55
5774.7396	5774.7410	-14	0	0	1	16	13	3	0.00	2.44	97.55
5962.2857	5962.2849	8	0	0	1	16	14	3	0.01	1.60	98.39
5962.2857	5962.2849	8	0	0	1	16	14	2	0.01	1.60	98.39
6156.7725	6156.7713	12	0	0	1	16	15	2	0.00	0.83	99.16
6156.7725	6156.7713	12	0	0	1	16	15	1	0.00	0.83	99.16
6357.0910	6357.0917	-7	0	0	1	16	16	1	0.00	0.06	99.94
6357.0910	6357.0917	-7	0	0	1	16	16	0	0.00	0.06	99.94

Notations. E_{obs} , experimental term values (in cm⁻¹); E_{calc} ,- calculated term values (in cm⁻¹); dE, difference between experimental and calculated term values (in 10⁻⁴ cm⁻¹); $V_1V_2V_3$, vibrational quantum numbers; J, K_a, K_c rotational quantum numbers; $\%(V_1V_2V_3)$, mixing coefficients of rovibrational levels on $V_1V_2V_3$ states.

where h.c. means hermitian conjugate and the diagonal vibrational blocks $\mathbf{H}_{V_1V_2V_3}^G$ are the reduced effective rotational Hamiltonians of the $(V_1V_2V_3)$ state. Each $\mathbf{H}_{V_1V_2V_3}^G$ block is written in the same form as in [1] (see formulas (1)–(5) there in) via the generating function $\mathbf{G} \equiv \mathbf{G}(\alpha^{(J)}) = (2/\alpha^{(J)}) \{\sqrt{1 + \alpha^{(J)} \mathbf{J}_z^2} - 1\}$ which describes the K_a dependence of high rotational states in a more physically consistent way [7]. The interactions blocks \mathbf{H}^{anh} , $\mathbf{H}_1^{\text{cor}}$, and $\mathbf{H}_2^{\text{cor}}$ accounting explicitly for anharmonic and Coriolis interactions [32,33]. We use the notations for interacting parameters given in [16] following previous definitions of \mathbf{H}^{anh} , $\mathbf{H}_1^{\text{cor}}$ in terms of cylindrical components of the angular momentum cited therein. In this paper we include in the operator \mathbf{H}^{anh} the following terms:

$$\mathbf{H}^{\text{anh}} = F_{000} + F_{020} \mathbf{J}_{z}^{2} + F_{020} (\mathbf{J}_{+}^{2} - \mathbf{J}_{-}^{2}) + F_{040} \mathbf{J}_{z}^{4} + F_{220} \mathbf{J}^{2} \mathbf{J}_{z}^{2} + F_{400} \mathbf{J}^{4},$$
(2)

where F_{nmr} are adjustable parameters and $\mathbf{J}_{\pm} = \mathbf{J}_{x}$ $\mp i \mathbf{J}_{y}$. Operators \mathbf{H}_{1}^{cor} and \mathbf{H}_{2}^{cor} include the terms:

$$\begin{aligned} \mathbf{H}_{i}^{\text{cor}} &= C_{001}(\mathbf{J}_{+} - \mathbf{J}_{-}) + C_{011} \left(\mathbf{J}_{+} \left(\mathbf{J}_{z} + \frac{1}{2} \right) \right) \\ &+ \left(\mathbf{J}_{z} + \frac{1}{2} \right) \mathbf{J}_{-} \right) + C_{021} \left(\mathbf{J}_{+} \left(\mathbf{J}_{z} + \frac{1}{2} \right)^{2} \right) \\ &- \left(\mathbf{J}_{z} + \frac{1}{2} \right)^{2} \mathbf{J}_{-} \right) + C_{201} \mathbf{J}^{2} (\mathbf{J}_{+} - \mathbf{J}_{-}) \\ &+ C_{031} \left(\mathbf{J}_{+} \left(\mathbf{J}_{z} + \frac{1}{2} \right)^{3} + \left(\mathbf{J}_{z} + \frac{1}{2} \right)^{3} \mathbf{J}_{-} \right) \\ &+ C_{221} \mathbf{J}^{2} \left(\mathbf{J}_{+} \left(\mathbf{J}_{z} + \frac{1}{2} \right)^{2} - \left(\mathbf{J}_{z} + \frac{1}{2} \right)^{2} \mathbf{J}_{-} \right), \end{aligned}$$
(3)

Table 5 Fitted values of the parameters of the effective Hamiltonian for the first triad of interacting states (020), (100), and (001) of $D_2^{16}O$ molecule

Parameter	(020) State		(100) State		(001) State	
	Value	SE	Value	SE	Value	SE
E_{VV}	2340.378		2668.1055		2787.7175	
$\alpha_0 \times 10^2$	1.44707	0.011	2.09952787	0.020	3.93040619	0.011
$\alpha_1 \times 10^5$	4.26186	0.25	1.3936485	0.26	1.856181	0.16
$\alpha_2 \times 10^8$	6.434	0.41	1.748222	0.27	-0.10195	0.10
$\alpha_3 \times 10^{11}$	-4.3259	0.55	-1.15758	0.22	0.468463	0.20
g10	6.067632203	0.000049	5,983314754	0.000033	6.014695626	0.000026
$g_{20} \times 10^4$	-3.6457894	0.0060	-3.06234968	0.0034	-3.18315623	0.0023
$g_{30} \times 10^8$	9.933255	0.26	6.89267688	0.15	6.743507	0.074
$g_{40} \times 10^{11}$	-5.014663	0.48	-3.554983	0.29	-1.67751	0.096
$g_{50} \times 10^{14}$	2.031549	0.36	2.34493	0.20	0.069611	0.050
g ₀₁	12.078312	0.00035	9.194323352	0.00026	8.873761360	0.00026
$g_{11} \times 10^3$	2 41 368 3	0.0073	1 48357837	0.0052	1 5049805	0.0034
$g_{21} \times 10^7$	4 520534	0.61	-4 1904274	0.37	-1.860535	0.17
$g_{21} \times 10^9$	2 198335	0.21	0.685426	0.097	0.019927	0.046
$g_{41} \times 10^{13}$	-9.83792	3 3	-5.695	0.81	0.178	0.036
$g_{51} \times 10^{15}$	-1.8625	0.25	5.075	0.01	0.170	0.050
$g_{00} \times 10^2$	2 1560315	0.33	3 931757438	0.47	7 871683798	0.24
$g_{02} \times 10^4$	1 266443	0.067	0 37326544	0.060	0.5488528	0.038
$g_{12} \times 10^7$	1.200443	0.14	0.4199523	0.000	-0.01451	0.038
$g_{22} \times 10^{10}$	-1 908235	0.22	-0.285341	0.060	0.089206	0.053
$g_{32} \times 10^{14}$	6 170624	0.22	0 321428	0.059	0.039200	0.035
$g_{42} \times 10^4$	0.170024	0.47	0.321428	0.005	1 5162254	0.040
$g_{03} \times 10^{7}$	4 37203	0.11	0.607735	0.14	1 41502	0.11
$g_{13} \times 10^{10}$	4 552165	0.10	1 07421	0.17	0.085811	0.11
$g_{23} \times 10^{13}$	2 116385	0.59	0 3/010	0.12	0.6058	0.13
$g_{33} \times 10^{7}$	0.4287537	0.39	_0.291882	0.12	-3 6518	0.15
$g_{04} \times 10^9$	1 1849136	0.074	-0.012129	0.010	-5.0510	0.51
$g_{14} \times 10^{13}$	3 0024	0.62	1 2949	0.26	4 00144	0.30
$g_{24} \times 10^9$	0.2065008	0.02	0.375384	0.11	2 20673	0.18
$g_{05} \times 10^{12}$	-3 25129	0.038	0.05	_0.842284	0.073	0.16
$g_{15} \times 10^{12}$	28	0.22	0.69261	0.15	2 62384	0.31
$g_{06} \times 10^{14}$	-2.8	0.024	-0.09201	0.15	-2.02584	0.51
$g_{07} \times 10$	0.666050083	0.024	0 5070570703	0.000026	0.6147251	0.000016
u_{00} $u_{00} \times 10^4$	1 5045701	0.000022	1 227067256	0.000020	1 2707004	0.0014
$u_{10} \times 10^{8}$	-1.5045791	0.0021	-1.227007550	0.11	2 250022	0.0014
$u_{20} \times 10^{11}$	4.027727	0.052	4.20403	0.11	0.812672	0.037
$u_{30} \times 10^{14}$	-0.038	0.090	-4.0349	0.20	-0.812075	0.029
$u_{40} \times 10^{18}$	-1.000112	0.080	5.0005 7 7	0.12	0.005	
$u_{50} \times 10^{3}$	1 25225245	0.0078	0.2208102	0.0028	0 2250582	0.0022
$u_{01} \times 10^{-7}$	-1.55525245	0.0078	-0.3298192	0.0038	-0.5250585	0.0023
$u_{11} \times 10^{10}$	-1.931783	2.0	-1.0/90/	0.23	-0.095588	0.12
$u_{21} \times 10^{-12}$	-1.22/19	2.9	2.36764	0.38	-0.34002	0.22
$u_{31} \times 10^{15}$	-1.03012	0.47	-0.237137	0.045	-0.048937	0.010
$u_{41} \times 10^{-5}$	2.40038	0.28	0 17759	0.014	0.00626	
$u_{02} \times 10^{-9}$	8 85266	0.0032	0.17738	0.014	-0.00030	0.17
$u_{12} \times 10^{11}$	4.22500	1.0	0.93374	0.51	1.3947	0.17
$u_{22} \times 10$	4.52599	0.41	0.18440	0.045	0 227628	0.019
$u_{32} \times 10$	-5.8911	0.34	0.18449	0.045	0.227628	0.018
$u_{03} \times 10^{10}$	-3.04213	0.75	0.03038	0.30	4./0/32	0.1/
$u_{13} \times 10^{12}$	-3.33093	0.22	0.0519		2 45442	0.22
$u_{23} \times 10^{11}$	4.02126	2.0	-0.0518		-2.45443	0.32
$u_{04} \times 10^{-13}$	3.0	0.45	0 (2(25	0.070	1.051.40	0.10
$u_{14} \times 10^{-16}$	9.03936	0.45	-0.02025	0.070	-1.95142	0.18
$u_{24} \times 10^{-10}$			0.438		1.1866	0.23
Resonance int	eraction parameters					
Parameter	Coriolis				Parameter	Anharmonic
	(0.01) (1.00)		(0.0.1) (0.20)			(100) (020)

	(001)-(100)		(001)-(020)			(100)-(020)	
	Value	SE	Value	SE		Value	SE
$C_{001} \times 10_1$	5.294				F_{000}	34.24	
$C_{011} \times 10_2$	-9.15936657	0.0034	1.301227	0.0077	$F_{020} \times 10_2$	-8.49197	0.060
						(continued on n	ext page)

Parameter	Coriolis				Parameter	Anharmonic (100)–(020)		
	(001)-(100)		(001)-(020)					
	Value	SE	Value	SE		Value	SE	
$C_{021} \times 10_4$			9.8394	0.052	$F_{002} \times 10_4$	4.42208	0.22	
$C_{201} \times 10_5$			4.244536	0.073	$F_{040} \times 10_5$	1.49124	0.30	
$C_{031} \times 10_5$	-3.233228	0.083			$F_{220} \times 10_5$	-1.280598	0.045	
$C_{211} \times 10_5$	1.497567	0.0059			$F_{400} \times 10_7$	1.48864	0.49	

Table 5 (continued)

Notes. All linear parameters g_{nm} , u_{nm} , and resonance interaction parameters are in cm⁻¹. Non-linear parameters α_n are dimensionless.

Fig. 4. Comparison of observed rotational levels of the (020), (100), and (001) states of $D_2^{16}O$ with levels given by Toth, [5] on the overlapping sub-set.

where i = 1 or 2 and C_{nmr} are adjustable parameters.

The results of the fit of energy levels for all three states are shown in Tables 2 and 3. In Table 2, we give the discrepancies between observed and calculated energy levels in columns 6, 9, and 12 for the (020), (100), and (001) states, respectively, in 10^{-4} cm⁻¹ units. The root mean square (RMS) deviation between observed and calculated values was about 0.004 cm⁻¹ for 1952 fitted energy levels. The statistics of the fit is given in Table 3. Note that 35 levels with discrepancies $dE = E_{obs} - E_{calc}$ bigger than 0.02 cm^{-1} (200 in units of the column dE of Table 2) were excluded from fitting procedure. The error margins for these 35 levels are between 0.020 and 0.089 cm^{-1} . A possible reason for some of these outliers could be related to some extra-polyad resonances which were not included in the model at this stage. We plan to account for such perturbations by an appropriate model extension in future studies.

In Table 4, we show an example of very strong resonance coupling involving all three states for J = 16. Wavefunction mixing coefficients given in Table 4 for each observed vibration–rotation level indicate very strong "intrapolyad" resonance perturbations in the first triad due to both anharmonic and Coriolis interactions. The effects of the interactions are very irregular as a function of rotational quantum numbers. The last three columns of the Table 4 represent mixing coefficients $%(V_1V_2V_3)$ for each rovibrational level. The mixing coefficients are defined according to [32] as $%(V_1V_2V_3) = \sum_k (C_k^{V_1V_2V_3})^2$, where $C_k^{V_1V_2V_3}$ represent contributions of isolated-state Wang basis functions to the final rovibrational eigenfunction of the interacting state Hamiltonian (1). The anharmonic resonance interactions of (020) and (100) states are extremely important for the series with $K_a = 12$, 13, and 14. In particular for the $K_a = 13$ series the mixing coefficients of the wavefunctions are nearly "fifty–fifty" for J = 14, 15, 16, 17. The mixing coefficients of (001) 16₁₀₇ and 16₁₀₆ show that these levels are in triple resonance with (100) 16₉₇, 16₉₈ and (020) 16₁₁₅, 16₁₁₆ levels.

Values of the fitted Hamiltonian parameters for the first triad interacting states with their standard errors (SE) are given in Table 5. Some parameters (their values are given without standard errors) were fixed in a way to obtain a good agreement with global calculations of energy levels [20] outside the experimentally accessible range. The set of parameters given in Table 5 together with those of (000) and (010) states [1] allows us to achieve rather accurate data reduction for the presently available experimental data of $D_2^{16}O$ molecule in far-and middle-infrared spectral regions.

4. Discussion

This paper reports the analysis and accurate theoretical modeling of hot emission spectra of the $D_2^{16}O$ molecule in the spectral ranges of 320–860 and 1750–3400 cm⁻¹. We provide an extensive list of 1987 experimentally determined rotational levels of the (020), (100), and (001) vibrational states up to maximal values of rotational quantum numbers J = 30 and $K_a = 25$. More than 3550 newly observed transitions of the $D_2^{16}O$ molecule are reported. A use of effective Hamiltonian in the generation function form provides

Fig. 5. Comparison of observed rotational levels of the (020) state of $D_2^{16}O$ with levels given by Shirin et al., [6] on the overlapping sub-set.

Table 6Example of the coupling coefficients for the (020) state

$E_{\rm obs}$	$E_{\rm calc}$	$\mathrm{d}E$	V_1	V_2	V_3	j	K_a	K_c	%(020)	%(100)	%(001)
5538.8195	5538.8370	-17.5	0	2	0	14	14	1	78.80	21.01	0.19
5538.8195	5538.8370	-17.5	0	2	0	14	14	0	78.80	21.01	0.19
5727.1392	5727.1412	-2.0	0	2	0	15	14	2	81.10	18.56	0.35
5727.1392	5727.1412	-2.0	0	2	0	15	14	1	81.10	18.56	0.35
5950.2558	5950.2035	52.3	0	2	0	15	15	1	94.14	5.79	0.07
5950.2558	5950.2035	52.3	0	2	0	15	15	0	94.14	5.79	0.07
5715.8831	5715.8852	-2.1	0	2	0	16	13	4	51.21	47.10	1.69
5715.8831	5715.8852	-2.1	0	2	0	16	13	3	51.21	47.10	1.69
5927.2488	5927.2482	0.6	0	2	0	16	14	3	83.16	16.36	0.48
5927.2488	5927.2482	0.6	0	2	0	16	14	2	83.16	16.36	0.48
6151.9319	6151.9381	-6.2	0	2	0	16	15	2	94.66	5.21	0.13
6151.9319	6151.9381	-6.2	0	2	0	16	15	1	94.66	5.21	0.13
6384.0146	6383.9808	33.8	0	2	0	16	16	1	98.09	1.88	0.03
6384.0146	6383.9808	33.8	0	2	0	16	16	0	98.09	1.88	0.03
5025 (021	5025 (0.17	2 (0	2	0	17	10	~	66.17	12.07	1.05
5925.6021	5925.6047	-2.6	0	2	0	17	13	5	55.17	42.87	1.95
5925.6021	5925.6047	-2.6	0	2	0	17	13	4	55.17	42.87	1.95
6139.0157	6139.0139	1.8	0	2	0	17	14	4	85.00	14.43	0.58
6139.0137	6139.0139	1.8	0	2	0	17	14	2	85.00	14.43	0.58
6365 2066	6365 3052	1.4	0	2	0	17	15	3	95.12	4.70	0.18
6508 8480	6509 9525	1.4	0	2	0	17	15	2	93.12	4.70	0.18
6508 8480	6508 8535	-3.3	0	2	0	17	10	2	98.20	1.73	0.07
6837 0743	6837.0638	- 5.5	0	2	0	17	10	1	98.20	0.66	0.07
6837.0743	6837.0638	10.5	0	2	0	17	17	0	99.32	0.66	0.02
0057.0745	0057.0050	10.5	0	2	0	17	17	0	JJ.32	0.00	0.02
6146 9086	6146 9102	-16	0	2	0	18	13	6	59.09	38 77	2.15
6146.9086	6146.9102	-1.6	Õ	2	Ő	18	13	5	59.09	38.77	2.15
6362.2884	6362.2916	-3.2	0	2	0	18	14	5	86.60	12.75	0.65
6362.2884	6362.2916	-3.2	0	2	0	18	14	4	86.60	12.75	0.65
6590.1464	6590.1430	3.4	0	2	0	18	15	4	95.53	4.24	0.23
6590.1464	6590.1430	3.4	0	2	0	18	15	3	95.53	4.24	0.23
6825.2064	6825.2029	3.5	0	2	0	18	16	3	98.31	1.59	0.10
6825.2064	6825.2029	3.5	0	2	0	18	16	2	98.31	1.59	0.10
7065.0150	7065.0205	-5.5	0	2	0	18	17	2	99.34	0.62	0.04
7065.0150	7065.0205	-5.5	0	2	0	18	17	1	99.34	0.62	0.04
7308.0347	7308.0325	2.2	0	2	0	18	18	1	99.77	0.21	0.02
7308.0347	7308.0325	2.2	0	2	0	18	18	0	99.77	0.21	0.02
6379.6795	6379.6779	1.6	0	2	0	19	13	7	62.84	34.88	2.28
6379.6795	6379.6779	1.6	0	2	0	19	13	6	62.84	34.88	2.28
6596.9309	6596.9344	-3.5	0	2	0	19	14	6	87.99	11.30	0.71
6596.9309	6596.9344	-3.5	0	2	0	19	14	5	87.99	11.30	0.71
6826.2903	6826.2923	-2.0	0	2	0	19	15	5	95.89	3.84	0.27
6826.2903	6826.2923	-2.0	0	2	0	19	15	4	95.89	3.84	0.27
7062.8545	7062.8498	4.7	0	2	0	19	16	4	98.41	1.4/	0.12
7062.8343	7002.8498	4.7	0	2	0	19	10	2	98.41	1.4/	0.12
7304.2920	7304.2808	5.2 5.2	0	2	0	19	17	3	99.30	0.57	0.06
7540.0658	7540.0700	5.1	0	2	0	19	19	2	99.30	0.37	0.00
7549.0058	7549.0709	-5.1	0	2	0	19	10	1	99.77 00.77	0.20	0.03
7795 9254	7795 9272	-1.8	0	2	0	19	10	1	99.77	0.20	0.03
7795 9254	7795 9272	-1.8	0	2	0	19	19	0	99.94	0.05	0.01
6623 7828	6623 7782	4 5	0	2	0	20	13	8	66 37	31.26	2 37
6623 7828	6623.7782	4.5	0	2	0	20	13	7	66.37	31.26	2.37
6842.7937	6842.7971	-3.4	Ő	2	Ő	20	14	7	89.19	10.05	0.76
6842.7937	6842.7971	-3.4	0	2	0	20	14	6	89.19	10.05	0.76
7073.5975	7073.5987	-1.2	0	2	0	20	15	6	96.21	3.49	0.30
7073.5975	7073.5987	-1.2	0	2	0	20	15	5	96.21	3.49	0.30
7311.6213	7311.6232	-1.9	0	2	0	20	16	5	98.49	1.36	0.15
7311 6213	7311 6232	-19	0	2	0	20	16	4	98 49	1 36	0.15

Table 6 (continued)

Eobs	$E_{\rm calc}$	dE	V_1	V_2	V_3	j	K_a	K_c	%(020)	%(100)	%(001)
7554.6721	7554.6670	5.1	0	2	0	20	17	4	99.38	0.54	0.08
7554.6721	7554.6670	5.1	0	2	0	20	17	3	99.38	0.54	0.08
7801.2383	7801.2320	6.3	0	2	0	20	18	3	99.76	0.19	0.05
7801.2383	7801.2320	6.3	0	2	0	20	18	2	99.76	0.19	0.05
8050.0478	8050.0530	-5.2	0	2	0	20	19	2	99.93	0.05	0.03
8050.0478	8050.0530	-5.2	0	2	0	20	19	1	99.93	0.05	0.03
8299.9590	8299.9610	-2.0	0	2	0	20	20	1	99.99	0.00	0.01
8299.9590	8299.9610	-2.0	0	2	0	20	20	0	99.99	0.00	0.01

Notations. E_{obs} , experimental term values (in cm⁻¹); E_{calc} , calculated term values (in cm⁻¹); dE, difference between experimental and calculated term values (in 10⁻⁴ cm⁻¹); $V_1V_2V_3$, vibrational quantum numbers; J, K_a, K_c , rotational quantum numbers; $\%(V_1V_2V_3)$, mixing coefficients of rovibrational levels on $V_1V_2V_3$ states.

a good agreement with spectroscopic accuracy between observed and calculated energy levels as it is seen in Tables 2–4.

A comparison with the most complete previously available data sets for the (020), (100), and (001) states given by Toth [5] is shown in Fig. 4. Our set of experimentally determined rovibrational levels for these three vibrational states is much larger in terms of maximum rotational quantum numbers J, K_a . Fig. 4 gives a comparison on a sub-set overlapping with previously published "cold" data which looks rather good except for few entries. The deviations are larger than 0.01 cm⁻¹ for three rotational levels (9_{9 1}, 9_{9 0}, and 12_{2 10}) of the (020) state and for one rotational level (16_{1 16}) of the (100) state only. Discrepancies for these four levels are not plotted on Fig. 4 because they do not fit the scale of the figure. Maximal discrepancies of +0.667 cm⁻¹ with data of [5] appear for 9_{9 1} and 9_{9 0} levels of (020).

Fig. 5 shows the comparison of rotational levels of the (020) state with recent paper [6]. The overlapping energy level set between the present determination and that published in supplementary data of [6] contains 330 entries. Note that according to our theoretical analysis of the (020), (100), and (001) interacting states using effective Hamiltonian approach we have to proceed by a vibrational re-assignment of a part of the (020) rotational levels reported in [6] to the (100) state. These are 14_{14} , 14_{14} , 14_{14} , 15_{14} , 15_{14} , 15_{14} , 15_{15} 1, 15_{15} 0, and all series of levels for J = 16-20with $K_a = 13$ –J. It is generally assumes that for rovibrational states with wave function mixing coefficients close to 50% a vibrational assignment among resonance partners should be considered as a rather arbitrary one and could change following a theoretical model used for calculations. As is clearly seen in Table 6 this is the case of $K_a = 13$ and possibly to less extent of $K_a = 12$, and $K_a = 14$.

But for $K_a = 15, 16, 17, ...$ in these series the mixing coefficients go down rapidly to 5 an 1% and even below. Our calculations suggest that these levels should be then definitely re-assigned to the (100) state.

For the remaining common levels the comparison statistics is the following. A rather good agreement was observed for 238 energies with absolute values of discrepancies less than 0.01 cm⁻¹. For 66 energies discrepancies are between 0.01 and 0.05 cm⁻¹ and for 26 levels discrepancies are bigger than 0.05 cm^{-1} up to 0.527 cm⁻¹. Statistical estimates of our experimental uncertainties (δE column of Table 2) suggest that energy level values derived from the present analysis should be more accurate because they are determined from different spectra including direct transitions from the ground state (000) and not hot bands only: all our rovibrational levels are confirmed by several transitions in two separate spectral ranges. The reliability of our assignments is also confirmed by our model calculation using the Hamiltonian (1)–(3) (see Tables 2 and 4), which is sufficiently accurate for unambiguous assignment purposes $(RMS = 0.004 \text{ cm}^{-1})$ and also through a consistent comparison with global prediction using potential function [20].

A comparison of our observed line positions of the $2v_2$, v_1 , and v_3 bands and determined energy levels with the global predictions from the molecular potential energy surface of Partridge and Schwenke [20] is shown on Figs. 6 and 7. The distribution of the deviations looks similar to that of (000) and (010) states of $D_2^{16}O$ molecules reported in our previous study [1] but shows somewhat different trends compared to deviations given in [17] for the second triad of $H_2^{16}O$.

In general an agreement for such type of predictive global calculations aimed at providing a simultaneous description of all rovibrational states of all water isotopologues simultaneously with a rather restricted set of parameters should obviously be considered as very good ones particularly up to $J \sim 10$. Absolute values of discrepancies between observed and calculated energies are less than 0.1 cm^{-1} for $J \leq 15$, $K_a \leq 10$ and $16 \leq J \leq 20$, $K_a = 9$. For higher values of J and K_a the predictions appear to be systematically overestimated, (PS – Obs) gradually increasing with

Fig. 6. Comparison between observed line positions in the $2v_2$, v_1 and v_3 bands of $D_2^{16}O$ and global prediction using potential function of Partridge and Schwenke, [20].

 K_a . For the comparison given in Figs. 6 and 7 the global D₂O energy calculation have been reproduced with the same cut-off for the primitive basis set and for maximum dimensions of matrices as in the original paper by Partridge and Schwenke [20] (as given for the main isotopic species) and using the mass depen-

dent corrections of the potential function defined in [20]. An agreement with observation could still possibly be improved to a certain extent with the same PS potential function using a larger basis set, but a study of basis convergence is beyond the scope of the present paper. In general this comparison confirms a good

Fig. 7. Comparison of observed rotational levels of the (020), (100), and (001) states of $D_2^{16}O$ with levels calculated from global prediction using potential function of Partridge and Schwenke [20] (see text for more detail).

consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data. As for H_2O triads [17] we observe that the behaviour of the differences between global predictions and experimental data depends on the band or on the state. Figs. 6 and 7 give complementary information in this respect. At first glance an error distribution for line centres in Fig. 6 looks erratic at some places, but a more detailed analysis allows identifying in many cases regular series which are of great importance for assignment purposes. This becomes clearer for the error distribution of energies plotted at Fig. 7. Except for specific ranges of quantum numbers the energy deviations show rather regular curves as functions of J and K_a . A notable exception appear for series with $K_a \sim 13$: a "hole" for (100) error distribution and a perturbation of regular plots for (020). This corresponds to levels which exhibit large anharmonic mixing coefficients as is clearly seen in Table 6. The situation is somewhat similar to that reported in [17] for the second triad of H₂O with maximum resonance mixing at $K_a \sim 10$. In both cases such a comparison accounting for mixing coefficient tables suggests that a further optimization of terms in the molecular potential function which are responsible for large anharmonic bending-symmetric stretch coupling would lead to an improvement of the global predictions.

This study confirms a conclusion of previous works that two types of calculations discussed above provide complementary tools for water spectra assignment and analyses: global variational calculations (as described by Partridge and Schwenke [20,21], Polyansky and coworkers [38]) offer a physically consistent view on an entire set of all rovibrational states and effective polyad calculations using effective Hamiltonians with adequate convergence and extrapolation properties [7–9,39] could give better accuracy locally together with a supplementary insight to resonance mixing of rovibrational wave functions.

Acknowledgment

S.N.M. gratefully acknowledges support from DAAD and thanks the Physikalisch-Chemischen Institut at the Justus-Liebig-Universität Giessen and Molekülspektroskopisches Laboratorium for giving him the opportunity to continue his research on emission water spectra. E.N.S. acknowledges support from Tomsk State University and Scientific School of Prof. S.D. Tvorogov, Corr. Member of RAS "Optical spectroscopy and Radiative Processes in the Atmosphere". S.A.T. and Vl.G.T. thank D.W. Schwenke for providing an access for his data and collaborations in global calculations and acknowledge support from the IDRIS computer centre of CNRS. This investigation was made partly within the framework of the program 2.10 "Optical Spectroscopy and Frequency Standards" of Russian Academy of Sciences and PICS Grant No. 1572.

Appendix A. Supplementary data

Supplementary data for this article are available on ScienceDirect (www.sciencedirect.com) and as part of the Ohio State University Molecular Spectroscopy Archives (http://msa.lib.ohio-state.edu/jmsa_hp.htm).

References

- G. Mellau, S.N. Mikhailenko, E.N. Starikova, S.A. Tashkun, H. Over, Vl.G. Tyuterev, J. Mol. Spectrosc. 224 (2004) 32–60.
- [2] N. Papineau, Ph.D. Dissertation, Orsay, 1980.
- [3] N. Papineau, J.-M. Flaud, C. Camy-Peyret, G. Guelachvili, J. Mol. Spectrosc. 87 (1981) 219–232.
- [4] V.D. Gupta, J. Phys. B: At. Mol. Phys. 14 (1981) 1761-1770.
- [5] R.A. Toth, J. Mol. Spectrosc. 195 (1999) 98-122.
- [6] S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Tennyson, T. Parekunnel, P.F. Bernath, J. Chem. Phys. 120 (2004) 206–210.
- [7] Vl.G. Tyuterev, J. Mol. Spectrosc. 151 (1992) 97-129.
- [8] V.I. Starikov, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. 151 (1992) 130–147.
- [9] Vl.G. Tyuterev, V.I. Starikov, S.A. Tashkun, S.N. Mikhailenko, J. Mol. Spectrosc. 170 (1995) 38–58.
- [10] V.I. Starikov, Vl.G. Tyuterev, "Intramolecular ro-vibrational interactions and theoretical methods in the spectroscopy of nonrigid molecules, Nauka (1997) [in Russian].
- [11] J.K.G. Watson, J. Chem. Phys. 46 (1967) 1936–1949.
- [12] W. Quapp, M. Hirsch, G.Ch. Mellau, S. Klee, M. Winnewisser, A. Maki, J. Mol. Spectrosc. 195 (1999) 284–298.
- [13] A. Maki, G.Ch. Mellau, S. Klee, M. Winnewisser, W. Quapp, J. Mol. Spectrosc. 202 (2000) 67–82.
- [14] M. Birk, M. Winnewisser, E.A. Cohen, J. Mol. Spectrosc. 136 (1989) 402–445.
- [15] P.S. Ormsby, K.N. Rao, M. Winnewisser, B.P. Winnewisser, A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, J. Mol. Spectrosc. 158 (1993) 109–130.
- [16] S.N. Mikhailenko, Vl.G. Tyuterev, K.A. Keppler, B.P. Winnewisser, M. Winnewisser, G. Mellau, S. Klee, K.N. Rao, J. Mol. Spectrosc. 184 (1997) 330–349.
- [17] S.N. Mikhailenko, Vl.G. Tyuterev, V.I. Starikov, K.A. Albert, B.P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, J.-M. Flaud, J.W. Brault, J. Mol. Spectrosc. 213 (2002) 91–121.
- [18] S.N. Mikhailenko, Vl.G. Tyuterev, G. Mellau, J. Mol. Spectrosc. 217 (2003) 195–211.
- [19] http://www.SyMath.com.
- [20] H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618– 4639.
- [21] D.W. Schwenke, H. Partridge, J. Chem. Phys. 113 (2000) 6592– 6597.
- [22] S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov, N.N. Lavrentieva, JQSRT 82 (2003) 165–196.
- [23] W.S. Benedict, S.A. Clough, L. Frenkel, T.E. Sullivan, J. Chem. Phys. 53 (1970) 2565–2570.
- [24] G. Steenbeckeliers, J. Bellet, J. Mol. Spectrosc. 45 (1973) 10-44.
- [25] J.K. Messer, F.C. De Lucia, P. Helminger, J. Mol. Spectrosc. 105 (1984) 139–155.
- [26] J.W.C. Johns, J. Opt. Soc. Am. B 2 (1985) 1340-1354.
- [27] O.I. Baskakov, V.A. Alekseev, E.A. Alekseev, B.I. Polevoy, Opt. Spectrosc. 63 (1987) 1016–1018 (in Russian).
- [28] R.A. Toth, J. Mol. Spectrosc. 162 (1993) 41-54.
- [29] R. Paso, V.M. Horneman, J. Opt. Soc. Am. B 12 (1995) 1813– 1837.
- [30] F. Matsushima, M. Matsunaga, G.Y. Qian, Y. Ohtaki, R.L. Wang, K. Takagi, J. Mol. Spectrosc. 206 (2001) 41–45.

- [31] E.A. Michael, C.J. Keoshian, S.K. Anderson, R.J. Saykally, J. Mol. Spectrosc. 208 (2001) 219–223.
- [32] J.-M. Flaud, C. Camy-Peyret, J. Mol. Spectrosc. 51 (1974) 142-150.
- [33] J.-M. Flaud, C. Camy-Peyret, J. Mol. Spectrosc. 55 (1975) 278-310.
- [34] C. Camy-Peyret, J.-M. Flaud, R.A. Toth, J. Mol. Spectrosc. 87 (1981) 233–241.
- [35] J.T. Hougen, P.R. Bunker, J.W.C. Johns, J. Mol. Spectrosc. 34 (1970) 136–172.
- [36] A.R. Hoy, P.R. Bunker, J. Mol. Spectrosc. 52 (1974) 439-456.
- [37] V.I. Starikov, Vl.G. Tyuterev, J. Mol. Spectrosc. 95 (1982) 288– 296.
- [38] O.L. Polyansky, A.G. Csaszar, S.V. Shirin, N.F. Zobov, P. Barletta, J. Tennyson, D.W. Schwenke, P.J. Knowles, Science 299 (2003) 539–542.
- [39] L.H. Coudert, O. Pirali, M. Vervloet, R. Lanquetin, C. Camy-Peyret, J. Mol. Spectrosc. 228 (2004) 471–498.

Analysis of (030), (110), and (011) interacting states of D₂¹⁶O from hot temperature emission spectra

Eugeniya N. Starikova^{*a}, Semen N. Mikhailenko^a, Georg Ch. Mellau^b, Vladimir G. Tyuterev^c ^a Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics SB RAS, 1, Akademicheskii Av., 634055 Tomsk, Russia ^b Justus-Liebig-Universität Giessen, Physikalisch-Chemisches-Institut, Heinrich-Buff-Ring 58, 35392 Giessen, Germany ^c Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, UFR Sciences BP 1039, 51687 Reims Cedex 2, France

ABSTRACT

This study is the continuation of our analysis of emission spectra of pure D_2O . The spectra have been recorded in the 320 – 860 and 1750 – 4300 cm⁻¹ spectral regions at different pressures and temperatures. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. All spectra have been recorded by using the Bruker IFS 120 spectrometer at the Physikalisch-Chemisches-Institut, Justus-Liebig-Universität Giessen (Germany). More than 5600 lines have been assigned to the second triad {(030), (110), (011)} of interacting states of the $D_2^{16}O$ molecule. These transitions were assigned to 24 vibration-rotation and rotational bands. An extended set of more than 1500 experimental rovibrational levels for the (030), (110), and (011) interacting states has been obtained. The maximum values of rotational quantum numbers are $J_{max} = 30$ and $K_{a max} = 21$ with $E_{max} = 10568$ cm⁻¹ for the (011) state; $J_{max} = 29$ and $K_{a max} = 21$ with $E_{max} = 10540$ cm⁻¹ for the (030) state, and $J_{max} = 26$ and $K_{a max} = 22$ with $E_{max} = 10488$ cm⁻¹ for the (110) state. A comparison of the observed energy levels with the best available values from literature and with the global prediction is discussed.

Keywords: IR spectroscopy, hot water, emission spectra, D2¹⁶O molecule, rovibrational levels, second triad

1. INTRODUCTION

The main part of experimental information about high resolution infrared spectra of $D_2^{16}O$ was obtained in absorption [1-18]. Recently first results were published on emission spectra analysis of $D_2^{16}O$ in the 320 - 3400 cm⁻¹ range at hot vapour temperatures ranging from 1370 up to 1950 K [19-21]. The spectral region of the $3v_2$, v_1+v_2 , and v_2+v_3 bands as well as rotational energy levels of the second triad interacting states (030), (110), and (011) of $D_2^{16}O$ were studied in absorption in [12, 14]. A set of 529 experimental energy levels up to J = 19 and $K_a = 10$ have been reported. Later a set of experimental energy levels for the (030) state was extended up to 348 energies in [19] from analyses of a hot emission spectrum recorded in the 380 - 1880 cm⁻¹ spectral range at 1770 K. The maximum values of rotational quantum numbers in this latter study were $J_{max} = 25$ and $K_{a max} = 13$.

The aim of the present study is to extend the experimental information on rotation-vibration energy levels and rovibrational line positions of $D_2^{16}O$ molecule from the analysis of heated water vapour spectra measured in the 320 – 860 and 1750 – 4300 cm⁻¹ spectral regions. Here we focus on the study of the second triad of interacting states. Analysis of the emission spectra allows us to assign more than 5600 transitions to the (030), (110), and (011) states up to $J_{max} = 30$ and $K_{a max} = 23$. Transitions of 24 vibration-rotation and rotational bands {(030), (110), (011)} – (000), {(030), (110), (011)} – {(020), (100), (001)}, and {(030), (110), (011)} – {(030), (110), (011)} have been observed.

Simultaneous modelling of rotational energy levels of all three vibrational states of the second triad was achieved by using the generating function model [22-24].

15th Symposium on High-Resolution Molecular Spectroscopy, edited by Yurii N. Ponomarev, Semen N. Mikhailenko, Leonid N. Sinitsa, Proc. of SPIE Vol. 6580, 658008, (2006) · 0277-786X/06/\$15 · doi: 10.1117/12.724846

^{*} E-mail: starikova_e@iao.ru

Filename	MEH2OD	MEH2OT	MEH2OS	MEH2OJ
Gas temperature (K)	1940	1950	1950	1520
Total water pressure (mbar)	10.6	1.0	16.0	14.0
Resolution (1/MOPD/cm ⁻¹)	0.015	0.0036	0.005	0.005
Scans	2100	60	300	1300
Length of the cell (m)	1	1	1	1
Diameter of the cell (mm)	46	46	46	46
Length of hot zone (cm)	50	50	50	50
Detector	InSb at 77 K	Ge:Cu at 4 K	Ge:Cu at 4 K	Ge:Cu at 4 K
Detector window	CaF ₂	CsI	CsI	CsI
Cell window	CaF_2	CsI	CsI	CsI
Aperture spectrometer (mm)	2.0	3.15	3.15	3.15
Measurement range (cm ⁻¹)	1750 - 7000	320 - 525	320 - 525	320-525

Table 1. Laboratory measurement conditions for emission FTIR spectra

2. EXPERIMENTAL ANALYSIS SPECTRA

The experimental setup used to measure the emission spectra was described in our previous papers [20, 21]. Spectra were recorded at the University of Giessen using the Bruker IFS 120 HR Fourier transform spectrometer [25]. This spectrometer has been used previously to record room-temperature spectra of the D₂O molecule [6, 8]. The high temperature emission spectra of pure $D_2^{16}O$ vapour were recorded with 0.015 cm⁻¹ resolution in the 1750 – 7000 cm⁻¹ spectral range and with 0.0036 cm⁻¹ resolution in the 320 – 525 cm⁻¹ spectral range. Table 1 lists the experimental conditions under which these spectra were taken. Partly these spectra were used in our previous studies of the (000) and (010) [20] and (020), (100), and (001) [21] states. As mentioned in [20, 21], an emission spectrum in the 520 – 860 cm⁻¹ range of water enriched by deuterium and with natural abundance of oxygen [26] was used for analysis of D₂O lines. Fig. 1 shows one of the recorded emission spectra.

Fig. 1. Overview of the emission spectrum MEH2OD in the 1750 - 4300 cm⁻¹ region

Fig. 2. A portion of the assigned MEH2OT spectrum around 490 cm⁻¹

Fig. 3. An example of line assignment of v_2+v_3 and $2v_2+v_3-v_2$ bands around 4228.5 cm⁻¹

The assignment of low and a part of medium J_{K_a} transitions was done using available experimental energy levels [6, 8, 19-21]. An assignment of higher J_{K_a} transitions was based on theoretical extrapolations. As described in our previous D₂O works [20, 21] we used for this purpose a combination of fits and extrapolations based on an effective Hamiltonian and on global variational predictions from molecular potential functions [28, 29]. Finally, a RITZ program [30] was used for validation of our assignments and rotational energy levels determination.

Figures 2 and 3 give examples of line assignments at different spectral ranges. Fig. 2 shows emission lines of rotational transitions for the (000), (010), (001), (100), (030), and (011) vibrational states of $D_2^{16}O$ at 1 mbar of water vapor pressure heated up to 1950 K (MEH2OT spectrum of Table 1). The strongest lines around 490.1 and 490.28 cm⁻¹ correspond to pure rotational and (010) – (010) bands. The main part of the lines on Fig. 3 in the 4227 – 4230 cm⁻¹ region belongs to the v_2+v_3 band. This figure is a portion of the MEH2OD spectrum (see Table 1).

3. ENERGY LEVELS AND FITTING

For determination of energy levels of the (030), (110), and (011) states we have applied the RITZ code [30]. This program is now routinely used to recover energy levels and calibration factors from the merged list of transition wavenumbers determined from each measured spectrum and was used in our previous studies [20, 21, 26, 31]. About 18 000 observed transitions including those of Refs. [3, 4, 6-9, 11, 12, 19-21, 32-35] were simultaneously used to obtain a new set of rotational energies for the (000), (010), (020), (100), (001), (030), (110), and (011) vibration states of $D_2^{16}O$. About 3800 transitions reported in [19] were re-assigned or assigned for the first time. These transitions were also used for energy levels determination. We were able to obtain a set of 1593 rovibrational levels for three vibrational states of the second triad. The numbers of determined levels, maximal values of rotational quantum numbers as well as maximal values of observed rotational energies are given in Table 2 in comparison with literature data for all three vibrational states.

Due to resonance interactions of both anharmonic and Coriolis type an accurate calculation requires a simultaneous modelling of all three vibrational states (030), (110), and (011) [1, 34]. To account for the strong centrifugal distortion at high rotational energies we used the generating function model [22-24] for an effective rotational Hamiltonian in this study. The effective Hamiltonian for the second triad of interacting states is written in the same form as for the first triad (see formula (1) of [21]). The diagonal blocks of this Hamiltonian (effective rotational Hamiltonians for each vibrational state) are described by formulas (1) - (5) of [20]. Resonance operators accounting for anharmonic and Coriolis interactions are given in the same form as in paper [21] (see formulas (2) and (3) therein).

The root mean square deviation between observed and calculated values is 7.6×10^{-3} cm⁻¹ for 1450 fitted energy levels up to $J_{max} = 22$. The maximal discrepancy $dE = E_{obs} - E_{calc}$ for the levels included in the fit is about 4.8×10^{-2} cm⁻¹. More than 74% (1078 levels) of fitted energies have discrepancies less than 5×10^{-3} cm⁻¹. Note that 42 levels with discrepancies bigger than 0.05 cm⁻¹ have been excluded from the fit procedure. In Table 3 we show an example of observed and calculated energies, their discrepancies and wavefunction mixing coefficients. It is seen that resonance perturbations behave in a very irregular way with respect to J and K_a quantum numbers. The definition of the mixing coefficients of Table 3 follows ref. [36]: $\%(V_1V_2V_3) = \sum_{K} (C_K^{V_1V_2V_3})^2$, where $C_K^{V_1V_2V_3}$ represent a contribution of isolate-state Wang basis functions to the final rovibrational eigenfunction of an interacting state effective Hamiltonian.

State	Number of levels	J_{max}	K _{a max}	$K_{a max}$ E_{max} (cm^{-1})		Number of levels J_{max}		E_{max} (cm ⁻¹)
		This study		Refs. [6, 8, 19]				
(030)	525	29	21	10 540	348	25	13	7698
(110)	502	26	22	10 488	179	16	9	5798
(011)	566	30	21	10 568	228	19	10	6153

Table 2. General comparison of the second triad energy levels with literature data

$E_{\rm obs}$	E_{calc}	$dE_{ m obs}$ ($V_1V_2V_3$) J	Ka	K_c	%(030)	%(110)	%(011)
5562.0945	5562.0929	1.6	030	20	0	20	99.55%	0.44%	0.01%
5562.0945	5562.0939	0.6	030	20	1	20	99.55%	0.44%	0.01%
5808.0410	5808.0359	5.1	030	20	1	19	99.39%	0.59%	0.02%
5808.0407	5808.0508	-10.1	030	20	2	19	99.39%	0.59%	0.02%
6021.9395	6021.9465	-7.0	030	20	2	18	98.99%	0.81%	0.20%
6022.1730	6022.1570	16.0	030	20	3	18	98.98%	0.81%	0.21%
6207.1484	6207.1558	-7.3	030	20	3	17	98.83%	1.02%	0.15%
6209.4887	6209.4854	3.3	030	20	4	17	98.80%	1.04%	0.17%
6357.7911	6357.8092	-18.1	030	20	4	16	98.33%	1.51%	0.16%
6374.0934	6374.0802	13.1	030	20	5	16	98.39%	1.40%	0.22%
	6463.2707		030	20	5	15	82.13%	17.25%	0.63%
6525.7902	6525.7815	8.7	030	20	6	15	97.61%	2.04%	0.35%
6559.4186	6559.4171	1.5	030	20	6	14	97.33%	2.35%	0.32%
6679.8294	6679.8429	-13.5	030	20	7	14	97.05%	2.37%	0.58%
6685.3174	6685.3219	-4.5	030	20	7	13	95.19%	4.31%	0.50%
	6849.7122		030	20	8	13	47.62%	4.26%	48.12%
6849.1178	6849.1075	10.3	030	20	8	12	94.94%	4.22%	0.85%
7032.0455	7032.0401	5.4	030	20	9	12	94.38%	4.45%	1.17%
7032.0952	7032.1115	-16.3	030	20	9	11	94.44%	4.41%	1.15%
	7229.8664		030	20	10	11	90.10%	6.65%	3.24%
7229.8657	7229.8578	7.9	030	20	10	10	90.08%	6.61%	3.31%
7440.5471	7440.5532	-6.1	030	20	11	10	71.71%	22.14%	6.15%
7440.5471	7440.5528	-5.7	030	20	11	9	71.72%	22.14%	6.14%
7654.3798	7654.3758	4.0	030	20	12	9	60.45%	37.86%	1.70%
7654.3798	7654.3759	3.9	030	20	12	8	60.45%	37.86%	1.70%
7946.4540	7946.4569	-2.9	030	20	13	8	55.86%	38.23%	5.90%
7946.4540	7946.4569	-2.9	030	20	13	7	55.86%	38.23%	5.90%
8179.4477	8179.4582	-10.5	030	20	14	7	71.59%	22.60%	5.82%
8179.4477	8179.4582	-10.5	030	20	14	6	71.59%	22.60%	5.82%
8422.6449	8422.6541	-9.2	030	20	15	6	80.09%	14.15%	5.76%
8422.6449	8422.6541	-9.2	030	20	15	5	80.09%	14.15%	5.76%
8672.6659	8672.6689	-3.0	030	20	16	5	84.69%	9.69%	5.63%
8672.6659	8672.6689	-3.0	030	20	16	4	84.69%	9.69%	5.63%
8927.3153	8927.2959	19.4	030	20	17	4	87.55%	7.14%	5.31%
8927.3153	8927.2959	19.4	030	20	17	3	87.55%	7.14%	5.31%
9184.8796	9184.9004	-20.8	030	20	18	3	89.75%	5.58%	4.68%
9184.8796	9184.9004	-20.8	030	20	18	2	89.75%	5.58%	4.68%
9444.1317	9444.1047	27.0	030	20	19	2	91.89%	4.54%	3.58%
9444.1317	9444.1047	27.0	030	20	19	1	91.89%	4.54%	3.58%
9703,7180	9703.7274	-9.4	030	20	20	1	94.85%	3.81%	1.34%
9703.7180	9703.7274	-9.4	030	20	20	0	94.85%	3.81%	1.34%
5921.6740	5921.6749	-0.9	110	20	0	20	0.47%	96.04%	3.49%
5921.6740	5921.6750	-1.0	110	20	1	20	0.47%	96.04%	3.49%
6125.4874	6125.4821	5.3	110	20	1	19	0.67%	96.18%	3.14%
6125.4874	6125.4859	1.5	110	20	2	19	0.67%	96.19%	3.14%
6309.2407	6309.2397	1.0	110	20	2	18	1.26%	95.97%	2.78%
6309.3375	6309.3424	-4.9	110	20	3	18	1.01%	96.21%	2.78%
6475.9399	6475.9451	-5.2	110	20	3	17	17.58%	80.51%	1.91%
6473.8753	6473.8756	-0.3	110	20	4	17	1.58%	96.02%	2.40%

Table 3. Observed and calculated energy levels (in cm⁻¹) and their discrepancies (in 10^{-3} cm⁻¹) as well as mixing coefficients for J = 20 of the second triad interacting states of $D_2^{-16}O$

Table 3. (continued)

Eobs	$E_{\rm calc}$	$dE_{\rm obs}$ ($V_1V_2V_3$) J	Ka	K _c	%(030)	%(110)	%(011)
6616.3818	6616.3761	5.7	110	20	4	16	2.18%	96.13%	1.69%
6619.8938	6619.8977	-3.9	110	20	5	16	1.65%	96.22%	2.13%
6726.9491	6726.9323	16.8	110	20	5	15	3.59%	95.43%	0.98%
6751.1164	6751.1168	-0.4	110	20	6	15	1.41%	95.99%	2.60%
6806.9107	6806.9149	-4.2	110	20	6	14	2.71%	94.95%	2.34%
	6876.4018		110	20	7	14	1.55%	90.56%	7.88%
6901.3330	6901.3585	-25.5	110	20	7	13	1.55%	82.78%	15.67%
	7030.8762		110	20	8	13	1.95%	56.48%	41.57%
7027.2919	7027.3152	-23.3	110	20	8	12	2.36%	77.97%	19.68%
7175.9995	7175.9991	0.4	110	20	9	12	4.278	82.03%	13.70%
7175.8795	7175.8590	20.5	110	20	9	11	4.30%	83.17%	12.53%
7343.1629	7343.1566	6.3	110	20	10		8.32%	83.16%	8.52%
7343.1586	/343.1508	/.8	110	20	10	10	8.32%	83.22%	8.46%
7527.2078	7527.2113	-3.5	110	20	11	10	17.078	76.20%	6./38 C 700
/52/,20/8	7527,2110	-3.2	110	20		9	1/.U/3	76.208 E0 749	6./38 6.100
	7720,1510 7720 1510		110	20	12	9	34.105 24.168	59.748 50.772	6.103
7070 6530	7070 6560	-20	110	20	13	0	34.100 30 129	59.740 59.740	0.105
7870.6530	7870.6568	-3.0	110	20	⊥⊃ 13	0 7	39.128	59.748 59.718	1.140
0000 5166	2022 5135	- 3.0	110	20	14	, 7	23 318	75 772	1.140
8088 5166	8088 5135		110	20	14	6	23,31%	75 77%	0.00%
8309 6698	8309 6681	1 7	110	20	15	6	14 67%	84 55%	0.78%
8309 6698	8309,6681	1.7	110	20	15	5	14.67%	84.55%	0.78%
8534.9735	8534.9725	1.0	110	20	16	5	10.06%	89.31%	0.63%
8534.9735	8534.9725	1.0	110	20	16	4	10.06%	89.31%	0.63%
8764.2617	8764.2634	-1.7	110	20	17	4	7.42%	92.10%	0.48%
8764.2617	8764.2634	-1.7	110	20	17	3	7.42%	92.10%	0.48%
8996.8905	8996.8930	-2.5	110	20	18	3	5.78%	93.89%	0.32%
8996.8905	8996.8930	-2.5	110	20	18	2	5.78%	93.89%	0.32%
9232.0098	9232.0098	0.0	110	20	19	2	4.70%	95.13%	0.17%
9232.0098	9232.0098	0.0	110	20	19	1	4.70%	95.13%	0.17%
9468.6690	9468.6703	-1.3	110	20	20	1	3,94%	96.03%	0.03%
9468.6690	9468.6703	-1.3	110	20	20	0	3.94%	96.03%	0.03%
6042.1162	6042.0756	40.6	011	20	0	20	0.19%	3.46%	96.35%
6042.1162	6042.0752	41.0	011	20	1	20	0.19%	3.46%	96.35%
6244.6671	6244.6483	18.8	011	20	1	19	0.12%	3.12%	96.76%
6244.6671	6244.6477	19.4	011	20	2	19	0.11%	3.12%	96.77%
6427.4859	6427.5009	-15.0	011	20	2	18	0.12%	2.81%	97.07%
6427.4910	6427.5103	-19.3	011	20	3	18	0.12%	2.81%	97.07%
6591.0832	6591.0732	10.0	011	20	3	17	0.18%	2.55%	97.27%
6591.2436	6591.2404	3.2	011	20	4	17	0.20%	2.60%	97.20%
6733.6541	6733.6383	15.8	011	20	4	16	0.24%	2.41%	97.35%
6735.4224	6735.4224	0.0	011	20	5	16	0.29%	3.81%	95.90%
	6845.6642		011	20	5	15	49.01%	1.08%	49.91%
6860.1724	6860.1642	8.2	011	20	6	15	0.46%	16.06%	83.48%
	6931.9760	0.0	011	20	6	14	0.55%	7.18%	92.27%
6981.3392	6981.34/4	-8.2	011	20	/	⊥4 1⊃	U.68%	19.48%	79.84%
	6995.8748		011	20	/	13	1.06%	40.59%	58.35%
	/113.191/		UII	20	8	ТЗ	U.6/%	12.52%	86.81%

Table 3. (continued)

E _{obs}	$E_{ m calc}$	$dE_{\rm obs}$ ($V_1 V_2 V_3$)	J K	K _c	%(030)	%(110)	%(011)
7116.3710	7116.3532	17.8	011 2	0 8	12	0.69%	13.58%	85.74%
7259.3555	7259.3832	-27.7	011 2	0 9	12	1.02%	10.19%	88.79%
	7259.7452		011 2	0 9	11	0.99%	10,20%	88.81%
7417.7136	7417.7067	6.9	011 2	0 10	11	10.61%	1.66%	87.73%
7417.7203	7417.7383	-18.0	011 2	0 10	10	10.62%	1.66%	87.72%
7591.9856	7591.9879	-2.3	011 2	0 11	10	4.78%	2.40%	92.82%
7591.9856	7591.9902	-4.6	011 2	0 11	9	4.778	2.40%	92.82%
7777.1469	7777.1489	-2.0	011 2	0 12	9	4.41%	2.03%	93.56%
7777.1469	7777.1490	-2.1	011 2	0 12	8	4.41%	2.03%	93.56%
7972.1468	7972.1459	0.9	011 2	0 13	8	4.57%	1.63%	93.80%
7972.1468	7972.1459	0.9	011 2	0 13	7	4.57%	1.63%	93.80%
8175.6503	8175.6444	5.9	011 2	0 14	7	4.83%	1.30%	93.88%
8175.6503	8175.6444	5.9	011 2	0 14	6	4.83%	1.30%	93.88%
8386.3885	8386.3830	5.5	011 2	0 15	6	5.04%	1.01%	93.95%
8386.3885	8386.3830	5.5	011 2	0 15	5	5.04%	1.01%	93.95%
8603.1673	8603.1644	2.9	011 2	0 16	5	5.11%	0.77%	94.12%
8603.1673	8603.1644	2.9	011 2	0 16	5 4	5.11%	0.77%	94.12%
8824.8370	8824.8351	1.9	011 2	0 17	4	4.94%	0.55%	94.51%
8824.8370	8824.8351	1.9	011 2	0 17	3	4.94%	0.55%	94.51%
9050.2713	9050.2706	0.7	011 2	0 18	3	4.39%	0.36%	95.25%
9050.2713	9050.2706	0.7	011 2	0 18	2	4.39%	0.36%	95.25%
9278.3541	9278.3590	-4.9	011 2	0 19) 2	3.31%	0.17%	96.51%
9278.3541	9278.3590	-4.9	011 2	0 19) 1	3.31%	0.17%	96.51%
9507.9518	9507.9659	-14.1	011 2	0 20) 1	1.47%	0.00%	98.53%
9507.9518	9507.9659	-14.1	011 2	0 20	0 0	1.47%	0.00%	98.53%

4. DISCUSSION

This paper reports the analysis and theoretical modelling of rovibrational energy levels for the second triad of interacting states of $D_2^{15}O$ molecule. These levels were determined from emission line positions assigned to 24 rotational and vibration-rotation bands in the spectral ranges 320 - 860 and 1750 - 4300 cm⁻¹. More than 5600 lines of these two ranges were assigned to above mentioned bands. An extensive list of 1593 energy levels of the (030), (110), and (011) vibrational states is available by request from the authors. The use of an effective Hamiltonian in the form of generating functions allows us to fit observed energies of the second triad up to $J_{max} = 22$ with an average accuracy of 7.6×10^{-3} cm⁻¹.

Figures 4 – 6 give a comparison of observed line positions for the $3v_2$, $v_1 + v_2$ and $v_2 + v_3$ bands with variational predictions from the molecular potential energy surface of Partridge and Schwenke [28]. The distributions of the deviations is rather similar to that of (000), (010), (020), (100), and (001) states reported in our previous studies [20, 21]. Globally our experimental data confirm a good quality of isotopically invariant part and of mass dependent corrections to the Partridge and Schwenke potential function: absolute values of discrepancies between observed and calculated line positions are less than 0.2 cm⁻¹ for $J \le 20$ and $K_a \le 15$. For higher values of J and K_a discrepancies smoothly increased for different branches of bands. In few particular cases, like 19_{812} level of the (030) state (see Fig. 4) which correspond to very big resonance coupling with 19_{514} level of the (011) state, the discrepancies appear to be slightly larger than 1 cm⁻¹.

Fig. 4. Comparison between observed and calculated line positions corresponding to bands with the (030) upper state

Fig. 5. Comparison between observed and calculated line positions corresponding to bands with the (110) upper state

Fig. 6. Comparison between observed and calculated line positions corresponding to bands with the (011) upper state

ACKNOWLEDGMENT

The authors thank D.W. Schwenke and S.A. Tashkun for collaborations and for providing access to their calculations. We acknowledge support from the IDRIS computer centre of CNRS (France), grant PICS no. 05–05–22001 of CNRS and RFBR (Russia), the Program 2.10.1 of Russian Academy of Sciences "Optical Spectroscopy and Frequency Standards". S.N.M. gratefully acknowledges support from DAAD (Germany) and thanks the Physikalisch-Chemisches Institut at the Justus-Liebig-Universität Giessen and Molekülspektroskopisches Laboratorium for giving him the opportunity to continue his research on emission water spectra.

REFERENCES

- 1. N. Papineau, J.M. Flaud, C. Camy-Peyret, G. Guelachvili, "The $2v_2$, v_1 , and v_3 bands of $D_2^{16}O$. The ground state (000) and the triad of interacting states {(020), (100), (001)}", J. Mol. Spectrosc. 87, 219-232 (1981).
- V.D. Gupta, "High-resolution rotation-vibration spectra of D₂O in the region of the v₁ and v₃ bands", J. Phys. B: At. Mol. Phys. 14, 1761-1770 (1981).
- 3. J.W.C. Johns, "High-resolution far-infrared (20-350 cm⁻¹) spectra of several isotopic species of H₂O", *J. Opt. Soc. Am. B* **2**, 1340-1354 (1985).
- 4. C. Camy-Peyret, J.M. Flaud, A. Mahmoudi, G. Guelachvili, J.W.C. Johns, "Line positions and intensities in the v₂ band of D₂O improved pumped D₂O laser frequencies", *Int. J. IR & Millimeter Waves*, **6**, 199-233 (1985).
- 5. K.B. Thakur, C.P. Rinsland, M.A.H. Smith, D.C. Benner, V. Malathy Devi, "Absolute line intensity measurements in the v₂ bands of HDO and D₂O using a tunable diode laser spectrometer", *J. Mol. Spectrosc.* **120**, 239-245 (1986).
- 6. P.S. Ormsby, K.N. Rao, M. Winnewisser, B.P. Winnewisser, A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, "The $3v_2+v_3$, $v_1+v_2+v_3$, v_1+3v_2 , $2v_1+v_2$, and v_2+2v_3 bands of D_2^{16} O: The second hexade of interacting states", *J. Mol. Spectrosc.* **158**, 109-130 (1993).
- 7. R.A. Toth, " $D_2^{16}O$ and $D_2^{18}O$ Transition frequencies and strengths in the v_2 bands", J. Mol. Spectrosc. 162, 41-54 (1993).
- 8. A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, B.P. Winnewisser, M. Winnewisser, P.S. Ormsby, K.N. Rao, "The hot band $v_1+2v_2+v_3-v_2$ of $D_2^{16}O$ ", *J. Mol. Spectrosc.* **166**, 169-175 (1994).
- R. Paso, V.M. Horneman, "High-resolution rotational absorption spectra of H₂¹⁶O, HD¹⁶O, and D₂¹⁶O between 110 and 500 cm⁻¹", J. Opt. Soc. Am. B 12, 1813-1837 (1995).
- 10. Y. Cohen, S. Rosenwaks, "Spectroscopy of D₂O (2,0,1)", J. Mol. Spectrosc. 180, 298-304 (1996).
- 11. R.A. Toth, "HDO and D₂O low pressure, long path spectra in the 600-3100 cm⁻¹ region. II. D₂O line positions and strengths", *J. Mol. Spectrosc.* **195**, 98-122 (1999).
- A. Bykov, O. Naumenko, L. Sinitsa, B. Voronin, B.P. Winnewisser, "The 3v₂ band of D₂¹⁶O", J. Mol. Spectrosc. 199, 158-165 (2000).
- 13. X.-H. Wang, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, S.-G. He, S.-M. Hu, H. Lin, Q.-S. Zhu, "High-resolution study of the first hexad of D₂O", *J. Mol. Spectrosc.* 200, 25-33 (2000).
- 14. S.-G. He, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, Q.-S. Zhu, "High-resolution Fourier transform spectrum of the D₂O molecule in the region of the second triad of interacting vibrational states", *J. Mol. Spectrosc.* **200**, 34-39 (2000).
- O. N. Ulenikov, S.-G. He, G. A. Onopenko, E. S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, Q.-S. Zhu, "High-resolution study of the (v₁+v₂+v₃=3) polyad of strongly interacting vibrational bands of D₂O", *J. Mol. Spectrosc.* 204, 216-225 (2000).
- O.N. Ulenikov, S.M. Hu, E.S. Bekhtereva, G.A. Onopenko, S.G. He, X.H. Wang, J.J. Zheng, Q.S. Zhu, "High-resolution Fourier transform spectrum of D₂O in the region near 0.97 μm", *J. Mol. Spectrosc.* 210, 18-27 (2001).
- 17. J.J. Zheng, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, S.G. He, X.H. Wang, S.M. Hu, H. Lin, Q.S. Zhu, "High-resolution vibration-rotation spectrum of D₂O in the region near the $2v_1+v_2+v_3$ absorption band", *Mol. Phys.* **99**, 931-937 (2001).
- S.M. Hu, O.N. Ulenikov, E.S. Bekhtereva, G.A. Onopenko, S.G. He, H. Lin, J.X. Cheng, Q.S. Zhu, "High-resolution Fourier-transform intracavity laser absorption spectroscopy of D₂O in the region of the 4v₁+v₃ band", J. Mol. Spectrosc. 212, 89-95 (2002).

- 19. S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Tennyson, T. Parekunnel, P.F. Bernath, "Analysis of hot D₂O emission using spectroscopically determined potentials", *J. Chem. Phys.* **120**, 206-210 (2004).
- 20. G. Mellau, S.N. Mikhailenko, E.N. Starikova, S.A. Tashkun, H. Over, Vl.G. Tyuterev, "Rotational levels of the (000) and (010) states of D₂¹⁶O from hot emission spectra in the 320-860 cm⁻¹ region", *J. Mol. Spectrosc.* 224, 32-60 (2004).
- 21. S.N. Mikhailenko, G.Ch. Mellau, E.N. Starikova, S.A. Tashkun, Vl.G. Tyuterev, "Analysis of the first triad of interacting states (020), (100), and (001) of D₂¹⁶O from hot emission spectra", *J. Mol. Spectrosc.* 233, 32-59 (2005).
- 22. VI.G. Tyuterev, "The generating function approach to the formulation of the effective rotational Hamiltonian: A simple closed form model describing strong centrifugal distortion in water-type nonrigid molecules", *J. Mol. Spectrosc.* **151**, 97-129 (1992).
- V.I. Starikov, S.A. Tashkun, Vl.G. Tyuterev, "Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method. Bending states and second triad of water", J. Mol. Spectrosc. 151, 130-147 (1992).
- 24. Vl.G. Tyuterev, V.I. Starikov, S.A. Tashkun, S.N. Mikhailenko, "Calculation of high rotation energies of the water molecule using the generating function model", J. Mol. Spectrosc. 170, 38-58 (1995).
- 25. M. Birk, M. Winnewisser, E.A. Cohen, "The rotational-torsional spectrum of carbodiimide: A probe for unusual dynamics", J. Mol. Spectrosc. 136, 402-445 (1989).
- 26. S.N. Mikhailenko, Vl.G. Tyuterev, G. Mellau, "(000) and (010) states of H₂¹⁸O: analysis of rotational transitions in hot emission spectrum in the 400-850 cm⁻¹ region", *J. Mol. Spectrosc.* **217**, 195-211 (2003).
- 27. http://www.SyMath.com
- 28. H. Partridge, D.W. Schwenke, "The determination of an accurate isotope dependent potential energy surface for water from extensive *ab initio* calculations and experimental data", *J. Chem. Phys.* **106**, 4618-4639 (1997).
- 29. D.W. Schwenke, H. Partridge, "Convergence testing of the analytic representation of an *ab initio* dipole moment function for water: Improved fitting yields improved intensities" *J. Chem. Phys.* **113**, 6592-6597 (2000).
- 30. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov, N.N. Lavrentieva, "CDSD-1000, the high-temperature carbon dioxide spectroscopic databank", *J. Quant. Spectrosc. & Radiat. Transfer*, **82**, 165-196 (2003).
- 31. S.N. Mikhailenko, VI.G. Tyuterev, V.I. Starikov, K.K. Albert, B.P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, R. Lanquetin, J.-M. Flaud, J.W. Brault, "Water spectra in the 4200-6250 cm⁻¹ region: extended analysis of v_1+v_2 , v_2+v_3 , and $3v_2$ bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations", *J. Mol. Spectrosc.* **213**, 91-121 (2002).
- 32. W.S. Benedict, S.A. Clough, L. Frenkel, T.E. Sullivan, "Microwave spectrum and rotational constants for the ground state of D₂O", *J. Chem. Phys.* **53**, 2565-2570 (1970).
- G. Steenbeckeliers, J. Bellet, "Application of Watson's centrifugal distortion theory to water and light asymmetric tops. General methods. Analysis of the ground state and the v₂ state of D₂¹⁶O", *J. Mol. Spectrosc.* 45, 10-44 (1973).
- 34. N. Papineau, PhD Disertation, Orsay, 1980.
- 35. H. Sasada, S. Takeuchi, M. Iritani, K. Nakatani, "Semiconductor-laser heterodyne frequency measurements of 1.52-µm molecular transitions", J. Opt. Soc. Am. B 8, 713-718 (1991).
- 36. J.-M. Flaud, C. Camy-Peyret, "The interacting states (020), (100), and (001) of H₂¹⁶O", J. Mol. Spectrosc. 51, 142-150 (1974).
Journal of Molecular Spectroscopy 255 (2009) 75-87

Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/jms

CW-Cavity Ring Down spectroscopy of ${}^{18}O_3$. Part 1: Experiment and analysis of the 6200–6400 cm⁻¹ spectral region

A. Campargue^a, A.W. Liu^a, S. Kassi^a, M.-R. De Backer-Barilly^b, A. Barbe^{b,*}, E. Starikova^{b,c}, S.A. Tashkun^c, Vl.G. Tyuterev^b

^a Laboratoire de Spectrométrie Physique, UMR CNRS 5588, Université Joseph Fourier, BP 87-8402 Saint Martin d'Hères Cedex, France
^b Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, UFR Sciences Exactes et Naturelles, BP 1039-51687 Reims Cedex 2, France
^c Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Av. Akademicheskii, Tomsk 634055, Russia

ARTICLE INFO

Article history: Received 15 January 2009 In revised form 11 February 2009 Available online 21 February 2009

Keywords: Ozone ¹⁸O₃ Cavity Ring Down Spectroscopy Effective Hamiltonian model Effective transition moment operator

ABSTRACT

The absorption spectrum of the ¹⁸O₃ isotopologue of ozone has been recorded in the 6200–6400 cm⁻¹ region by high sensitivity CW-Cavity Ring Down Spectroscopy. The spectrum is dominated by the $2v_1 + 5v_3$ and $2v_1 + 3v_2 + 3v_3$ bands at 6270.6 and 6392.2 cm⁻¹, respectively which were treated independently. The rovibrational analysis of the $2v_1 + 5v_3$ band has evidenced that the (205) upper state is perturbed by Coriolis resonance interactions with the (016), (304) and (350) states. A total of 659, 89, 131 and 5 transitions were assigned to the $2v_1 + 5v_3$, $v_2 + 6v_3$, $3v_1 + 4v_3$ and $3v_1 + 5v_2$ bands, respectively. In the case of the $2v_1 + 3v_2 + 3v_3$ band, 344 transitions were assigned. Some of them were found perturbed by a Coriolis interaction of the (233) state with the (520) state.

Overall, 681 energy levels were derived from the analysis of the $2v_1 + 5v_3$ and $2v_1 + 3v_2 + 3v_3$ band systems. In both cases, a suitable effective Hamiltonian was elaborated, allowing accounting satisfactorily for the retrieved rovibrational energy levels. In addition, dipole transition moment parameters were determined by a least-squares fit to the measured line intensities. The effective Hamiltonian and transition moment operator parameters were used to generate a list of 1619 transitions given as Supplementary material.

© 2009 Published by Elsevier Inc.

1. Introduction

The high resolution infrared spectrum of the ozone molecule has been the subject of many studies (see the exhaustive list in the information system "Spectroscopy & Molecular Properties of Ozone" [1], and references herein) motivated by the importance of this species for the atmospheric chemistry. In particular, the monitoring of the ozone layer, through satellite measurements is generally based on the analyses of the ¹⁶O₃ absorption combined with transmittance calculations. Another interest for the ozone molecule is that its dissociation energy at about 8500 cm⁻¹ [1] is low, compared to most other stable atmospheric molecules. It is then possible to observe transitions to excited states approaching the dissociation energy and then to test the electronic ground state potential energy surface (PES) in a energy range where accurate predictions are particularly challenging [2,3].

Isotopic substitution provides another sensitive test for the PES. The $^{18}\text{O}_3$ molecule is derived from the main isotopologue by the $^{18}\text{O} \leftarrow ^{16}\text{O}$ homogeneous substitution of the three oxygen atoms. This situation which leaves the normal mode coordinates un-

* Corresponding author. Fax: +33 3 26 91 31 47.

changed is rather unique among the polyatomic molecules. It may give interesting insights onto the important issue of the anomalous isotopic enrichment of the heavy isotopes of ozone in the stratosphere. Another interest of the near infrared spectroscopy of ${}^{18}O_3$ is that the isotopic shift being on the order of 340 cm⁻¹ in the considered region, the ${}^{18}O_3$ spectrum in a given energy region corresponds to upper vibrational states which may not be experimentally accessible for the ${}^{16}O_3$ isotopologue.

The infrared spectrum of ${}^{18}O_3$ has been studied up to 5000 cm⁻¹ in Reims by Fourier Transform Spectroscopy (FTS) [4,5]. Because of the quick decrease of the band strengths with the vibrational excitation, a higher sensitivity than that provided by FTS is necessary to observe the very weak absorption bands above 5000 cm⁻¹. A decisive progress has been achieved recently with the CW-Cavity Ring Down Spectrometer (CW-CRDS) developed at Grenoble University [6,7] for the wide 5850–7000 cm⁻¹ region.

In the case of the main isotopologue, the analysis of the CW-CRDS spectrum has been recently completed for the whole 5850–7000 cm⁻¹ region [8–13]. As a result of the high sensitivity, a total of about 7500 transitions belonging to 21 vibrational states were assigned leading to the derivation of about 4000 energy levels.

The quantity of gas required by CRDS being very limited, similar experimental efforts and costs are required for the studies of

E-mail address: alain.barbe@univ-reims.fr (A. Barbe).

^{0022-2852/\$ -} see front matter \odot 2009 Published by Elsevier Inc. doi:10.1016/j.jms.2009.02.012

the ¹⁸O₃ and ¹⁶O₃ isotopologues. This contribution is the first of a series of three papers devoted to the analysis of the CW-CRDS spectrum of ${}^{18}O_3$ between 5850 and 7000 cm⁻¹. The experimental method and the theoretical approach based on the effective Hamiltonian and transition moment operators are essentially the same as those applied to the analyses of ${}^{16}O_3$ spectrum. They will be summarized in this first paper devoted to the study of the 6200-6400 cm⁻¹ region where two band systems have been analyzed. The next contribution will be devoted to the difficult analysis of the 5930–6100 cm^{-1} region which was modeled by a complex interaction scheme involving six vibrational states. In the third contribution, we will report the analysis of the highest energy range (6500-6900 cm⁻¹). This last paper of the series will include for the whole 5930-6900 cm⁻¹ range, a comparison of the ¹⁸O₃ observations with the results obtained for ¹⁶O₃. Note that in our range, the variation of the isotopic shifts due to the ${}^{16}O_3 \rightarrow {}^{18}O_3$ substitution was found irregular while the substitution is homogeneous and the change of masses is small. This unique situation was very recently discussed [14] in relation with global calculations of energies and wave function using the PES of Refs. [2,3].

2. Theoretical approach

2.1. Rotational assignments of a given vibrational band

Rotational assignments were based on Ground State Combination Differences (GSCD) relation, using transition series, following branches and sub-branches. The code ASSIGN [15] has been written to calculate the various transitions reaching the same upper state level from well-known ground state levels, accounting of experimental accuracy and of the range of observable *J* and *K*_a quantum numbers. This code is particularly useful for *A*-type bands involving $\Delta K_a = 0$ series. However, it uses only information relative to line positions and not to line intensities. It was then necessary to check the possible line assignments by calculating the corresponding transition intensities. The "MultiFit" code (see below) [16] was systematically used to simulate the spectra and to validate (or not) the assignments.

2.2. Energy levels and line positions

Rovibrational levels of upper vibration states were derived by adding to the measured transition wavenumbers the corresponding ground state energy levels [1]. Then the derived rovibrational levels were modeled using the effective Hamiltonian (EH) approach for the sets of states coupled through rovibrational resonance interactions. The diagonal vibration blocks were chosen in the standard Watson form corresponding to the *A*-type reduction [17]:

$$\begin{split} {}^{eff}H^{VV} &= E^{VV} + \left[A - \frac{1}{2}(B+C)\right]J_z^2 + \frac{1}{2}(B+C)\mathbf{J}^2 + \frac{1}{2}(B-C)J_{xy}^2 \\ &\quad -\Delta_{K}J_z^4 - \Delta_{JK}J_z^2\mathbf{J}^2 - \Delta_{J}(\mathbf{J}^2)^2 - \delta_{K}\{J_z^2, J_{xy}^2\} - 2\delta_{J}J_{xy}^2\mathbf{J}^2 \\ &\quad + H_{K}J_z^6 + H_{KJ}J_z^4\mathbf{J}^2 + H_{JK}J_z^2(\mathbf{J}^2)^2 + H_J(\mathbf{J}^2)^3 + h_K\{J_z^4, J_{xy}^2\} \\ &\quad + h_{KJ}\{J_z^2, J_{xy}^2\}\mathbf{J}^2 + 2h_JJ_{xy}^2(\mathbf{J}^2)^2 + L_KJ_z^8 \end{split}$$
(1)

where we use the standard notations $\{A, B\} \equiv AB + BA, J_{xy}^2 \equiv J_x^2 - J_y^2$ and the upper superscript *V* represents the abbreviation for the set of vibration quantum numbers (v_1 , v_2 , v_3) of a C_{2V} triatomic molecule. Off-diagonal vibration blocks account for resonance couplings of Coriolis type or of anharmonic type. Similarly to our previous studies of the ¹⁶O₃ spectra and following Ref. [18], we adopted the representation of these blocks in terms of ladder rotational operators $J_{\pm} = J_x \mp i J_y$:

$${}^{eff}H_{\text{Coriolis}}^{VV'} = C_{001}(J_{+}-J_{-}) + C_{011}(J_{+}(J_{z}+1/2) + (J_{z}+1/2)J_{-}) + C_{021}(J_{+}(J_{z}+1/2)^{2} - (J_{z}+1/2)^{2}J_{-}) + C_{201}\mathbf{J}^{2}(J_{+}-J_{-}) + C_{003}(J_{+}^{3}-J_{-}^{3}) + C_{031}(J_{+}(J_{z}+1/2)^{3} + (J_{z}+1/2)^{3}J_{-}) + C_{211}\mathbf{J}^{2}(J_{+}(J_{z}+1/2) + (J_{z}+1/2)J_{-}) + \dots$$
(2)
$${}^{eff}H_{\text{Anharm}}^{VV'} = A_{000} + A_{020}\mathbf{J}^{2} + A_{002}J_{z}^{2} + A_{200}(J_{+}^{2}+J_{-}^{2}) + A_{202}\left[J_{+}^{2}(J_{z}+1)^{2} + (J_{z}+1)^{2}J_{-}^{2}\right] + A_{220}\mathbf{J}^{2}(J_{+}^{2}+J_{-}^{2}) + \dots$$
(3)

The Coriolis coupling applies in case of vibration states of different symmetry species (A_1 or B_1), the non vanishing rotational matrix elements of Eq. (2) corresponding to odd ΔK values. The anharmonic coupling applies in case of vibration states of the same symmetry species, the non vanishing rotational matrix elements of Eq. (3) corresponding to even ΔK values.

The following step uses the GIP program [19] to build for each value of the *J* rotational quantum number, the ^{eff} *H* matrices in the symmetry-adapted basis, which is the product of Wang rotational functions $|JK\gamma\rangle$ and harmonic oscillator vibration basis $|V\rangle_0 \equiv |v_1\rangle_0 |v_2\rangle_0 |v_3\rangle_0$. The effective wave functions are obtained as the expansion $|v_1v_2v_3JK_aK_c\rangle = \sum_{V \in \{P\}} \sum_K C_V^{JK} |V\rangle_0 |JK\gamma\rangle$, where the *V*-summation runs over the considered set {*P*} of interacting vibrational states, and the C_V^{JK} coefficients are derived by the diagonalization of the Hamiltonian matrices which provides the rovibrational energies as well.

Line positions are obtained as differences between upper and lower states, accounting for the selection rules: $\Delta J = 0, \pm 1$ with ΔK_a even and ΔK_a odd for *A*- and *B*-type bands, respectively. As the ozone molecule is a slightly asymmetric top (asymmetry parameter $\kappa = (2B-A-C)/(B-C) = -0.968$ for the ground state), the only observable lines for the weak bands in our range correspond to $\Delta K_a = 0$ and $\Delta K_a = \pm 1$ transitions.

2.3. Line intensities

Taking into account the nuclear spin statistics, the intensity (in cm^{-1} /molecule cm^{-2}) of an allowed transition in ¹⁸O₃ can be expressed as [20,21]:

$$k_{\sigma}^{N} = \frac{8\pi^{3}}{3hc4\pi\varepsilon_{0}} \exp\left(-\frac{E_{l}}{kT}\right) \left(1 - \exp\left(-\frac{hc\sigma}{kT}\right)\right) \frac{R_{l}^{u}}{Z(T)}$$
(4)

where $\sigma = (E_u - E_l)/hc$ is the transition wavenumber, E_l and E_u are the lower and upper energy levels of the transition, Z(T) is the partition function [Z(T = 296 K) = 4145 [1]] and R_l^u the transition moment element. Since a transformed effective Hamiltonian is used to calculate the vibration–rotation wave functions, it is necessary to use the dipole moment operator transformed to the same representation. In these conditions, the transition moment element is:

$$R_{l}^{u} = \left| \left\langle v_{1}^{u} v_{2}^{u} v_{3}^{u} J^{u} K_{a}^{u} K_{c}^{u} \right| \tilde{\mu}_{Z} \left| v_{1}^{l} v_{2}^{l} v_{3}^{l} J^{l} K_{a}^{l} K_{c}^{l} \right\rangle \right|^{2}$$
(5)

where $\tilde{\mu}_{Z} = \sum_{V^{u} \in \{P^{u}\}} \sum_{V^{l} \in \{P^{l}\}} |V^{u}\rangle_{0} (^{V^{u}V^{l}} \tilde{\mu}_{Z})_{0} \langle V^{l} |$ is the transformed dipole moment operator, V^{u} and V^{l} belong to the upper and lower sets of interacting vibrational states, $\{P^{u}\}$ and $\{P^{l}\}$ respectively

The expansions for the transition moment operators depend on the symmetry type of the vibration states involved. For *A*-type band (upper state of B_1 symmetry), the following expression applies:

$$\begin{split} {}^{(V^{u})(V^{l})}\tilde{\mu}_{z} &= d_{1}\varphi_{z} + d_{2}\{\varphi_{z}, \mathbf{J}^{2}\} + d_{3}\{\varphi_{z}, J_{z}^{2}\} \\ &+ d_{4}\frac{1}{2}\Big[\{\varphi_{x}, iJ_{y}\} - \{i\varphi_{y}, J_{x}\}\Big] \\ &+ d_{5}\frac{1}{2}\Big[\{\varphi_{x}, \{J_{x}, J_{z}\}\} - \{i\varphi_{y}, i\{J_{y}, J_{z}\}\}\Big] \\ &+ d_{6}\frac{1}{2}\Big[\{\varphi_{x}, iJ_{y}\} + \{i\varphi_{y}, J_{x}\}\Big] \\ &+ d_{7}\Big[\{\varphi_{x}, \{J_{x}, J_{z}\}\} + \{i\varphi_{y}, i\{J_{y}, J_{z}\}\}\Big] + d_{8}\{\varphi_{z}, J_{xy}^{2}\} \end{split}$$
(6)

while for *B*-type bands (upper state of A_1 symmetry), the expansion becomes:

$$\begin{split} ^{(V^{u})(V^{l})}\tilde{\mu}_{z} &= d_{1}\varphi_{x} + d_{2}\{\varphi_{x}, \mathbf{J}^{2}\} + d_{3}\{\varphi_{x}, J_{z}^{2}\} + d_{4}\{i\varphi_{y}, J_{z}\} \\ &+ d_{5}\{\varphi_{z}, \mathbf{j}_{y}\} + d_{6}\{\varphi_{z}, \{J_{x}, J_{z}\}\} \\ &+ d_{7}\frac{1}{2}\Big[\{\varphi_{x}, J_{xy}^{2}\} - \{i\varphi_{y}, i\{J_{x}, J_{y}\}\}\Big] \\ &+ d_{8}\frac{1}{2}\Big[\{\varphi_{x}, J_{xy}^{2}\} + \{i\varphi_{y}, i\{J_{x}, J_{z}\}\}\Big] \end{split}$$
(7)

where $\{A, B\} = AB + BA$, φ_{α} are direction cosines and $d_i = {}^{VV'}d_i$ are the transition moment parameters empirically retrieved for each band.

2.4. Band centres predictions

The vibrational assignment of the upper states was performed by comparison with the energy values calculated using the ozone PES of Refs. [2,3]. The band centre predictions obtained for ¹⁶O₃ by using this PES were found accurate within 1 cm⁻¹ [8–13]. The further comparison with our measurements shows that the accuracy of calculations using the same PES is quite similar for ¹⁸O₃. Theoretical predictions for ¹⁸O₃ band centres (traditionally defined as the $J \rightarrow 0$ limit of the upper state rovibrational energies) and corresponding normal mode assignments for all bands calculated in the 6200–6400 cm⁻¹ range are given in Table 1. Two complementary independent methods were applied for calculations as explained in [14]. The first column of Table 1 (calc_1) uses variational calculations in internal bond length-bond angle coordinates following Ref. [2]. The second column corresponds to 8-th order Contact Transformations (CT) in normal coordinates [22,23] for the PES of Ref. [3].

According to the nuclear spin statistics only rovibrational levels of A_1 and A_2 symmetry types are allowed in the case of ${}^{16}O_3$ and ${}^{18}O_3$ [21]. This means that the lowest allowed levels correspond to $\{(v_1)(v_2)(v_3)_{\text{even}} [JK_aK_c = 000]\}_{A_1}$ for A_1 type vibrations and to $\{(v_1)(v_2)(v_3)_{\text{odd}} [JK_aK_c = 101]\}_{A_2}$ for B_1 type vibrations. Since we have a large sample of J values in observed transitions the band centre limits are well defined both experimentally and theoretically also in the case of B_1 type vibrations. The columns 3–8 of Table 1 give the three major mixing coefficients P_n associated with normal mode contributions $W_n = |v_1v_2v_3>_0$ for the wave functions of the lowest rovibrational upper state levels allowed by the spin statistics as explained in more detail in Ref. [14].

3. Experiment

3.1. Ozone generation

Ozone was prepared using silent electric discharge (12 kV, 400 Hz) in liquid nitrogen as described in Ref. [8]. This method allows obtaining a quasi-complete conversion of oxygen to ozone, as vapor pressures are respectively, on the order of 100 and 10^{-3} Torr at 77 K. The ¹⁸O₂ enrichment of our sample was 95%, leading to an 86% partial pressure of the ¹⁸O₃ isotopologue. Consequently, many weak absorption lines due to the other minor isotopic species – mainly ¹⁶O¹⁸O and ¹⁸O¹⁶O¹⁸O – are expected to be superimposed to the ¹⁸O₃ spectrum. The pressure, measured by a capacitance gauge, as well as the ring down cell temperature, was monitored during the spectrum acquisition. The 140 cm long CRDS cell fitted by the super mirrors was filled with a typical pressure of 30 Torr of ¹⁸O₂ enriched oxygen. The quasi complete conversion of oxygen to ozone leads to an initial pressure value of 20 Torr of

Table 1

Theoretical predictions of the bar	d centres with their corresponding r	normal mode assignments in the	$6200-6440 \text{ cm}^{-1}$ region.

Band centre (cm ⁻¹)		Three major	Three major normal mode contributions ^a							
calc_1 ^b	calc_2 ^c	P1 (%)	W1	P2 (%)	W2	P3 (%)	W3			
A_1 vibration states										
6245.81	6245.50	49	$(016)_0$	23	$(304)_0$	10	(106)			
6266.59	6267.12	61	$(350)_0$	18	$(044)_0$	14	(242)			
6296.69	6295.33	25	$(304)_0$	18	$(106)_0$	17	(016)			
6312.32	6310.15	77	$(072)_0$	10	$(180)_0$	3	(270)			
6327.54	6328.94	23	$(350)_0$	22	$(044)_0$	18	(134)			
6385.45	6384.88	77	$(520)_0$	8	$(412)_0$	5	(322)			
6428.81	6427.91	37	$(242)_0$	21	$(134)_0$	14	(332)			
B_1 vibration states (A_2 re	ovibrational symmetry)									
6210.93	6211.65	40	$(143)_0$	31	$(251)_0$	11	(341)			
6228.24	6226.83	64	$(421)_0$	14	$(115)_{0}$	11	(223)			
6272.27	6270.54	44	$(205)_0$	28	$(403)_0$	12	(115)			
6342.71	6342.49	30	$(313)_0$	24	$(115)_{0}$	19	(511)			
6378.07	6378.76	81	$(171)_{0}$	15	$(063)_0$	1	(153)			
6393.72	6393.88	38	$(233)_0$	23	$(143)_0$	11	(035)			

Band centres highlighted in bold correspond to the states involved in the effective Hamiltonian developed in this work. The grey background corresponds to "dark" perturber states of the EH model.

^aColumns *Pn*'s indicate the mixing coefficients (in %) of Ψ^{eff} of the lowest allowed rovibrational state in the harmonic normal mode basis. Columns *Wn*'s indicate the corresponding vibration normal mode quantum numbers (v_1 , v_2 , v_3)₀, *n* is the order of the contribution. The subscript "₀" of (v_1 , v_2 , v_3)₀ means the normal mode representation (see Section 2.4 for more details).

²Global variational predictions from the potential function V^{M} of Ref. [2] in internal coordinates (r_1, r_2, θ) .

^cNon-empirical effective Hamiltonian predictions derived from the potential function of Ref. [2] in normal mode coordinates *q*₁, *q*₂, *q*₃ using 8th order Contact Transformation [22].

ozone. Assuming that the partial pressure of the impurities is negligible, the slowly decreasing concentration of ozone in the cell was deduced at each instant from the total pressure value, using the relation $P_{O_3} = 2(P_i - P_t)$, where P_i is the O₂ initial pressure and P_t is the measured total pressure.

3.2. The CW-CRDS spectrometer

The CW-CRDS spectra of ¹⁸O₃ were recorded with the same CW-CRDS spectrometer as used in our previous studies of the main ozone isotopologue [8–13] and of other species of atmospheric importance such as H₂O [24] and ¹²CO₂ [25]. The detailed description of the fibered set up can be found in Refs. [6,7]. Briefly, the full 5930–7000 cm⁻¹ range can be covered with a set of about 50 Distributed Feed-Back (DFB) laser diodes. The tuning range of each DFB laser is about 7 nm (\sim 30 cm⁻¹) for a temperature variation from -10 to 65 °C. The typical sensitivity (noise equivalent absorption $\alpha_{min} \sim 2\text{--}5 \times 10^{-10} \, \text{cm}^{-1}$), the wide spectral coverage and the four to five decades linear dynamic range make this CW-CRDS spectrometer an ideal tool for high sensitivity absorption spectroscopy in the important atmospheric window of transparency around $1.5 \,\mu\text{m}$. The typical ring down times are on the order of 60 µs. A few 100 ring down events are averaged for each spectral data point, and the duration of a temperature scan is about 70 min for each DFB laser.

3.3. Retrieval of experimental parameters (positions and intensities)

The centres and intensities of the observed lines were obtained by using the "MultiFit" software written at GSMA [16]. In our experimental conditions, the collisional broadening (FWHM = 5.2×10^{-3} cm⁻¹ at a pressure of 20 Torr) is twice smaller than the Doppler broadening (FWHM = 11.0×10^{-3} cm⁻¹ at 6000 cm⁻¹) and the observed line profile is mostly Gaussian. Note that the diode laser linewidth contribution (a few MHz) is negligible.

3.4. Accuracies

The wavenumber calibration of the CW-CRDS spectra was based on the wavelengths values measured by a wavemeter (Burleigh WA 1640) during the DFB frequency scan. It was further refined by simply stretching the frequency scale (with an origin at 0) in agreement with highly accurate positions of reference lines due to impurities present in the sample. CO_2 line positions as provided by the HITRAN database [26] was generally adopted as reference but the achieved sensitivity allowed for the detection of other impurities as H₂O and CO. These impurities were generally ¹⁸O enriched: H₂¹⁸O, ¹²C¹⁸O, ¹⁶O¹²C¹⁸O or ¹²C¹⁸O₂. The corresponding transitions were identified using the HITRAN database [26] and the recent CW-CRDS investigation of the CO₂ spectrum [25]. On the basis of the comparison of our line centres with the reference values, we estimate that the obtained accuracy on the line positions is better than 2×10^{-3} cm⁻¹. This value will be confirmed below from the statistics error on the energy value of the levels determined from different transitions sharing the same upper level.

Due to the possible conversion of ozone in oxygen, the accuracy on the line intensities is generally limited by the uncertainty on the ozone concentration. The knowledge of the molecular concentration is even more difficult in the case of minor isotopologues [27,28]. As mentioned above, the ¹⁸O enrichment of the molecular oxygen used for the ozone synthesis was 95%. Assuming a statistical distribution of the oxygen atoms, a value of 86% is calculated for the relative concentration of the ¹⁸O₃ homogeneous isotopologue. However, it is difficult to estimate the uncertainty on this value and considering the possible decomposition of ozone during the recordings and the presence of gas impurities in our sample, we estimated to 15–20% the global uncertainty on our absolute line intensities values.

4. Rovibrational analysis and modeling

4.1. Overview of the CW-CRDS spectrum

Fig. 1 shows the overview of the observed spectrum between 6200 and 6400 cm⁻¹. Two *A*-type bands are clearly observed near 6270 and 6400 cm⁻¹. By comparison with the predicted band centres, they were assigned to the $2v_1 + 5v_3$ and $2v_1 + 3v_2 + 3v_3$ band, respectively. The much weaker $3v_1 + 4v_3$ band near 6296 cm⁻¹ is also observed just above the head of the $2v_1 + 5v_3$ band. The two energy regions could be analyzed separately. In a first step, the two bands were assumed unperturbed and analyzed using a single state Hamiltonian model. Then, the analysis showed that some levels were affected by perturbations. The perturbing levels were identified and introduced in the effective Hamiltonian models as summarized in Fig. 2 and detailed hereafter.

Fig. 1. Overview of the CW-CRDS spectrum of $^{18}O_3$ between 6200 and 6405 cm $^{-1}$, after removal of the absorption lines corresponding to impurities. This Figure corresponds to successive recordings by 12 diodes laser, about 30 cm $^{-1}$ wide each.

Fig. 2. Overview of all the energy levels predicted in the $6200-6440 \text{ cm}^{-1}$ range and resonance interactions involved in the two effective Hamiltonian models elaborated in this work. The full and dotted lines correspond to bright and dark states of the model, respectively. Other predicted levels are in italics. The anharmonic (Anh) and Coriolis (C) couplings are indicated.

Fig. 3. Mixing coefficients of the (350) state into the (205) state for the $K_a = 0$ and 1 series of the (205) state as a function of *J*.

4.2. The $2v_1 + 5v_3$ region

Table 3

With the help of the band centre [14] and rotational constants predictions [29], the transitions reaching levels with *J* and *K_a* values up to 26 and 4, respectively, were assigned using the ASSIGN code [15]. Nevertheless, some *I* levels of the $K_a = 0$ and $K_a = 1$ series deviated importantly from the values calculated using the single state Hamiltonian model. The perturbing level was identified as the (350) state predicted near 6266 cm⁻¹ in Coriolis interaction with the (205) state. This resonance coupling induces large mixings of the 19_0 , 22_1 and 26_2 levels of (205) with the 19_1 , 22_0 and 26_1 levels of (350), respectively (see mixing coefficients for the two first levels in Fig. 3). The resulting intensity transfers made possible to assign five transitions reaching the (350) dark state: $23_1 \rightarrow 22_0$, $21_1 \rightarrow 22_0$, $20_0 \rightarrow 19_1$, $27_2 \rightarrow 26_1$ and $25_2 \rightarrow 26_1$. This acute resonance interaction was included in the effective Hamiltonian model and the analysis was processed by including larger K_a values in the fitting of the EH parameters. A second perturbation, increasing with J values was found to affect the $K_a = 5$ series of (205). This perturbation is due to the Coriolis resonance with the (016) state, predicted at 6245 cm⁻¹ [14]. It leads to deviations up to 0.2 cm⁻¹ from the unperturbed energy levels of the (205) state. The introduction of the relevant terms in the effective Hamiltonian model

Spectroscopic parameters of the (421), (016), (350), (205) and (304) vibrational states (in cm⁻¹).

Parameter		(421)	(016)	(350)	(205)	(304)
E ^{VV}		6231.975 ₅ (91)	6245.0089 ₀ (70)	6266.384 ₁ (56)	6270.6040 ₀ (83)	6296.3577 ₀ (24)
A - (B + C)/2		2.946 ₅ (18)	$2.6022_5(13)$	3.35429 ₆ (41)	2.6374221 (84)	2.652754 (70)
(B + C)/2		0.34765 ₆ (30)	0.349489 ₅ (36)	0.3568121 (89)	0.349821 ₆ (57)	0.351151 ₀ (43)
(B-C)/2		0.02300 (p)	0.0232241 (34)	0.021224 ₆ (59)	0.0223060_9 (45)	0.0229064 ₉ (57)
Δ_K	$\times 10^3$	g	g	g	0.147504 (84)	$-0.196_{1}(40)$
Δ_{JK}	$\times 10^5$	g	g	g	$-0.742_{2}(11)$	$-0.841_{5}(58)$
$\Delta_{\rm J}$	$ imes 10^{6}$	g	$0.43_6(69)$	g	0.24553 (42)	0.3038 ₈ (75)
δ_J	$ imes 10^{6}$	g	$-0.92_{6}(26)$	g	$0.1056_3(45)$	0.710 ₇ (39)
δ_K	$\times 10^4$	g	$-0.309_{9}(45)$	g	$0.676_8(69)$	$-0.39_4(60)$
H_K	$ imes 10^{6}$	g	g	g	$0.3068_0(36)$	g
H _{KJ}	$\times 10^{6}$	g	g	g	0.264 ₂ (10)	g

 $\begin{array}{lll} A^{205,421}_{200} = -0.0001800_0(93) & C^{205,016}_{003} = & 0.0000058_1(10) \\ A^{350,016}_{200} = -0.000648_5(45) & C^{205,350}_{001} = & 0.003451_9(77) \\ C^{016,421}_{201} = & 0.00003149_6(83) & C^{205,350}_{003} = -0.00001237_4(44) \\ C^{205,016}_{001} = & 0.1001_4(38) & C^{304,205}_{001} = & 0.024_8(133) \\ \end{array}$

$$C_{011}^{205,016} = -0.00084_4(71)$$
 $C_{011}^{304,205} = 0.0068_6(25)$

Note that, as there is no A_{000} anharmonic coupling terms, the band centres coincide with E^{VV} , (p) – fixed to theoretical values [29] predicted from the potential energy function [3], g – fixed to the ground state values [1].

The grey background indicates that the (421) state is a "dark" perturber state.

Table 2

Statistics for the rovibrational transitions included in the fit of the parameters of the effective Hamiltonian for the (016), (350), (205) and (304) states.

Vibrational state	(016)	(350)	(205)	(304)
Band centre (cm ⁻¹)	6245.001	6266.384	6270.604	6296.358
J max	42	22–26	37	43
K _a max	2	1	13	4
Number of transitions	89 ^a	5	659	131
Number of levels	49	3	330	104
$rms (10^{-3} cm^{-1})$		6.28	3	

^a Four transitions of v_2 + 6 v_3 band were excluded from the fit (see Text).

allowed the identification of transitions of the $v_2 + 6v_3$ band. As usual for *B*-type bands, the most intense transitions correspond to $K_a = 0$ or 1 and large J values (J > 30). Finally 89 transitions with 16 < I < 42 and $0 < K_a < 2$ were assigned and included in the fit, extending the range of assigned J and K_a quantum numbers of the (205) energy levels. In order to decrease the rms deviation value between the observed and calculated energy levels, a few weak interaction terms were added as showed on Fig. 2: anharmonic resonances couple the (205) and (421) states on the one hand, and the (016) and (350) states on the other hand, while the $K_a = 6$ series of the (205) sates are in Coriolis interaction with levels of the (304) state. At this stage we have calculated the $3v_1 + 4v_3$ band with the predicted value of the band centre (Table 1) and extrapolated values for the rotational constants. This calculation has allowed to assign 131 transitions of this band with J_{max} = 43 and $K_a = 4$, corresponding to 104 energy levels. They have been included into the final fit of the Hamiltonian parameters. The statistics of the analysis and the complete set of fitted parameters are presented in Tables 2 and 3, respectively. Four transitions of the $v_2 + 6v_3$ band corresponding to J = 23 and 27 for $K_a = 2$ were excluded from this fit as they are significantly perturbed by not yet identified bands. A total of 880 line positions (including 659 transitions of the $2v_1 + 5v_3$ band) could be assigned and reproduced with an *rms* deviation of 6.28×10^{-3} cm⁻¹. The experimentally determined energy levels of the (205) and $\{(304), (016), (350)\}$ states are listed in Tables 4 and 5, respectively.

It is instructive to compare the present results with the corresponding analysis of the $2v_1 + 5v_3$ band of ${}^{16}O_3$ near 6587 cm⁻¹ [13]. In the case of the main isotopologue, neither the $v_2 + 6v_3$

Table 4	
Energy levels derived from observed transitions for the B_1 symmetry state (20)	5).

Table 4 (continued)

0–C

3.2 6.7 8.5

7.3 1.3

1.3 6.9 0.1 4.9 -2.3 4.5 20.4 4.1 -4.9

-4.7 -5.6 -3.4 -3.8 -2.8-4.1-2.1-1.5 -0.1 -0.3 0.1 -0.2 -0.3 0.0 1.1 1.0 -0.1 0.4 -1.5 1.1 -1.2 2.3 -2.9 0.3 -5.0 -1.4 -5.7 -3.2 -2.8 -8.0 -17.5 -11.66.4 -5.3 -4.9 -4.3-2.9 -4.3 -4.3-1.7-3.1-0.5 -0.3 0.1 0.0

0.6 0.7

-0.2 1.4 0.8

-0.3 2.0 2.3 2.5 4.5

3.8 2.9 0.0 1.3

0.9 1.7 -1.2

0.2

							(203)					
205)	V	V	$E(am^{-1})$	Nh	AE	0.0	J	Ka	K _c	<i>E</i> (cm ⁻¹)	Nb	ΔΕ
	K _a	<i>K_c</i>		ND		0-0	24	2	23	6489.6636	1	0.1
	0	1	6271.3011	1	0.0	-2.4	25	2	23	6513.2557	2	0.1
	0	3	6274.7950	3	0.6	-3./	20	2	25	6551 2002	1	
	0	5	6200 1105	2	0.5	-1.0	27	2	23	6562 6703	2	0.8
	0	9	6301 9010	2	13	-1.3	20	2	27	6592 1521	2	0.0
	0	11	6316.3875	2	0.2	4.3	30	2	29	6603.1280	2	1.9
	0	13	6333.5438	1		8.0	31	2	29	6635.7535	1	
	0	15	6353.3412	2	0.4	10.1	32	2	31	6646.3599	1	
	0	17	6375.7763	2	0.3	10.8	33	2	31	6682.0835	1	
	0	19	6400.8699	1		12.0	34	2	33	6692.2446	1	
	0	21	6428.2851	1		-14.8	35	2	33	6731.0951	1	
	0	23	6458.5239	2	0.2	-6.2	3	3	0	6298.5231	2	0.4
	0	25	6491.3501	1	0.0	-0.9	4	3	2	6301.3232	2	0.5
	0	27	6526.7747	2	0.6	0.6	5	3	2	6200 0250	3	1.1
	0	29	6605 4462	2	0.5	1.7	7	3	4	6313 9286	3	0.0
	0	33	6648 7036	1	0.4	9.7	8	3	6	6319 5320	2	0.7
	1	0	6273.9609	1		-2.3	9	3	6	6325.8400	3	1.2
	1	2	6275.2685	3	0.6	-4.6	10	3	8	6332.8451	2	0.1
	1	2	6277.5697	1		-2.6	11	3	8	6340.5686	2	0.2
	1	4	6280.0095	2	1.2	-2.8	12	3	10	6348.9688	3	0.3
	1	4	6284.0629	2	0.2	-2.5	13	3	10	6358.1188	3	0.3
	1	6	6287.4533	2	0.6	-1.6	14	3	12	6367.9017	2	0.3
	1	6	6293.4360	2	0.0	-0.7	15	3	12	6378.5032	3	0.2
	1	8	6297.5960	2	1.1	0.6	16	3	14	6389.6455	1	
	1	8	6305.6769	2	2.9	-1.1	17	3	14	6401.7390	2	0.6
	1	10	6310.4293	2	1.1	3.0	18	3	16	6414.2083	2	0.2
	1	10	6320.7793	2	0.6	2.4	19	3	10	6441 5670	1	0.1
	1	12	6338 7108	2	0.0	0.9	20	3	18	6456 8470	2	11
	1	12	6344 1301	2	0.0	47	21	3	20	6471 7322	2	1.1
	1	14	6359.4816	2	0.8	1.8	23	3	20	6488.7664	2	0.3
	1	16	6364.9816	2	0.9	5.2	24	3	22	6504.6953	2	0.3
	1	16	6383.0417	2	0.4	4.4	25	3	22	6523.6257	2	0.0
	1	18	6388.4939	2	0.2	8.5	26	3	24	6540.4434	2	0.6
	1	18	6409.3619	1		2.1	27	3	24	6561.4363	2	0.4
	1	20	6414.6640	2	0.2	11.2	28	3	26	6578.9672	2	0.5
	1	20	6438.4160	2	0.1	4.2	29	3	26	6602.2064	2	0.5
	1	22	6443.5860	2	0.7	-0.8	30	3	28	6620.2575	2	0.2
	1	22	6470.1599	2	0.2	4.2	31	3	28	6645.9291	2	0.2
	1	24	6474.7924	2	0.1	-2.0	32	3	30	6664.3383	1	0.4
	1	24	6508 8750	2	0.2	2.5	35	2	30	6742 1340	2	0.4
	1	20	6541 5785	2	0.2	0.7	36	3	34	6760 5543	2	0.1
	1	20	6545 5490	2	19	-3.8	37	3	34	6794 6291	2	02
	1	28	6581.1975	2	0.2	-3.3	4	4	1	6319.7602	2	0.6
	1	30	6584.8773	1		15.7	5	4	1	6323.2612	2	0.6
	1	30	6623.4053	2	1.0	-4.5	6	4	3	6327.4630	3	0.6
	1	32	6626.7493	1		-45.9	7	4	3	6332.3662	3	0.3
	1	32	6668.1897	2	0.3	-9.4	8	4	5	6337.9675	2	0.7
	1	34	6671.3142	1		0.8	9	4	5	6344.2740	2	1.2
	1	34	6715.5628	1		-6.0	10	4	7	6351.2780	3	0.2
	1	36	6765.5284	1		5.5	11	4	7	6358.9878	1	
	2	1	6283.2459	2	0.9	-4.5	12	4	9	6367.3969	1	1.2
	2	1	6285.3480	3	0.9	-4.1	13	4	9	63/6.5095	3	1.2
	2	3	6288.1438	3	0.8	-3.4	14	4	11	6206 9424	2	0.3
	2	3	6291.0017	3	1.2	-2.0	15	4	11	6408 0625	2	1.0
	2	5	6300 7992	2	0.2	-4.5	17	4	13	6419 9925	2	11
	2	7	6306 3179	1	0.5	-3.3	18	4	15	6432.6179	1	
	2	7	6312.7895	1		-1.1	19	4	15	6445.9653	2	0.7
	2	9	6319.5872	2	0.7	-0.9	20	4	17	6459.9900	3	0.1
	2	9	6327.6567	2	0.8	2.5	21	4	17	6474.7671	2	0.1
	2	11	6335.6314	2	0.9	-0.9	22	4	19	6490.1884	1	
	2	11	6345.4194	2	0.1	1.1	23	4	19	6506.4057	2	0.5
ŀ	2	13	6354.4480	2	1.3	2.9	24	4	21	6523.2106	3	0.6
	2	13	6366.1039	2	0.6	2.2	25	4	21	6540.8936	2	0.4
	2	15	6376.0177	1		1.6	26	4	23	6559.0541	2	0.1
	2	15	6389.7154	1	0.2	2.3	27	4	23	65/8.2387	1	
	2	17	6400.3360	2	0.3	1.6	28	4	25	6619 4676	1	0.1
	2	1/	6427 2000	2	0.1	3./	29	4	25	6630 2165	2	0.1
	2	19	6445 7041	2	0.5	1.9	31	4	27	6661 5925	2	0.1
	2	15	5115.7041	2	0.4	4.5			21	0000 0000	-	0.0
2	2	21	6457 1684	2	03) /	32	4	29	6683.5279	2	05

Table 4 (continue
-----------	----------

Table 4 (continued)

Table 4 (co	ontinued)						Table 4	(continued)			
(205)							(205)				
	Ka	K _c	<i>E</i> (cm ⁻¹)	Nb	ΔE	0–C	J	Ka	K _c	<i>E</i> (cm ⁻¹)	Nb
3	4	29	6707.6395	2	0.9	-2.1	24	7	18	6609.7532	1
34	4	31	6730.6549	2	1.6	0.6	25	7	18	6627.2797	2
35	4	31	6756.6263	2	0.6	-6.4	26	7	20	6645.5138	2
36	4	33	6780.5930	2	0.5	5.6	27	7	20	6664.4461	2
5 c	5	0	6346.9490	2	0.1	-4.0	28	/ 7	22	6684.0840	1
0 7	5	2	6356.0503	3	0.1	-1.1	29 30	7	22	6725 4670	3 2
, 8	5	2	6361 6506	3	0.4	-1.2 -0.4	31	7	24	6747 2168	1
9	5	4	6367.9523	2	0.6	1.3	32	7	26	6769.6700	1
10	5	6	6374.9533	2	1.3	1.7	34	7	28	6816.6867	2
11	5	6	6382.6553	2	0.6	2.4	35	7	28	6841.2520	1
12	5	8	6391.0584	3	0.7	3.3	36	7	30	6866.5231	2
13	5	8	6400.1635	2	1.1	4.8	8	8	1	6464.1117	2
14 15	5	10	6409.9693	2	0.0	5.8	9	8	1	64/0.4196	3 2
15 16	5	10	6431 6854	2	0.5	7.0	10	8	3	6485 1343	2
17	5	12	6443.5958	1	0.5	6.6	12	8	5	6493.5449	3
18	5	14	6456.2095	3	0.5	7.2	13	8	5	6502.6554	2
19	5	14	6469.5255	3	1.2	7.0	14	8	7	6512.4666	3
20	5	16	6483.5450	3	0.3	7.8	15	8	7	6522.9786	1
21	5	16	6498.2666	2	1.3	6.1	16	8	9	6534.1918	2
22	5	18	6513.6930	2	0.3	6.9	17	8	9	6546.1083	2
23	5	18	6529.8235	3	0.7	5.3	18	8	11	6558.7240	3
24 25	5	20	6564 1968	3	0.4	4.2	19	8 8	11	6586.0641	3
26	5	20	6582.4367	3	0.7	0.6	20	8	13	6600.7847	2
27	5	22	6601.4236	2	0.6	28.8	22	8	15	6616.2062	3
28	5	24	6621.0364	2	2.3	-6.6	23	8	15	6632.3317	2
29	5	24	6641.4101	2	0.8	-11.9	24	8	17	6649.1576	2
30	5	26	6662.4604	1		-14.4	25	8	17	6666.6873	2
31	5	26	6684.2599	1		-21.9	26	8	19	6684.9174	1
32 c	5	28	6706.7084	1	0.5	-26.0	28	8	21	6723.4862	2
7	6	1	6384 9832	2	0.5	-0.5	29 30	0 8	21	6764 8679	2
, 8	6	3	6390 5855	3	11	-0.2	33	8	25	6832 2141	2
9	6	3	6396.8894	3	0.9	0.2	9	9	0	6514.9933	2
10	6	5	6403.8942	3	0.7	0.7	10	9	2	6522.0037	3
11	6	5	6411.5987	1		0.0	11	9	2	6529.7146	2
12	6	7	6420.0040	2	0.2	-0.8	12	9	4	6538.1279	2
13	6	7	6429.1126	2	1.3	0.4	13	9	4	6547.2419	2
14 15	6	9	6438.9206	3	0.2	-0.2	14	9	6	6567 5755	3 2
15 16	6	9 11	6460 6411	2	0.6	-1.2	15 16	9	8	6578 7935	2
17	6	11	6472.5550	2	0.8	-1.1	10	9	8	6590.7148	3
18	6	13	6485.1683	2	1.5	-3.4	18	9	10	6603.3364	3
19	6	13	6498.4865	2	1.3	-3.1	19	9	10	6616.6591	2
20	6	15	6512.5075	2	0.8	-2.3	20	9	12	6630.6842	1
21	6	15	6527.2307	2	0.1	-2.3	21	9	12	6645.4096	2
22	6	17	6542.6570	2	0.7	-2.2	22	9	14	6660.8377	3
23	6	1/	6558./86/	2	0.1	-2.0	23	9	14	66/6.96//	2
24 25	6	19	6593 1572	2	0.4	-2.7	24 25	9	16	6711 3339	2
25	6	21	6611 3992	2	0.4	-1.5	23	9	18	6748 5088	1
27	6	21	6630.3477	2	1.0	0.3	29	9	20	6788.4935	3
28	6	23	6649.9992	2	1.3	-0.6	30	9	22	6809.5406	2
29	6	23	6670.3596	2	0.1	2.0	31	9	22	6831.2864	1
30	6	25	6691.4263	2	1.3	2.3	10	10	1	6571.7762	1
31	6	25	6713.2007	2	0.2	5.5	11	10	1	6579.4922	1
0	7	0	6419.1375	1	07	3.3	12	10	3	6587.9103	2
δ Ω	7	2	6424.7414	2	0.7	2.9	13	10	5	6606 8514	1
10	7	2	6438 0528	2	1.0	3.5	15	10	5	6617 3743	1
11	7	4	6445.7578	3	0.8	2.0	16	10	7	6628.5994	2
12	7	6	6454.1646	1		1.2	17	10	7	6640.5271	2
13	7	6	6463.2730	1		1.1	19	10	9	6666.4849	3
14	7	8	6473.0830	3	1.1	1.6	20	10	11	6680.5177	3
15	7	8	6483.5928	2	0.1	0.7	21	10	11	6695.2527	2
16	7	10	6494.8026	3	0.8	-1.5	22	10	13	6710.6908	3
1/	7	10	6510 2205	2	1.1	-0.4	23	10	13	6742 6690	1
10	7	12	6532 6464	3	1.5	-2.7	24 25	10	15	6761 2116	2
20	7	12	6546 6640	2	0.0	-2.1	26	10	15	6779 4593	2
21	7	14	6561.3829	3	0.3	-3.7	28	10	19	6818.0556	2
22	7	16	6576.8048	3	1.4	-3.6	31	10	21	6881.2259	2
23	7	16	6592.9276	2	0.2	-4.7					(0

0–C

-5.4 -7.5

-4.5

-6.0-4.8

-4.5

-4.5-1.22.1

7.2 10.3

15.2

6.9 7.3

5.5

4.2

4.3

3.3

1.8 0.0

-1.9

-1.6 -3.6 -3.3

-3.2

-4.7

-7.0

-6.9

-8.1

-7.5 -8.4

-7.7-4.3

-3.2

8.5

9.3

7.7

5.2

3.9

1.9

1.0

-0.7

-3.0

-3.5 -5.5

-8.5 -12.4 -27.2

20.8

3.3

-0.3

-1.7-0.6

3.9

8.2

9.4

8.3 6.3

4.8 3.4

1.5 -0.3

-1.6

-1.9 -5.4 -5.7

-5.5

-4.0

-8.8 -5.1 -3.2

1.0

5.3

24.4

 ΔE

0.1

1.8 0.3

0.2

1.1

1.3

0.8

0.2

2.1

0.3

0.8 1.2

0.9

0.3

1.8

0.0

0.4 0.2 1.1

0.0

1.0

0.9

0.1

0.3

0.2

0.0

0.0

0.6

0.6

0.9

0.5

1.5

0.8

0.0

1.0

0.9

0.9 0.2

0.2 0.2

0.1

0.1

1.8

1.5

0.2

0.0

0.8

0.9

1.2

1.3 0.2 0.2

0.6

1.5 1.3

0.3

0.1

0.7 (continued on next page)

Table 4 (continued)

(205)						
Ĵ	Ka	K _c	$E ({\rm cm}^{-1})$	Nb	ΔE	0-C
11	11	0	6634.4629	1		3.5
12	11	2	6642.8884	2	0.2	2.9
13	11	2	6652.0156	3	0.7	1.7
14	11	4	6661.8459	3	0.6	1.5
15	11	4	6672.3770	3	1.7	0.0
16	11	6	6683.6114	2	0.4	-0.3
17	11	6	6695.5462	1		-2.4
18	11	8	6708.1867	3	1.5	-0.8
19	11	8	6721.5273	3	0.3	-1.1
20	11	10	6735.5702	3	0.4	-1.4
21	11	10	6750.3174	2	0.3	0.7
22	11	12	6765.7677	1		3.8
23	11	12	6781.9181	3	0.7	5.0
24	11	14	6798.7733	1		9.1
25	11	14	6816.3313	2	0.1	13.9
12	12	1	6703.0727	1		3.2
13	12	1	6712.2072	2	0.2	1.0
14	12	3	6722.0431	1		-2.8
15	12	3	6732.5858	1		-2.3
16	12	5	6743.8308	1		-2.3
17	12	5	6755.7756	2	1.2	-5.1
19	12	7	6781.7768	2	0.7	-7.1
20	12	9	6795.8316	3	0.7	-7.9
21	12	9	6810.5901	2	2.0	-7.3
22	12	11	6826.0516	3	1.1	-6.5
23	12	11	6842.2171	2	0.7	-4.0
13	13	0	6777.6272	1		6.8
14	13	2	6787.4783	2	0.0	7.5
16	13	4	6809.2850	1		3.0
17	13	4	6821.2452	2	1.2	2.4
20	13	8	6861.3468	1		2.0

Notes: Nb is the number of observed transitions used to determine the upper energy level. ΔE is the *rms* dispersion (in 10^{-3} cm⁻¹ unit). (*O*–*C*) is the difference (in 10^{-3} cm⁻¹ unit) between the experimentally determined value and the value calculated from the effective Hamiltonian.

nor the $3v_1 + 4v_3$ bands were observed but the $4v_1 + 2v_2 + v_3$ weak band was identified with K_a and J values up to 8 and 30, respec-

tively. This undoubtedly confirms [14] that, although the ${}^{18}O_3 \leftarrow {}^{16}O_3$ isotopic substitution is homogeneous, the isotopic shifts are irregular and the scheme of resonances differs significantly for ${}^{16}O_3$ and ${}^{18}O_3$.

The intensities of 434 selected transitions were used to derive the parameters of the effective dipole transition moment operators listed in Table 6. The 342 intensity values of the $2v_1 + 5v_3$ band could be reproduced with an *rms* deviation of 11.6% between the observed and calculated intensities. A worse intensity reproduction is achieved for the 32 transitions of the $v_2 + 6v_3$ band (*rms* deviation of 32%) and for the 60 transitions of the $3v_1 + 4v_3$ band (*rms* deviation of 20.5%). It confirms [10] the well known difficulty to satisfactorily account for the intensities of weak *B*-type bands. The number of transitions included in the fit, the range of quantum numbers for each observed band and the retrieved transition moment parameters with their statistical accuracies are listed in Table 6.

The derived effective Hamiltonian parameters (Table 3) together with the transition moment parameters (Table 6) allow the calculation of all the *P*, *Q* and *R* transitions for *A*-type band and *Pp*, *Pr*, *Qp*, *Qr*, *Rp*, *Rr* transitions for *B*-type band, reaching the experimentally determined energy levels (Tables 4 and 5).

The corresponding list of 1151 transitions is provided as Supplementary material. It contains 868 transitions for the $2v_1 + 5v_3$ band, 172 transitions for the $3v_1 + 4v_3$ band, 105 transitions for the $v_2 + 6v_3$ band and the 6 transitions reaching the (350) dark state which borrow their intensities from line partners of the $2v_1 + 5v_3$ band (see above). In order to calculate the integrated band intensities S_v and compare these values with those of ${}^{16}O_3$ [8–13], we have also made a full theoretical calculation of the transitions. The intensity cut-off was fixed to 2×10^{-28} cm/molecule (at 296 K) which corresponds to the lower intensity limit of observable lines. Only the 6 transitions identified above of the $3v_1 + 5v_2$ band were calculated with an intensity larger than 2×10^{-28} cm/molecule. In particular, the $\Delta K_a = \pm 2$ and $\Delta K_a = \pm 3$ transitions of the $2v_1 + 5v_3$, $3v_1 + 4v_3$ and $v_2 + 6v_3$ bands, respectively were calculated with a lower intensity.

Table 5 Energy levels derived from observed transitions for the A_1 symmetry states (016), (304) and (350)

8	0		n (-1)			()				
8	0		$E(cm^{-1})$	Nb	ΔE	0–C	<i>E</i> (cm ⁻¹)	Nb	ΔE	0–C
10		8	6321.5129	1		-6.4				
10	0	10	6334.6932	1		-6.9				
12	0	12	6350.5674	1		-5.5				
14	0	14	6369.0997	1		-4.8				
16	0	16	6390.2656	1		-2.9	6338.3601	2	1.4	-13.5
18	0	18	6414.0377	1		-3.5	6361.9867	1		-12.4
20	0	20	6440.4272	1		-3.0	6388.2075	2	0.3	-6.8
22	0	22	6469.4188	1		-1.2	6417.0160	2	0.7	-3.0
24	0	24	6501.0153	1		-0.1	6448.4194	2	1.1	2.3
26	0	26	6535.2211	2	2.3	2.4	6482.4186	2	0.2	5.1
28	0	28	6572.0455	2	9.4	13.0	6519.0235	2	0.6	9.4
30	0	30	6611.4552	2	0.1	-3.4	6558.2337	2	0.6	9.4
32	0	32	6653.4953	1		-2.8	6600.0573	2	1.0	7.3
34	0	34	6698.1492	2	0.1	-2.6	6644.4972	2	0.1	0.5
36	0	36	6745.4172	1		-2.6	6691.5663	2	0.9	-3.9
38	0	38	6795.3004	2	1.1	-1.1	6741.2684	2	0.1	-7.2
40	0	40	6847.7879	2	6.6	-8.7	6793.6124	2	0.1	-6.1
42	0	42	6902.9053	1		1.1	6848.6179	2	0.4	14.3
11	1	11	6343.7583	1		-4.9				
13	1	13	6360.6626	1		-3.1	6308.9132	2	0.6	8.6
14	1	13	6374.8493	1		-6.1	6323.1427	1		8.4
15	1	15	6380.2422	2	0.4	-1.0	6328.3888	1		3.3
17	1	17	6402.4846	1		-1.5				
18	1	17	6422.1557	1		-1.5				
19	1	19	6427.3851	1		-0.4	6375.2310	2	0.1	24.7
20	1	19	6449.9564	1		0.4				
21	1	21	6454.9335	2	0.4	-0.1	6402,5489	1		-36.6
22	1	21	6480.4697	1		0.1	6428.2394	2	0.3	5.1

Table 5 (continued)

J	Ka	Kc	(304)				(016)			
			<i>E</i> (cm ⁻¹)	Nb	ΔE	0–C	$E (cm^{-1})$	Nb	ΔE	0–C
23	1	23	6485.1241	1		0.6	6432.5764	2	0.3	-15.4
24	1	23	6513.6618	3	2.0	3.0	6461.2476	1		5.3
25	1	25	6517.9503	2	2.3	0.8	6465.2193	2	0.3	-2.4
26	1	25	6549.4895	2	0.1	2.0	6496.8710	2	0.4	2.5
27	1	27	6553.4092	2	0.9	1.6	6500.4777	2	0.6	3.8
28 29	1	27	6591 4833	1	0.4	4.2	6538 3551	2	0.2	0.8
30	1	29	6628.9621	1	0.4	2.9	6575.8870	2	0.9	1.1
31	1	31	6632.1987	2	0.1	0.9	6578.8522	2	0.4	7.4
32	1	31	6672.5729	1		-0.9	6619.2614	2	0.5	1.0
33	1	33	6675.5307	2	0.1	1.9	6621.9717	2	1.1	4.6
34 25	1	33	6718.7659	1		-2.7	6665.2128	2	0.1	-3.3
30	1	35	6767 5441	1	15	-4.2	6713 7536	2	0.8	-2.2
37	1	37	6770.0453	1	1.5	-1.6	6716.0948	2	0.6	-7.2
38	1	37	6818.9072	2	1.5	-2.7	6764.8986	2	1.0	-10.9
39	1	39	6821.2332	1		2.3	6767.1158	2	1.4	-6.7
40	1	39	6872.8617	1		-3.0				
41	1	41	6875.0314	1		2.0	6820.7889	2	0.5	4.7
42	1	41					6875.0574	2	0.4	4.7
43	1	43	6931.4514	1		10.6				
1/	2	16	6414.0683	1		/.1				
10	2	18	6439 8439	3	07	3.0 4.7	6387 5730	2	0.1	_97
21	2	20	6468.3598	1	0.7	8.0	0507.5750	2	0.1	-5.7
22	2	20	6488.1439	1		1.0				
23	2	22	6499.5911	1		6.0	6446.8818	1		-108.8^{*}
24	2	22	6522.0706	1		-0.1				
25	2	24	6533.5318	1		6.8				
26	2	24	6558.8580	1		0.5	6517 1202	2	2.5	20.7*
27 28	2	26	6598 4697	1		6.9 1.0	0517.1382	3	2.5	-29.7
29	2	28	6609.4720	2	4.7	2.8	6556.2585	2	1.2	-9.6
30	2	28	6640.8647	1		-0.7		_		
31	2	30	6651.4593	1		11.0	6598.0371	2	0.2	6.3
33	2	32	6696.0473	1		-37.0	6642.4563	1		7.0
34	2	32	6733.8506	1		5.7				
35	2	34	6743.3850	1		10.2	6689.5249	2	1.1	6.1
30 37	2	36	6793 2604	1		-0.8	6739 2376	2	12	10
39	2	38	6845 8178	2	0.4	-0.7	6791 6004	1	1.2	-1.0
41	2	40	6900.9982	1		5.3	6846.6149	2	2.7	1.4
43	2	42	6958.7936	1		8.0				
16	3	13	6416.0797	1		4.0				
17	3	15	6427.9283	1		3.3				
18	3	15	6440.8527	1		3.3				
19	3	17	6453.9904	1	0.5	2.3				
20	3	19	6482 8665	1	0.5	0.7				
22	3	19	6499.1107	2	2.0	-1.8				
23	3	21	6514.5517	1		-1.3				
24	3	21	6532.6506	2	0.5	0.3				
25	3	23	6549.0316	1		-7.4				
27	3	25	6586.3110	1		-2.1				
29 31	3	2/	6660 1680	1		-2.1				
33	3	29	6714 7219	2	0.5	-4.2				
35	3	33	6763.0074	1	0.5	-4.8				
37	3	35	6814.0051	1		-5.5				
41	3	39	6924.0810	1		-10.7				
18	4	14	6459.1905	1		0.7				
19	4	16	6472.5716	1		4.6				
20	4	16	6486.6821	1		-2.3				
21	4	18	6517 0200	1		0.9				
23	4	20	6533.1971	1		0.9				
24	4	20	6550.2126	1		-4.6				
26	4	22	6586.2720	1		-6.5				
27	4	24	6605.1607	1		-2.3				
28	4	24	6625.2177	1		-5.9				
29	4	26	6645.3999	1		3.1				
30	4	20	6688 4600	1		-13.4				
33	4	30	6734.3503	1		3.9				
	-								(continued	on next page)

Table	5	(continued	2

J	Ka	K _c	(304)				(016)			
			<i>E</i> (cm ⁻¹)	Nb	ΔE	0–C	<i>E</i> (cm ⁻¹)	Nb	ΔE	0–C
35	4	32	6783.0551	1		6.6				
39	4	36	6888.8623	1		6.1				
41	4	38	6945.9447 (350)	1		9.1				
22	0	22	6443.2125	2	0.2	2.7				
19	1	19	6400.5639	1		-15.7				
26	1	25	6525.0770	2	0.4	-2.9				

Notes: Nb is the number of observed transitions used to determine the upper energy level. ΔE is the *rms* dispersion (in 10^{-3} cm⁻¹ unit). (*O*–*C*) is the difference (in 10^{-3} cm⁻¹ unit) between the experimentally determined value and the value calculated from the effective Hamiltonian model. * Excluded from the fit.

Table 6

ntegrated band intensities, S _v in (cm/molecule at 296 I	() and parameters of the effective transition moment of	operator (in Debye) for the $2v_1 + 5$	$5v_3$, $v_2 + 6v_3$ and $3v_1 + 4v_3$ bands
---	---	--	---

Operator	Parameters	Value	Number of transitions (J max, K_a max)	rms deviation (%)
	2	v_1 + 5 v_3 band S_v = 2.85 × 10 ⁻²⁴	⁴ (cm/molecule at 296 K)	
$\left\{ arphi_{z},\mathbf{J}^{2} ight\}$	$d_1 \ (imes 10^4) \ d_2 \ (imes 10^8)$	$\begin{array}{c} 0.4142_4 \ (21) \\ -0.444_8 \ (20) \end{array}$	342 (35, 12)	11.6
$\left\{\varphi_z J_z^2\right\}$	$d_3 (\times 10^8)$	-0.525 (16)		
$\frac{1}{2} \Big[\{ \varphi_x, i J_y \} - \{ i \varphi_y, J_x \} \Big]$	$d_4(imes 10^7)$	$-0.465_{5}(60)$		
	,	v_2 + 6 v_3 band S_v = 1.48 × 10 ⁻²⁵	(cm/molecule at 296 K)	
φ_{x}	$d_1 (\times 10^5)$	-0.129 ₃ (41)	32 (39, 2)	32.2
$\{\varphi_z, iJ_y\}$	$d_5 (\times 10^6)$	$-0.4283_{0}(65)$		
	3	$v_1 + 4v_3$ band $S_v = 1.04 \times 10^{-25}$	⁵ (cm/molecule at 296 K)	
φ_{χ}	$d_1 (\times 10^5)$	$-0.384_{6}(29)$	60 (42, 4)	20.5
$\{\varphi_z, iJ_y\}$	$d_5 (imes 10^6)$	0.2713 ₀ (56)		
		Total rms is 15.4% for	434 transitions	

Note: The rms deviation applies to the quantity (Iobs-Icalc)/Iobs.

The integrated band intensities, S_{ν} , of the $2\nu_1 + 5\nu_3$, $\nu_2 + 6\nu_3$ and $3\nu_1 + 4\nu_3$ bands are included in Table 6. They correspond to the sum of the intensities of all the transitions reaching the experimentally determined energy levels, obtained with a cut off of 2×10^{-28} cm/molecule corresponding to the limit of observable transitions.

Figs. 4 and 5 show a comparison between the synthetic spectra computed from this list and the experimental spectrum for the whole investigated region and a small spectral section, respectively. The agreement is very satisfactory but a number of weak lines which do not belong to the $2v_1 + 5v_3$ or $v_2 + 6v_3$ bands are observed in the CW-CRDS spectrum.

Fig. 5. Comparison of the observed and calculated spectra in the range 6250.5–6254.5 cm⁻¹, corresponding to the P branch of the $2\nu_1 + 5\nu_3$ band. (a) Observed spectrum with a pressure of ozone of about 20 Torr, (b) simulated spectrum of ozone.

Table 7

Statistics for the rovibrational transitions included in the fit of the parameters of the effective Hamiltonian for the (520) and (233) vibrational states.

/ibrational state	(520)		(233)
Band centre (cm ⁻¹)	6385.360		6392.214
max	24		33
K _a max	1		7
Number of transitions	7		344
Number of levels	4		191
$ms (10^{-3} \text{ cm}^{-1})$		9.30	

Table 10 (continued)

(233)

5

Table 8 Spectroscopic parameters of the (520), (233) and (242) vibrational states (in cm⁻¹).

Parameter		(520)	(233)	(242)
E^{VV}		6385.359 ₈ (29)	6392.2135 ₀ (18)	6427.07 ₃ (22)
A - (B + C)/2		2.939 ₇ (17)	2.77740 ₈ (22)	2.80404 (p)
(B + C)/2		0.364398 ₅ (36)	0.3482099 ₄ (75)	0.348626 (33)
(B-C)/2		0.01683 ₆ (15)	0.023893 ₉ (15)	0.022952 (72)
Δ_K	$ imes 10^3$	g	0.14373 (54)	g
Δ_{IK}	$\times 10^{5}$	g	$-0.19_0(38)$	g
Δ_I	$ imes 10^{6}$	g	0.3584 ₃ (94)	g
δ_{I}	$ imes 10^{6}$	g	0.1049 ₈ (81)	g
δ_K	$\times 10^5$	g	$-0.55_{5}(14)$	g

 $\begin{array}{l} C_{011}^{2\,42,2\,3\,3}=0.00125_{5}(82)\\ C_{001}^{2\,33,5\,2\,0}=-0.031665_{7}(81) \end{array}$

Note that, as there is no A_{000} anharmonic coupling terms, the band centres coincide with E^{VV} , (p) – fixed to the theoretical value [29] predicted from the potential energy function [3], g - fixed to the ground state values [1]. The grey background indicates that the (242) state is a "dark" perturber state.

Table 9

Integrated band intensities, S_{ν} in (cm/molecule at 296 K) and parameters of the effective transition moment operators (in Debye) for the the $2v_1 + 3v_2 + 3v_3$ band.

$2v_1 + 3v_2 + 3v_3$ band		$S_v = 0.496 \times 10^{-24} \text{ (cm/molecule at 296 K)}$				
Operator	Parameters	Value	Number of transitions (J max, Ka max)	rms deviation (%)		
φ_z	$d_1(\times 10^4)$	0.1927 ₃ (24)	66 (26, 6)	13.1		
$\left\{ \varphi_{z},\mathbf{J}^{2} ight\}$	$d_2(\times 10^8)$	-0.189 ₆ (38)				

Note: The rms deviation applies to the quantity $(I_{obs}-I_{calc})/I_{obs}$.

Table 10 Energy levels derived from observed transitions for the (233) state of B_1 symmetry and for the (520) state of A_1 symmetry.

(233)						
J	Ka	Kc	$E(cm^{-1})$	Nb	ΔE	0–C
3	0	3	6396.3827	1		-12.6
5	0	5	6402.6445	2	0.8	-10.7
7	0	7	6411.6646	1		-6.5
9	0	9	6423.4145	2	0.8	-3.1
11	0	11	6437.8716	1		1.3
13	0	13	6455.0298	1		7.3
15	0	15	6474.9356	1		6.3
17	0	17	6495.8463	2	0.7	-11.1
19	0	19	6520.9579	1		-9.8
21	0	21	6548.4891	1		-2.8
23	0	23	6578.5199	2	0.2	-2.5
25	0	25	6611.0946	1		-2.9
27	0	27	6646.2297	2	1.4	-4.5
31	0	31	6724.2006	1		-22.2
33	0	33	6767.0462	2	0.6	-36.1
5	1	4	6405.7674	2	0.7	-10.8
6	1	6	6409.0959	1		-7.7
7	1	6	6415.1055	2	0.5	-11.2
8	1	8	6419.1722	1		-5.7
9	1	8	6427.3068	1		-7.6
10	1	10	6431.9293	2	0.1	-1.0
11	1	10	6442.3509	1		-7.3
12	1	12	6447.3601	2	0.4	2.3
13	1	12	6460.2238	1		-7.4
14	1	14	6465.4716	2	0.1	5.7
15	1	14	6480.9061	2	0.7	-5.0
16	1	16	6486.3077	1		12.1
17	1	16	6504.3672	2	0.1	-2.9
19	1	18	6530.5738	1		-1.0
20	1	20	6534.6148	1		-5.6

K	K.	$F(cm^{-1})$	Nh	ΔF	0-0
1	20	6550 4870	1		10
1	20	6563 4070	1	13	1.2
1	22	6591.0679	2	0.2	-4.0
1	24	6594.6594	2	0.2	-3.1
1	24	6625.2745	2	0.8	4.9
1	26	6628.4646	2	0.2	-3.5
1	26	6662.0715	2	1.2	4.6
1	28	6664.8415	2	0.6	-9.5
1	28	6701.4365	2	0.8	5.1
1	30	6703.7992	2	0.9	-18.2
1	30	6743.3463	2	1.0	-1.5
1	32	6/45.3343	2	0.0	-34.4
1	32	6405 4022	2	0.2	-0.6
2	1	6407.4055	2	0.4	_39
2	3	6410.2801	3	0.9	-4.2
2	3	6413.7807	3	1.9	-5.1
2	5	6417.9369	2	2.7	-2.8
2	5	6422.8810	2	0.7	-4.3
2	7	6428.3709	1		-1.4
2	7	6434.8234	2	1.1	-1.9
2	9	6441.5752	2	1.3	-0.7
2	9	6449.6342	2	0.3	1.0
2	11	6457.5459	2	1.4	0.0
2	13	6476 2685	2	0.8	-0.1
2	13	6487.9514	2	0.1	-1.1
2	15	6497.7427	2	1.0	8.8
2	15	6511.4928	2	1.5	1.1
2	17	6521.9524	1		10.6
2	17	6537.9499	2	0.6	0.6
2	19	6548.9065	2	0.2	14.5
2	19	6567.3057	1		-4./
2	21	6500 5517	1		10.2
2	21	6611 5558	3	0.6	-8.9
2	23	6634.6412	2	0.4	-1.9
2	25	6645.1832	3	0.4	3.2
2	25	6672.5480	2	0.8	-2.5
2	27	6682.9311	1		6.3
2	27	6713.2286	2	0.4	-5.9
2	29	6756.6447	2	1.3	-7.4
3	0	6421.3798	1	0.2	1.8
3	2	6427.0518	3	0.3	2.8
3	4	6436 7136	2	0.4	2.5
3	6	6442 2915	3	15	4.4
3	6	6448.5700	3	0.7	2.3
3	8	6455.5422	1		4.0
3	8	6463.2326	2	0.2	5.8
3	10	6471.5921	2	0.4	6.3
3	10	6480.7043	2	1.2	6.7
3	12	6490.4385	3	0.5	6.5
2	12	6512 0855	2	0.5	2.0
3	14	6524 1360	2	0.6	0.J 5 3
3	14	6536 5292	1	0.0	87
3	16	6550.1347	2	0.9	3.2
3	18	6563.7670	2	0.9	8.2
3	18	6579.0235	2	0.6	3.5
3	20	6593.7972	2	0.3	9.3
3	20	6610.8244	2	0.7	3.1
3	22	6626.6103	2	0.7	7.0
3	22	6645.5562	2	1.5	-1.6
3	24	6692.2084	2	1.4	3.1
3	24	6700 6168	1		-2.0
3	26	6723.8679	2	1.0	-15.2
3	28	6742.1350	2	1.3	-22.2
3	28	6767.4426	2	0.3	-24.0
4	1	6443.5839	1		3.0
4	1	6447.0686	1		4.2
4	3	6451.2490	3	0.6	4.0
4	3	6456.1265	3	0.2	3.6
4	5	6461./032	3 (cont	0.5	4.9
			(cont	mued on r	iexi page)

Table 10) (contini	ied)
----------	------------	------

(233) I	Ka	Kc	E (cm ⁻¹)	Nb	ΔE	0–C
9	4	5	6467.9778	2	0.0	6.
10	4	7	6474.9483	3	1.2	5.
11	4	7	6482.6168	1	10	4.
12	4	9	6490.9866	3	1.3	6. 7
13	4	11	6509 8214	1	1.2	7.
15	4	11	6520.2914	1		8.
16	4	13	6531.4547	3	0.9	7.
17	4	13	6543.3298	3	0.8	8.
18	4	15	6555.8897	2	0.2	6.
19	4	15	6569.1753	2	0.6	6.
20	4	17	6507 9251	2	0.1	5.
21	4	19	6613 1773	2	0.9	J.
23	4	19	6629.3183	1	1.1	-2.
24	4	21	6646.0357	2	0.3	1.
25	4	21	6663.6451	2	1.1	-2.
26	4	23	6681.7026	2	1.6	-3.
27	4	23	6700.8180	1		-8.
28	4	25	6720.1819	2	0.3	-7.
3U 21	4	27	6761.4715	3	5.7	-14.
5	4	27	6472 0051	1		-51.
6	5	2	6476.1859	1		-2.
7	5	2	6481.0631	1		-2.
8	5	4	6486.6384	2	0.6	-1.
9	5	4	6492.9089	3	0.8	-2.
10	5	6	6499.8788	3	1.4	-1.
11	5	6	6507.5484	1		1.
12	5	8	6515.9133	1	0.0	2.
13	5	8 10	6524.9729	2	0.6	-0.
14	5	10	6545 1935	2	0.1	-0. 1
16	5	12	6556.3472	1	0.5	-2.
17	5	12	6568.2073	1		1.
18	5	14	6580.7606	2	0.4	-1.
19	5	14	6594.0162	2	0.9	-0.
20	5	16	6607.9700	2	0.3	-1.
21	5	16	6622.6239	1	07	-3.
22	5	18	6654 0349	1	0.7	-1.
24	5	20	6670.7887	2	0.4	-6.
25	5	20	6688.2505	1		-8.
26	5	22	6706.4054	2	0.3	-8.
27	5	22	6725.2772	1		-11.
28	5	24	6744.8279	2	0.2	-14.
29	5	24	6786.0614	2	1.3	-19.
6	5	20	6506 6277	1		-21.
7	6	1	6511.5057	1		-14.
8	6	3	6517.0808	3	0.7	-13.
9	6	3	6523.3547	1		-10.
10	6	5	6530.3194	2	0.3	-13.
11	6	5	6537.9882	1		-10.
12	6	7	6546.3489	1	0.2	-11.
15	6	9	6565 1709	2	0.5	-11.
15	6	9	6575.6246	1	0.4	-7.
16	6	11	6586.7782	2	0.6	-6.
17	6	11	6598.6290	2	0.2	-5.
18	6	13	6611.1794	2	1.7	-3.
19	6	13	6624.4258	1		-3.
20	6	15	6638.3703	3	1.5	-3.
21 22	6	13	6668 3590	2	03	-1.
22	6	17	6684 4017	2	0.5	2
24	6	19	6701.1303	2	0.4	-8.
25	6	19	6718.5847	2	0.1	6.
26	6	21	6736.7240	3	0.8	7.
27	6	21	6755.5697	1	0.0	14.
28	6	23	6775.1082	2	0.3	15.
29 30	6	23	6816 2346	2	0.6	_34
7	7	0	6547.4921	2	0.4	16.

Table 10	(continued)
----------	-------------

(233)						
ĵ (Ka	K _c	$E(cm^{-1})$	Nb	ΔE	0–C
8	7	2	6553.0704	2	0.7	13.0
9	7	2	6559.3475	2	1.3	11.0
10	7	4	6566.3193	2	0.5	6.0
11	7	4	6573.9909	2	1.1	3.1
12	7	6	6582.3608	2	0.2	0.8
13	7	6	6591.4265	1		-3.6
14	7	8	6601.1882	2	1.3	-10
15	7	8	6611.6628	2	1.9	-1.5
16	7	10	6622.8211	1		-7.6
17	7	10	6634.6870	2	0.1	-4.1
18	7	12	6647.2522	2	0.8	0.1
19	7	12	6660.5179	2	0.5	6.5
(520)						
22	0	22	6567.5313	1		24.5
15	1	15	6473.0847	2	0.1	17.6
17	1	17	6497.7428	2	0.2	-31.1
24	1	23	6609.6423	2	0.7	6.7

Notes: Nb is the number of observed transitions used to determine the upper energy level. ΔE is the *rms* dispersion (in 10^{-3} cm⁻¹ unit). (*O*–*C*) is the difference (in 10^{-3} cm⁻¹ unit) between the experimentally determined value and the value calculated from the effective Hamiltonian.

4.3. The $2v_1 + 3v_2 + 3v_3$ band

The weaker A-type band with a head near 6395 cm^{-1} is assigned to the $2v_1 + 3v_2 + 3v_3$ band (see Fig. 1). The rovibrational assignment of this band was easily performed using the ASSIGN code [15] and following K_a series. Two perturbations were nevertheless identified: the $K_a = 0$ series is strongly perturbed, particularly at J = 17, by a Coriolis resonance with the (520) vibrational state. A maximum value of 42.8% is achieved for the mixing coefficient between the 17_0 level of (233) and the 17_1 level of (520), with a sharp decrease down to 26% and 19.5% at I = 15 and I = 19, respectively. Such dependence is a consequence of the asymmetry of the ozone molecule which has a larger impact on the levels with small K_a values. This Coriolis perturbation affects the K_a = 2 series too, with a maximum value of 47% for the mixing coefficient at J = 24. As a consequence of an intensity transfer from the perturbed transitions of the $2v_1 + 3v_2 + 3v_3$ band to the resonance line partner of the $5v_1 + 2v_2$ band, seven transitions reaching the (520) state could be assigned as for instance $16_0(000) \rightarrow 17_1(520)$. A second strong perturbation affects the $K_a = 7$ series. It is due to a "classical" Coriolis resonance with the $K_a = 6$ series of the (242) state centered at 6427 cm⁻¹. As ozone is only slightly asymmetric (see above), the J dependence of the mixing coefficients is smooth for $K_a = 7$ series, the maximum value being calculated for J = 19. Despite these strong mixings, it was not possible to observe transitions reaching $K_a = 6$ levels of the $2v_1 + 4v_2 + 2v_3$ band, mainly because transitions reaching levels of the $K_a = 7$ series of the $2v_1 + 3v_2 + 3v_3$ band are relatively weak.

As shown in Fig. 2, the two Coriolis interactions were included in the effective Hamiltonian model. The statistics of the rovibrational transitions included in the fit of the EH parameters is given in Table 7. By using the parameter values listed in Table 8, the set of 344 line positions of the $2v_1 + 3v_2 + 3v_3$ band and seven line positions of the $5v_1 + 2v_2$ band could be reproduced with an *rms* deviation of 9.30×10^{-3} cm⁻¹. A set of 66 line intensities was selected to determine the dipole moment parameters of the $2v_1 + 3v_2 + 3v_3$ band (Table 9). By using the experimentally determined energy levels of the (233) and (520) states listed in Table 10, and following the same procedure as for the $2v_1 + 5v_3$ band, 468 transitions were calculated in the 6338 to 6398 cm⁻¹ spectral range. The resulting line list is provided as Supplementary

Fig. 6. Example of agreement between the observed and calculated spectra in the P branch of the $2v_1 + 3v_2 + 3v_3$ band. (a) Observed spectrum with a pressure of ozone of about 15 Torr, (b) simulated spectrum of ozone using the derived effective Hamiltonian model (Table 8) and the effective transition moment operators (Table 9). Note the large number of unassigned lines.

material. Fig. 6 shows the comparison of the synthetic and observed spectra for a narrow spectral region near 6385 cm^{-1} . The agreement is satisfactory but, as in the region of the $2v_1 + 5v_3$ band we note a significant number of weak lines which are left unassigned. They may be due to the ${}^{18}O{}^{18}O{}^{16}O$ or ${}^{18}O{}^{16}O{}^{18}O$ isopotologues present in our sample with relative abundances of 9% and 4.5%, respectively, to some hot bands of ${}^{18}O_3$ or yet unassigned bands of ${}^{18}O_3$.

5. Conclusion

The high resolution spectrum of ¹⁸O₃ has been recorded by CW-CRDS between 6200 and 6400 cm⁻¹. Transitions with line strength as low as 7×10^{-28} cm/molecule could be assigned. The $2v_1 + 5v_3$ and $2v_1 + 3v_2 + 3v_3$ *A*-type bands, centered at 6270 and 6392 cm⁻¹, respectively, dominate the spectrum. Part of the 659 transitions assigned to the $2v_1 + 5v_3$ band, were found perturbed by Coriolis interaction with the $v_2 + 6v_3$, $3v_1 + 4v_3$ and $3v_1 + 5v_2$ bands. 89, 131 and 5 transitions were assigned to these three perturber bands. The modeling of the $2v_1 + 5v_3$ band system was achieved by including one additional "dark" band: $4v_1 + 2v_2 + v_3$. The derived Hamiltonian parameters and transition moment parameters have been used to generate a list of 1151 transitions. A similar analysis was performed for the $2v_1 + 3v_2 + 3v_3$ band which was found in Coriolis interaction with the $5v_1 + 2v_2$ and $2v_1 + 4v_2 + 2v_3$ bands, leading to the list of 468 transitions.

Overall, a total of 681 energy levels were derived. They belong to six of the 13 vibrational states predicted between 6200 and 6430 cm^{-1} (see Table 1). Two additional "dark" states were indirectly evidenced as their introduction in the effective Hamiltonian model leads to a better reproduction of the observed spectrum. In summary, the present study brings the first experimental information for 8 of the 13 bands predicted in the region. The investigated region being located at about 75% of the dissociation energy, the obtained results represent a significant progress in the knowledge of the ozone molecule at high vibrational excitation.

Acknowledgments

This work is partly supported by CNRS in the frame of program "LEFE ChAt". We acknowledge the support from a collaborative program between CNRS-France and RFBR-Russia (PICS Grant No 05-05-22001). The support from IDRIS computer centre of CNRS France and Champagne-Ardennes regional computer centre for global calculations is also acknowledged.

Appendix A. Supplementary data

Supplementary data for this article are available on ScienceDirect (www.sciencedirect.com) and as a part of the Ohio State University Molecular Spectroscopy Archives (http://msa.lib.ohiostate.edu/jmsa_hp.htm).

References

- [1] http://www.ozone.iao.ru/.
- [2] VI.G. Tyuterev, S.A. Tashkun, P. Jensen, A. Barbe, T. Cours, J. Mol. Spectrosc. 198 (1999) 57–76.
- [3] VI.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, P. Jensen, T. Cours, A. Barbe, M. Jacon, Chem. Phys. Lett 316 (2000) 271–279.
- [4] A. Chichery, A. Barbe, Vl.G. Tyuterev, M.T. Bourgeois, J. Mol. Spectrosc. 206 (2001) 1–13.
- [5] A. Chichery, A. Barbe, VI.G. Tyuterev, J. Mol. Spectrosc. 206 (2001) 14-26.
- [6] J. Morville, D. Romanini, A.A. Kachanov, M. Chenevier, Appl. Phys. D78 (2004) 465-476.
- [7] P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, VI.G. Tyuterev, J. Mol. Spectrosc. 227 (2004) 90–108.
- [8] M.-R. De Backer-Barilly, A. Barbe, VI.G. Tyuterev, D. Romanini, B. Moeskops, A. Campargue, J. Mol. Struct. 780-781 (2006) 225-233.
- [9] S. Kassi, A. Campargue, M.-R. De Backer-Barilly, A. Barbe, J. Mol. Spectrosc. 244 (2007) 122–129.
- [10] A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, A. Campargue, D. Romanini, S. Kassi, J. Mol. Spectrosc. 242 (2007) 156–175.
- [11] A. Campargue, S. Kassi, D. Romanini, A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, J. Mol. Spectrosc. 240 (2006) 1–13.
- [12] A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, S. Kassi, A. Campargue, J. Mol. Spectrosc. 246 (2007) 22–38.
- [13] A. Campargue, M.-R. De Backer-Barilly, A. Barbe, VI.G. Tyuterev, S. Kassi, Phys. Chem. Chem. Phys. 10 (2008) 2925–2946.
- [14] E.N. Starikova, A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, S.A. Taskhun, S. Kassi, A. Campargue, Chem. Phys. Lett. 470 (2009) 28-34.
- [15] A. Chichery, Thesis, Univ. Reims, 2000.
- [16] J.J. Plateaux, L. Régalia, C. Boussin, A. Barbe, J. Quant, Spectrosc. Radiat. Transfer 68 (2001) 507–520.
- [17] J.K.G. Watson, J. Chem. Phys. 46 (1967) 4189-4196.
- [18] V.I. Perevalov, VI.G. Tyuterev, Opt. Spectrosk. 52 (1982) 644-650.
- [19] S.A. Tashkun, Vl.G. Tyuterev, SPIE. Proc. Ser. 2205 (1994) 188-191.
- [20] C. Camy-Peyret, J.-M. Flaud, Thesis, University P. and M. Curie, Paris, 1975.
- [21] J.-M. Flaud, R. Bacis, Spectrochim. Acta A 54 (1998) 3–16.
- [22] VI.G. Tyuterev, S.A. Tashkun, H. Seghir, SPIE Proc. Ser. 5311 (2004) 164-175.
- [23] J. Lamouroux, S.A. Tashkun, Vl.G. Tyuterev, Chem. Phys. Lett. 452 (2008) 225– 231.
- [24] B.V. Perevalov, S. Kassi, D. Romanini, V.I. Perevalov, S.A. Tashkun, A. Campargue, J. Mol. Spectrosc. 238 (2006) 241–255.
- [25] B.V. Perevalov, S. Kassi, V.I. Perevalov, S.A. Tashkun, A. Campargue, J. Mol. Spectrosc. 252 (2008) 143–159.
- [26] L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transfer 96 (2005) 139–204.
- [27] Y.Q. Gao, R.A. Marcus, Science 293 (2001) 259-263.
- [28] Ch. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky, Phys. Chem. Chem. Phys. 3 (2001) 4718–4721.
- [29] E. Štarikova, M.-R. De Backer-Barilly, VI.G. Tyuterev, A.Barbe, A. Campargue, A. Liu, S. Kassi, S.A. Tashkun, ASA Proceedings, Reims, 2008, and http://asa.univreims.fr/, 22.

Article 2 (partie III)

Journal of Molecular Spectroscopy 255 (2009) 144-156

FI SEVIED

Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/jms

CRDS spectroscopy of ${}^{18}O_3$. Part 2: Analysis of six interacting bands between 5930 and 6080 cm $^{-1}$

E. Starikova^{a,b}, M.-R. De Backer-Barilly^b, A. Barbe^{b,*}, Vl.G. Tyuterev^b, A. Campargue^c, A.W. Liu^c, S. Kassi^c

^a Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Av. Akademicheskii, Tomsk 634055, Russia ^b Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, UFR Sciences Exactes et Naturelles, BP 1039 - 51687 Reims Cedex 2, France ^c Laboratoire de Spectrométrie Physique, UMR CNRS 5588, Université Joseph Fourier, BP 87 - 38402 Saint Martin d'Hères Cedex, France

ARTICLE INFO

Article history: Received 24 February 2009 Available online 5 April 2009

Keywords: Ozone ¹⁸O₃ Cavity Ring Down Spectroscopy Effective Hamiltonian model Potential function

ABSTRACT

The absorption spectrum of ¹⁸O₃ has been recorded in the 5930–6080 cm⁻¹ region using CW-Cavity Ring Down Spectroscopy. 1888 transitions belonging to five bands have been assigned. Three of them are A-type bands: $2v_2 + 5v_3$, $v_1 + v_2 + 5v_3$ and $5v_1 + v_3$, and two bands are of B-type: $2v_1 + v_2 + 4v_3$ and $4v_1 + 3v_2$. Despite a complex spectral pattern perturbed by many rovibrational resonances, it has been possible to find a suitable effective Hamiltonian model reproducing all the transition wavenumbers (corresponding to 1016 energy levels) with an *rms* deviation of 9.5×10^{-3} cm⁻¹. A set of 721 line intensities was determined and fitted to derive the effective transition moment parameters. This set of parameters and the experimental energy levels were used to generate a complete line list of 2795 transitions allowing to generate synthetic spectrum in good agreement with the experimental spectrum.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We present here the second part of our study of the CW-Cavity Ring Down Spectroscopy (CRDS) of the ¹⁸O homogeneous isotopologue of ozone, ¹⁸O₃. In the first paper devoted to the 6200– 6400 cm⁻¹ region [1], the experimental set-up and the theoretical approach have been presented together with the procedure followed for the rovibrational assignments. A particular feature of the present analysis of the 5930–6080 cm⁻¹ region is its difficulty resulting from the complexity of the resonance scheme involving six strongly interacting vibrational states. The present analysis has finally led to the assignment of 1888 transitions, corresponding to 1016 energy levels. We noted a great similarity between the present spectrum of ¹⁸O₃ and the corresponding spectrum of the main isotopologue ¹⁶O₃ near 6200 cm⁻¹ [2].

2. Rovibrational analysis

2.1. Vibrational assignments

Table 1 gives all the band centres predicted [3] in the spectral domain under study. The overview of the experimental CW-CRDS spectrum (Fig. 1) shows three A-type bands with sharp band heads near 5990, 6020 and 6075 cm^{-1} which are assigned to the $2v_2 + 5v_3$, $5v_1 + v_3$ and $v_1 + v_2 + 5v_3$ bands, respectively. They have

* Corresponding author. Fax: +33 3 26 91 31 47.

E-mail address: alain.barbe@univ-reims.fr (A. Barbe).

a similar appearance than the corresponding bands of ${}^{16}O_3$ [2], but the major contribution [3] to the highest vibrational state is the (1 1 5) normal mode for ${}^{18}O_3$ instead of (2 2 3) for ${}^{16}O_3$. The variations of the vibrational labelling and of the isotopic shifts between ${}^{18}O_3$ and ${}^{16}O_3$ have been discussed in details in Ref. [3].

2.2. Rotational assignment of observed transitions

The first step of the analysis uses Ground State Combination Differences relations and a single state Hamiltonian [1] to assign as many rovibrational transitions as possible for each of A-type band. Adding progressively the couplings of the excited states included in the effective Hamiltonian (EH) model allows to increase the number of assigned transitions up to the step. We present in Fig. 2 the set of resonances which have been obtained at the final stage of the analysis.

2.2.1. The $2v_2 + 5v_3$ band

The rotational assignment of this band using the ASSIGN code [4] was easy up to *J* = 35 and K_a = 12, as only levels corresponding to K_a = 7–9 deviated significantly from those calculated with the single state Hamiltonian. The corresponding perturbations are due to a Coriolis resonance between the K_a = 7–9 series of the (0 2 5) state and the K_a = 6–8 series of the (4 3 0) state. Fig. 3a shows the mixing coefficients corresponding to the rovibrational levels reached by observed transitions. Note that the resulting intensity transfer has allowed observing one transition reaching the 13₆ level of the 4v₁ + 3v₂ band but the 11₇ and 12₇ perturbed

Theoretical predi	ictions of band centres be	etween 5930 and 6110 o	cm^{-1} and corresponding	normal mode assignm	ents.	
Band centre (cm	ı ⁻¹)	Three major n	ormal mode contributio	ons ^a		
calc_1 ^b	calc_2 ^c	P1 (%)	W1	P2 (%)	W2	P3 (%)
A_1 vibration stat	es					
5990.78	5991.00	58	$(152)_0$	21	$(260)_0$	10
6012.31	6011.74	72	$(430)_0$	10	$(322)_0$	9
6047.95	6046.71	41	$(214)_0$	17	$(124)_0$	14
6107.90	6107.37	53	$(322)_0$	14	$(016)_0$	10
B_1 vibration stat	es (A2 rovibrational sym	metry)				
5943.74	5942.31	74	$(053)_0$	10	$(161)_0$	10
5984.58	5984.88	49	$(025)_0$	10	$(223)_0$	10
6013.12	6012.99	74	$(501)_0$	22	(303)0	3
6072.49	6070.63	27	$(115)_{0}$	27	(313)0	23
6078.31	6077.56	96	$(081)_{0}$	2	$(251)_{0}$	1

Band centres highlighted in bold correspond to the analysis presented in this work. The grey background corresponds to "dark" perturber state.

 $(251)_{c}$

^aColumns Pn's indicate the mixing coefficients (in %) of Ψ^{eff} of the lowest allowed rovibrational state in the harmonic normal mode basis. Columns Wn's indicate the corresponding vibration normal mode quantum numbers ($\vartheta_1, \vartheta_2, \vartheta_3$)₀, *n* is the order of the contribution. The subscript "₀" of ($\vartheta_1, \vartheta_2, \vartheta_3$)₀ means the normal mode representation.

 $(143)_{c}$

14

25

^bGlobal variational predictions from the potential function V^{M} of Ref. [8] in internal coordinates (r_{1}, r_{2}, θ).

53

Non-empirical effective Hamiltonian predictions derived from the potential function of Ref. [8] in normal mode coordinates q1, q2, q3 using 8th order Contact Transformation [9].

Fig. 1. Overview of the CW-CRDS spectrum in the 5930–6080 cm⁻¹ region. This Figure corresponds to 6 successive recordings of different diode laser, about 30 cm⁻¹ wide each. The arrows indicate the band centres. For the A-type bands their sharp band heads (high frequency edge of the R-branch) are easily recognizable.

levels of the (0 2 5) state could not be identified. Finally, 507 transitions were assigned to the $2v_2 + 5v_3$ band. The 283 energy levels corresponding to the observed transitions are reported in Table 2.

2.2.2. The $v_1 + v_2 + 5v_3$ band

Table 1

6100.90

6102.19

The ASSIGN code [4] has allowed assigning many transitions with K_a values from 0 up to 7 and with J values up to 35. The $K_a = 8$ series is strongly perturbed by the $K_a = 7$ series of the (322) state. The mixing coefficients of the (322) state into the (1 1 5) state show a maximum value for I = 13 (Fig. 3b) for which the energy level has not been derived. Note that our analysis considers the (3 2 2) state as a "dark" vibrational state since only the $12_8 (000) \rightarrow 13_7 (322)$ transition at 6073.358 cm⁻¹ was observed by intensity borrowing from the $v_1 + v_2 + 5v_3$ band. This was not sufficient to determine accurately the centre of the $3v_1 + 2v_2 + 2v_3$ band. A second weaker perturbation affects the $K_a = 4$ levels. Here, the perturbers are the $K_a = 5$ levels of the (214) vibrational state interacting through a Coriolis resonance. Including relevant terms in the effective Hamiltonian model (Fig. 2), it has been possible to extend the range of quantum numbers up to K_a = 12, leading to a total of 599 transitions corresponding to 307 energy levels, also included in Table 2.

2.2.3. The $5v_1 + v_3$ band

The assignment of this band is complicated by the fact that its P branch overlaps with the $2v_2 + 5v_3$ band (see Fig. 1) and by its involvement in strong resonance interactions with the others bands. The stronger interaction is a Coriolis resonance coupling the K_a = 6 series with K_a = 5 levels of the (2 1 4) vibrational state. This interaction is illustrated in Fig. 3c where the maximum of

W3

 $(044)_{0}$

 $(124)_0$

 $(412)_{0}$ $(124)_{0}$

 $(251)_0$

 $(313)_0$

 $(105)_0$

 $(223)_0$

 $(063)_{0}$

 $(053)_0$

Fig. 2. Scheme of the various resonances involved in the effective Hamiltonian model (see text for details). The full and dotted lines correspond to the "bright" and "dark" states respectively, while the full and dotted arrows represent anharmonic (Anh) and Coriolis (C) couplings respectively. The K_a values of the resonance interacting levels are given on both ends of the vertical arrows.

the perturbation arises for J = 23, the $23_6 (5 \ 0 \ 1)$ and $23_5 (2 \ 1 \ 4)$ levels being almost completely mixed (48.4%). A second strong perturbation of Coriolis type has been identified between the $K_a = 1$ and 2 levels of the (5 0 1) state and the $K_a = 0$ and 1 levels of the (4 3 0) state (Fig. 3d). The determined energy levels are included in Table 2.

2.3. Introduction of interacting B-type bands

At this stage of the analysis, the introduction of the $(2 \ 1 \ 4)$ state in the EH model becomes necessary as this state is in strong interaction with both the $(1 \ 1 \ 5)$ and $(5 \ 0 \ 1)$ states (see above). This gives interesting information on the $K_a = 5 \ (2 \ 1 \ 4)$ perturbing levels which interact with both $K_a = 4 \ (1 \ 1 \ 5)$ levels and the $K_a = 6 \ (5 \ 0 \ 1)$ levels (see Fig. 4). Our previous analysis of B-type bands [2,5] have shown that the intensities of their transitions are correctly reproduced using the d_5 and d_1 terms in the development of the dipole moment operator. We have generated several synthetic spectra of the $2v_1 + v_2 + 4v_3$ band using various combinations of these two parameters. After several attempts, some of the strongest lines (24 < J < 32) of the $K_a = 0$ and 1 series could be assigned. Successive fits and assignments led to a final set of 184 transitions and to the determination of 93 levels (with $K_a = 0-5$) reported in Table 3.

In addition, the (4 3 0) state was found to perturb the (5 0 1) state (see above), giving relevant information on its $K_a = 0$ and 1

Fig. 3. Mixing coefficients (%) induced by various resonance interactions. Only levels corresponding to observed transitions are plotted in full stretch. (a) (4 3 0) state into the (0 2 5) state for the $K_a = 7$, 8 and 9 series of the (0 2 5) state. (b) $K_a = 7$ series of the (3 2 2) state into the $K_a = 8$ series of the (1 1 5) state. (c) $K_a = 4,5$ series of the (2 1 4) state into the $K_a = 5,6$ series of the (5 0 1) state. (d) $K_a = 0, 1$ (*J* even) series of the (4 3 0) state into the $K_a = 1, 2$ series of the (5 0 1) state.

1	1	7
I	4	1

 Table 2

 Rovibrational energy levels derived from observed transitions for the three B_1 vibration states (0 2 5), (5 0 1) and (1 1 5).

			(025)				(501)				(115)			
J	Ка	Кс	$E(cm^{-1})$	Nb	ΔE	0-C	$E(cm^{-1})$	Nb	ΔE	0-C	$E(cm^{-1})$	Nb	ΔE	0-C
1	0	1					6012 7661	1		11	6072 9291	1		2.0
1	0	1	5000 C447	1		71	6013.7661	1		1.1	6072.8381	1		3.0
3	0	3	5988.6447	1		-7.1	6017.3467	1		0.4	6076.3487	1		2.0
5	0	5	004.0015	1	0.1	0.0	0023.7644	1		5.5	0082.0304	1	0.0	1.4
/	0	/	6004.0315	2	0.1	1.4	6033.0546	1		5.7	6091.7410	2	0.6	2.0
9	0	9	6015.8430	2	0.3	0.7	6045.1346	1		11.3	6103.5723	1	0.0	2.8
11	0	11	6030.3555	2	0.2	1.1	6059.9876	I		15.8	6118.1142	3	0.8	2.1
13	0	13	6047.5307	2	0.1	2.0	6077.5848	1		22.2	6135.3308	1		0.8
15	0	15	6067.3357	2	0.1	2.2	6097.8926	1		22.8	6155.1957	3	1.5	0.8
17	0	17	6089.7493	2	0.7	2.0	6120.8921	1		16.5	6177.6821	1		-0.4
19	0	19	6114.7610	2	1.1	2.1	6146.5939	1		24.1	6202.7789	1		-1.2
21	0	21	6142.3665	2	0.4	1.6	6174.9701	1		22.6	6230.4805	2	0.4	-2.1
23	0	23	6172.5686	1		2.2	6206.0279	2	0.8	20.7	6260.7876	1		-1.8
25	0	25	6205.3663	2	0.3	0.0	6239.7633	2	1.7	13.5	6293.7023	2	0.3	-0.1
27	0	27	6240.7672	2	2.1	-0.4	6276.2033	1		25.7	6329.2237	2	1.6	-0.3
29	0	29	6278.7731	2	0.8	0.5	6315.2948	1		1.6	6367.3581	2	0.2	2.0
31	0	31	6319.3872	2	2.6	4.3	6357.0822	2	0.4	-16.9	6408.1047	3	0.1	4.5
33	0	33	6362.6027	2	2.1	3.2					6451.4679	1		10.7
35	0	35	6408.4279	1		5.2								
1	1	0					6016.5189	1		-0.4	6075.5703	1		4.1
2	1	2					6017.8661	2	0.2	-0.3	6076.8802	1		0.4
3	1	2	5991.5147	1		-0.4	6020.2155	4	1.0	1.1	6079.1977	1		1.9
4	1	4	5993.9325	2	0.8	0.9	6022.7320	2	1.3	-0.9	6081.6395	2	0.2	2.3
5	1	4	5998.0509	2	3.2	-4.5	6026.8634	2	0.7	0.7	6085.7280	1		2.6
6	1	6	6001.3818	2	0.1	-0.9	6030.3738	2	0.1	-2.7	6089.1088	2	0.1	0.6
7	1	6	6007.4940	2	1.0	0.3	6036.4600	2	0.0	1.3	6095.1520	1		2.5
8	1	8	6011.5342	1		0.8	6040.7872	1		-5.7	6099.2872	1		0.6
9	1	8	6019.8204	2	0.4	0.5	6048.9960	1		1.3	6107.4604	2	1.4	1.6
10	1	10	6024.3763	2	1.1	1.1	6053,9693	2	0.1	-7.6	6112.1638	2	0.6	-0.7
11	1	10	6035.0208	2	0.1	1.3	6064,4618	2	1.1	2.4	6122.6429	1		2.1
12	1	12	6039 9006	2	2.1	19	6069 9131	2	0.6	-11.0	6127 7327	1		-0.2
13	1	12	6053 0738	2	10	0.3	6082 8403	2	0.5	22	6140 6808	1		2.1
14	1	14	6058 0946	1	110	1.0	6088 6196	2	0.9	-143	6145 9816	1		-0.6
15	1	14	6073 9583	1		0.8	6104 1141	2	03	2.1	6161 5536	2	0.8	2.6
16	1	16	6078 9511	2	0.6	13	6110 1017	1	0.5	_17.2	6166 9011	2	0.6	_13
17	1	16	6097 6422	2	0.0	1.3	6128 2581	1		0.8	6185 2322	2	0.0	1.5
18	1	18	6102 4599	2	0.1	1.5	6134 4092	1		_14.5	6190 4852	1	0.1	0.7
10	1	18	6124 0880	2	0.2	0.8	6155 2478	1		22	6211 68/0	1		0.7
20	1	20	6129,6105	2	0.1	0.8	6160 6088	1		11.0	6216 7100	2	12	0.1
20	1	20	6153 2565	2	0.3	1.3	6185 0447	2	06	0.5	6240.8780	2	0.1	-0.7
21	1	20	6157 2092	1	0.4	1.5	6100 2225	2	1.0	41.2	6245 5075	2	0.1	1.4
22	1	22	6195 1044	2	0.2	0.5	6217 6160	2	0.2	-41.2	6272 7604	2	0.0	-2.0
23	1	22	6100 01044	2	1.0	2.1	6222 7104	2	0.2	-0.5	6272.7094	2	0.7	0.0
24	1	24	0100.0104	2	1.9	2.5	6222.7194	1	1 2	-1.9	6277.1194	2	0.1	-0.9
25	1	24	0219.3690	2	0.5	0.4	0252.9200	2	1.5	-5.5	6307.3100	2	0.5	0.9
20	1	20	0222.0309	1	17	0.5	6200.0417	1		0.1	6244 4015	2	0.2	-0.7
27	1	20	6256.6800	2	1./	-1.4	0290.9417	1		-7.7	6344.4915	2	0.2	1.0
28	1	28	6259.5237	5	0.6	1.5	C221 C245	2	0.0	10.0	6348.0540	2	0.9	0.7
29	1	28	6296.3583	1		-0.2	6331.6345	2	0.8	-18.2	6384.2685	2	0.2	3.2
30	1	30	6298.8053	1	0.5	2.2	6335.9053	1		-16.8	6387.4633	1		1.1
31	1	30	6338.6068	2	0.5	-1.5					6426.6313	1		4.4
32	1	32	6340./018	2	0.5	2.9					6429.5003	2	0.0	7.6
33	1	32	6383.4260	1		-1.6								
34	1	34	6385.2093	1		2.3								
35	1	34	6430.8160	I		-2.3								
2	2	1					6026.1258	1		0.2	6085.0709	2	1.1	-0.3
3	2	1					6028.2810	2	0.8	1.1	6087.1835	2	0.6	0.6
4	2	3	6002.3152	1		0.3	6031.1461	3	0.9	0.4	6089.9921	3	1.3	0.9
5	2	3	6005.8470	2	0.8	-2.7	6034.7490	2	0.2	0.0	6093.5235	2	1.3	-1.5
6	2	5	6010.0404	2	0.2	1.4	6039.0319	2	1.7	0.5	6097.7185	3	0.8	-0.6
7	2	5	6015.0342	3	1.1	-0.9	6044.1133	1		-0.2	6102.7075	3	0.6	-0.9
8	2	7	6020.5669	1		2.4	6049.7776	2	0.3	-1.4	6108.2511	2	0.2	0.6
9	2	7	6027.0934	2	0.9	2.5					6114.7574	2	0.9	0.9
10	2	9	6033.8907	2	0.8	6.2	6063.3817	2	0.8	-1.2	6121.5772	2	1.3	-1.6
11	2	9	6042.0477	2	0.2	1.2	6071.6190	1		1.6	6129.6957	2	0.2	-0.2
12	2	11	6049.9679	2	0.4	-22.6	6079.8343	3	0.8	-2.6	6137.6953	1		-0.9
13	2	11	6059.9321	3	1.2	2.6	6089.8085	1		2.7	6147.5527	2	0.7	0.2
14	2	13	6068.8660	2	0.7	-6.1	6099.1285	2	0.2	-4.3	6156.5927	1		-0.6
15	2	13	6080.7599	2	0.4	1.0	6110.9813	1		2.2	6168.3473	1		1.7
16	2	15	6090.5142	2	0.5	-3.3	6121.2562	2	0.5	-6.0	6178.2607	1		1.5
17	2	15	6104.5413	1		0.2	6135.1474	1		-0.5	6192.0858	2	0.5	2.0
18	2	17	6114.9095	2	0.8	-4.0	6146.2094	1		-5.9	6202.6814	1		-0.4
19	2	17	6131.2725	1		2.8	6162.3174	1		4.1	6218.7655	1		1.4
20	2	19	6142.0417	1		-4.2	6173.9800	2	0.7	-2.6	6229.8460	2	0.7	-2.0
21	2	19	6160.9276	2	0.1	0.6	6192.4666	2	0.1	3.4	6248.3751	2	0.4	2.4
22	2	21	6171.8959	2	0.2	-3.8	6204.5571	1		1.7	6259.7431	1		-4.2
23	2	21	6193.4866	2	2.0	-0.4	6225.5811	2	0.5	0.0	6280.8911	2	0.5	3.3
												(contin	ued on ne	xt page)

Table 2 (continued)

			(025)				(501)				(115)			
I	Ка	Кс	$E(cm^{-1})$	Nb	ΔE	0-C	$E(cm^{-1})$	Nb	ΔE	0-С	$E(cm^{-1})$	Nb	∆E	0-C
24	2	22	6204.4540	2	0.0	4.0	6227.0.402	2	0.2	11.7	(202.2.402	2	1.2	2.0
24	2	23	6204.4548	2	0.8	-4.9	6237.9403	2	0.3	11.7	6292.3483	2	1.3	-2.9
25	2	23	6228.9208	1		2.7	6261.6387	2	0.1	-4.5	6316.2827	2	2.1	0.9
20	2	25	6239.7064	1	10	-4.5	6274.1020	2	0.6	-5.9	0327.0030	2	0.4	-0.5
27	2	25	6207.1800	2	1.2	3.0	6300.6065	2	0.7	-13.5	6265 6621	5	0.7	0.9
20	2	27	6209 2441	1	0.0	-23.8	6242 4220	1		22.0	6205 5720	1		-0.2
29	2	27	6219 2270	2	0.9	5.7 2.4	0342.4230	1		-55.8	6406 2280	2	0.1	1.0
50 21	2	29	6252 0497	1	07	-2.4					6420 2877	2	0.1	2.4
21	2	29	6261 4670	2	0.7	5.7	6209 4090	1		25.2	6440 6704	2	0.5	-0.1
3Z 22	2	31	0301.4079	2	0.0	-4.9	6398.4989	1		-35.3	6449.6794	2	0.5	4.4
33	2	31	0398.5534	1		4.4					6485.9264	1		3.I 10.0
34 2	2	33	6012 0509	1		0.2	6041 0256	n	2.2	1 2	6100 7081	1	17	-18.2
3	3	0	6015.0598	1		0.3	6041.9256	2	3.2	-1.3	6100.7081	2	1.7	-1.8
4	3	2	6015.8715	1	10	0.6	6044.7983	3	0.5	1.5	6103.5203	3	0.4	-2.0
с С	3	2	6019.3843	2	1.2	-1.4	0048.3801	2	0.6	1.4	6107.0389	2	0.2	-0.8
0	3	4	6023.6023	3	1.9	-1.8	6052.6923	3	1.0	1.7	6111.2589	3	0.2	-1.5
/	2	4	6026.5275	1	0.0	-0.4	0057.7108	2	0.5	0.9	0110.1045	1	0.2	-1./
8	3	6	6034.1550	2	0.0	1.0	6063.4589	3	0.2	0.5	0121.0132	3	0.2	-1.8
9	3	0	6040.4905	2	1.0	-1.0	6077 1041	1	0.1	1.5	6125.1527	2	0.7	-1.2
10	2	0	6055 2847	1	0.5	5.1	6095 0175	2	0.1	1.2	6142 0401	2 2	1.0	-2.5
11	2	0	6062 7122	1	E 1	0.8	6002 6262	2	0.2	1.0	6151 2055	2	0.5	1.0
12	2	10	0005.7125	2	1.1	-4.0	6102 0004	2	1.1	-0.4	0101.5000	1	0.2	-1.0
13	3	10	6072.9159	2	1.2	-0.3	6103.0004	2	0.7	0.3	6160.5789	2	0.2	-2.0
14	3	12	6082.7340	1	10	0.3	0113.0310	1	0.2	-0.8	6170.4080	1		0.5
15	3	12	6093.4023	2	1.2	-1.0	6123.8873	2	0.2	0.7	6181.0615	1		-0.7
10	3	14	6104.5778	2	0.2	1./	6135.3168	2	0.2	-2.4	6192.2515	1	1.0	-1.5
1/	3	14	0110.7000	2	0.9	1.3	6147.6926	1	0.2	1.9	6204.4080	2	1.0	-1.5
18	3	10	6129.2435	1	0.4	1.7	6160.4868	2	0.3	-1.4	6216.9203	2	0.2	-1.4
19	3	10	6143.0232	2	0.4	0.6	6174.4346	1	0.1	3.9	6230.6418	1		-1.5
20	3	18	0150.7285	2	1.4	1./	0188.5300	2	0.1	0.0	6244.4119	1		1./
21	3	18	61/2.2035	2	1.6	-1.1	6204.1340	2	0.1	5.9	6259.7881	1		0.9
22	3	20	6187.0312	2	0.3	7.0	6236.8134	2	0.3	/.8	62/4./126	1		-0.1
23	3	20	6204.3364	2	0.3	0.0	6253.2858	2	1.2	-10.1	6291.8697	1		3.1
24	3	22	6220.1568	2	1.2	32.4	6272.4922	2	0.5	1.2	6307.8220	1	1 5	0.9
25	3	22	6239.4407	2	0.0	0.8					0320.9002	2	1.5	2.8
26	3	24	6255.9849	2	0.1	-30.7	6220 4512	2	0.5	17	6343.7284	2	0.4	3.5
27	3	24	6277.5283	2	1.6	1.2	6329.4512	2	0.5	1.7	6364.9188	2	0.1	6.1
28	3	26	6294.6658	1		-17.5	6352.9059	2	1.0	-0.3	6382.4177	2	0.0	/.1
29	3	26	6318.6010	1		3.2	63/1.8143	1	1.2	6.9	6405.9076	3	0.4	8.3
30	3	28	C2C2 C 40C	2	0.7	2.4	6397.6381	2	1.2	-13.0	6423.8795	2	0.2	29.0
31	3	28	6362.6406	2	0.7	2.4	6417.0205	2	1.1	21.3	6449.8671	2	0.8	11./
32	3	30	6380.2585	2	0.1	-19.2	6465 00 40			105	6468.0925	2	1.9	-20.7
33	3	30	6409.6227	2	1.4	-0.7	6465.0240	1		10.5				
34	3	32	6450 5004			10 5	6041.9256	2	3.2	-1.3	05 40 04 05	2	0.0	10.0
35	3	32	6459.5301	1		10.5	6060 0000		0.0	10	6546.6105	2	0.6	18.3
4	4	1	6034.8289	1	1.0	-0.8	6063.8922	2	0.6	1.9	6122.4429	1		-5.0
5	4	1	6038.3417	2	1.9	-0.9	6067.4777	2	1.9	0.2	6125.9611	3	0.9	-3.5
6	4	3	6042.5590	3	0.4	0.4	60/1./83/	3	0.1	1.2	6130.1830	3	1.2	-2.1
/	4	3	6047.4794	2	0.2	1.3	60/6.8059	3	0.7	0.4	6135.1061	3	0.8	-3.4
8	4	5	6053.1022	2	0.6	0.9	6082.5469	2	0.3	0.3	6140.7352	1		-2.8
9	4	5	6059.4280	2	0.2	-0.6	6089.0070	3	1.0	0.7	6147.0696	3	0.3	-1.5
10	4	7	6066.4588	2	0.0	-1.5	6096.1833	3	2.6	-1.2	6154.1080	2	0.2	-0.6
11	4	7	6074.1988	2	1.0	1.5	6104.0805	2	0.7	-1.5	6161.8509	4	1.2	-0.8
12	4	9	6082.6390	3	0.2	-0.2	6112.6979	1		-0.8	6170.2998	2	1.0	0.4
13	4	9	6091.7874	2	0.5	-0.5	6122.0348	2	0.0	-0.8	6179.4568	1		2.4
14	4	11	6101.6404	1		-0.8	6132.0874	1		-4.3	6189.3174	1		3.9
15	4	11	6112.2056	2	0.2	0.8	6142.8659	2	0.5	-4.5	6199.8894	1		6.3
16	4	13	6123.4709	2	0.5	0.7					6211.1685	1		14.1
17	4	13	6135.4560	2	0.6	2.2	6166.5870	2	0.4	-3.5	6223.1535	2	0.9	10.4
18	4	15	6148.1307	2	0.2	0.4	6179.5250	3	0.4	-2.3	6235.8547	2	0.8	27.6
19	4	15	6161.5360	1		-3.9	6193.2001	4	0.5	-1.0	6249.2680	2	0.0	25.2
20	4	17	6175.6265	2	1.4	1.7	6207.5765	2	0.4	-0.1				
21	4	17	6190.4703	1		-3.1	6222.7096	2	1.6	1.1				
22	4	19	6205.9573	2	0.1	0.1	6238.5168	2	1.6	-1.0	6293.4804	1		-45.8
23	4	19	6222.2602	2	0.0	-3.3	6255.1227	2	0.5	2.2	6309.8323	1		-32.1
24	4	21	6239.1321	1		2.1	6272.3561	1		2.3	6326.7174	1		-55.1
25	4	21	6256.9211	2	0.1	-2.6	6290.4551	2	0.9	8.0	6344.5030	1		-53.3
26	4	23	6275.1532	1		7.5	6309.0882	1		2.0	6362.7552	1		-44.2
27	4	23	6294.4668	2	2.8	-3.6	6328.7067	1		6.6	6382.0523	2	0.3	-39.8
28	4	25	6314.0279	2	0.7	19.6	6348.7177	1		1.9	6401.6189	2	0.3	-38.3
29	4	25	6334.9235	1		-0.2	6369.8915	1		-3.0	6422.4856	2	0.1	-28.7
30	4	27	6355.7147	1		-13.5	6391.2430	2	0.4	1.4				
31	4	27	6378.3080	2	0.5	1.4	6414.0580	2	0.5	11.4	6465.8295	2	0.0	-16.9
32	4	29					6436.6594	1		-1.9				
33	4	29	6424.6470	2	0.6	3.7	6461.1827	1		8.8				
34	4	31					6484.9655	1		-4.7				

Table 2 (continued)

I	Va	Kc	(025)	Nb	AE	0.0	(501)	Nb	AE	0.0	(115)	Nb	45	0.0
J	Ku	ĸ		IND	ΔĿ	0-L		IND	ΔĿ	0-L	L (CIII)	IND	ΔĽ	0-C
35	4	31	6473.9507	1		-0.7	6511.2909	1		1.3				
36	4	33					6536.1465	2	0.0	-15.9				
3/ 5	4	33	6062 6800	2	12	22	6002 0050	1	0.1	-13.5	6150 2660	Э	11	16
6	5	2	6066 9035	2	0.6	-2.5	6096 3077	3	0.1	1.2 1.7	6154 4865	2	0.4	-4.0
7	5	2	6071.8204	2	0.3	1.9	6101.3299	3	0.1	2.1	6159.4081	1	011	-4.5
8	5	4	6077.4379	2	0.1	1.2	6107.0679	2	0.2	0.5	6165.0360	3	1.3	-3.1
9	5	4	6083.7589	2	1.0	0.6	6113.5254	2	0.5	0.5	6171.3642	3	0.5	-4.9
10	5	6	6090.7853	2	0.6	1.6	6120.7002	3	0.3	-0.3	6178.3979	2	2.0	-5.2
11	5	6	6098.5135	2	0.9	0.2	6128.5950	2	0.4	0.7	6186.1376	3	0.6	-3.6
12	5	8	6106.9478	2	0.4	0.5	6137.2043	1	0.4	-2.2	6194.5800	2	0.3	-3.7
13	5	8	6116.0865	1	0.0	0.3	6146.5344	3	0.1	-2.9	6203.7274	3	0.8	-3.2
14	5	10	6125.9294	2	0.9	-0.8	6167 2402	3	0.5	-3.9	6213.5797	3	1.0	-2.4
16	5	12	6147 7338	2	0.5	-14	6178 8378	3	0.7	-5.7	0224.1555	5	0.5	-2.0
17	5	12	6159.6957	3	0.4	-1.0	6191.0475	2	0.3	-3.5	6247.3667	2	0.6	-1.2
18	5	14	6172.3631	2	0.1	-1.7	6203.9721	3	0.1	-6.1	6260.0388	3	0.5	-2.1
19	5	14	6185.7372	2	0.1	-2.8	6217.6217	2	1.6	-4.0	6273.4201	2	0.0	-0.2
20	5	16	6199.8221	3	1.7	0.1	6231.9880	1		-5.2	6287.5036	1		-2.2
21	5	16	6214.6101	2	1.2	-2.4	6247.0777	5	0.2	-4.3	6302.2973	3	0.5	-1.5
22	5	18	6246 2145	1		2.1	6262.8872	1	4.0	-3.5	6317.7975	2	0.8	-0.5
23 24	5	20	6263 2261	1		-3.1 -3.8	6296 6726	3	2.0	-3.5 -0.4	6350 9197	2	14	-0.5
25	5	20	6280.8542	1		-4.5	6314.6502	1	2.0	1.8	6368.5482	1		1.5
26	5	22	6299.1824	2	1.3	-3.7	6333.3439	2	0.2	1.5	6386.8739	2	0.8	-2.9
27	5	22	6318.2360	2	0.0	-4.4	6352.7680	1		4.7	6405.9261	2	0.1	2.1
28	5	24	6337.9791	1		-1.5	6372.9061	1		4.9	6425.6669	2	0.8	-4.4
29	5	24	6358.4633	1		-4.3	6393.7761	2	0.2	8.0	6446.1476	2	0.3	4.4
30	5	26	6379.6102	2	1.2	-5.3	6415.3572	2	0.2	5.6	6467.2962	2	0.8	-13.7
31 22	5	20	6401.5429	1	0.5	-3.5	6460 7014	1		12.9	6511 7620	2	1.2	7.0 24.4
32	5	28	6447 4689	2	0.5	_14 9	6484 4624	2	15	193	0311.7085	2	0.5	-54.4
34	5	30	0117.1005	2	0.0	1 1.5	6508.9670	1	1.5	27.1				
6	6	1	6096.6207	1		5.1	6126.2437	2	0.0	2.7	6184.1567	2	1.0	-2.9
7	6	1	6101.5197	2	0.0	3.4	6131.2627	1		2.7	6189.0805	3	0.5	-1.7
8	6	3	6107.1228	2	0.2	2.2	6136.9988	3	1.5	2.9	6194.7063	2	0.7	-1.7
9	6	3	6113.4318	3	0.2	2.5	6143.4488	3	0.7	0.1	6201.0351	2	0.5	-2.4
10	6	5	6120.4474	2	0.8	4.9	6150.6166	2	1.0	-1.6	6208.0697	1	0.2	-0.9
11	6	5	6136 5881	3	1.0	4.5	6167 1045	2	0.2	-1.2	6274 2489	5 1	0.2	-1.1
13	6	7	6145.7165	3	1.1	3.2	6176.4211	3	0.7	-5.0	6233.3921	2	1.2	-0.6
14	6	9	6155.5515	1		3.6	6186.4569	2	2.4	-3.9	6243.2425	1		1.1
15	6	9	6166.0890	2	1.7	0.7	6197.2051	2	1.4	-5.4	6253.7956	2	0.1	1.1
16	6	11	6177.3357	2	0.1	1.3	6208.6677	2	0.8	-6.5	6265.0532	2	1.6	1.3
17	6	11	6189.2880	2	0.2	1.4	6220.8450	2	0.8	-5.6	6277.0171	1		3.2
18	6	13	6201.9435	2	1.3	-1.2	6233.7329	2	1.2	-4.6	6289.6856	4	0.3	4.8
19	6	15	6215.3078	3	0.8	-1.5	6247.3309	3	1.5	-1.2	6303.0570	3	0.2	4.4
20	6	15	6244 1552	2	0.6	-0.5	6276 6396	1	0.5	11.6	6331 9189	3	0.5	7.0
22	6	15	6259.6356	1	0.0	0.0	6292.3336	1		13.7	6347.4085	2	0.2	8.6
23	6	17	6275.8267	2	0.1	-3.0					6363.6017	3	0.1	8.0
24	6	19	6292.7238	2	0.1	-5.1	6327.2396	1		3.7	6380.5048	2	0.1	11.3
25	6	19	6310.3277	2	0.1	-2.1					6398.1127	2	0.1	13.2
26	6	21	6328.6407	3	1.8	-1.7					6416.4262	2	0.3	14.0
27	6	21	6347.6573	3	0.5	-0.8					6435.4490	3	0.9	1/.3
20 29	6	25	6387 8181	2	0.9	-0.8					6435.1762	2	0.5	18.0
30	6	25	6408.9627	2	0.2	3.4					6496.7577	2	1.2	24.0
31	6	25	6430.8120	1		6.4					6518.6110	1		27.5
32	6	27	6453.3761	1		10.3								
35	6	29					6564.2653	1		18.2				
36	6	31					6590.1683	1		7.1				
37	6	31					6616.8085	1		8.8				
38 7	6	33	6126 7071	2	0.4	12	6166 6025	1		-4.8	6224 0026	Э	0.1	11
8	7	2	6142 4317	2	0.4	2.8	6172 3509	2	0.2	4.0	6229 7181	2	1.5	1.1
9	7	2	6148.8805	2	0.3	4.2	6178.8135	2	0.2	3.9	6236.0482	3	0.4	3.0
10	7	4	6156.0552	3	0.4	6.4	6185.9956	3	1.1	3.7	6243.0806	3	1.1	3.7
11	7	4					6193.8957	1		3.6	6250.8175	3	1.0	5.2
12	7	6					6202.5129	2	0.1	2.3	6259.2564	3	1.2	4.7
13	7	6	6180.2505	1		0.8	6211.8493	2	0.3	2.3	6268.4007	3	0.7	5.4
14	7	8	6190.1192	2	0.3	-1.3	6221.9046	1		3.1	6278.2502	2	0.3	7.0
15	7	8 10	6211 9624	2	0.4	-2.9	6244 1662	1	0.4	3.2	6300 0602	2	0.6	6.7 7.4
17	7	10	6223 9342	4	0.5	-2.0	6256 3768	2	0.4	1.9	6312 0225	2	0.8	7.4
18	7	12	6236.6115	3	1.0	-5.7	6269.3052	2	0.2	2.2	6324.6882	2	0.8	5.4
												(contin	nued on r	ext page)

Table 2 (continued)

			(025)				(501)				(115)			
J	Ка	Кс	$E(cm^{-1})$	Nb	ΔE	0-C	$E(cm^{-1})$	Nb	ΔE	0-C	\tilde{E} (cm ⁻¹)	Nb	ΔE	0-C
10	7	12	6240.0015	1		5.0	6282 0507	2	0.2	0.0	6229 0615	1		5.5
19	7	12	6264 0752	1		-5.9	6207 2172	2	0.2	0.9	6252 1292	1		0.0 2 1
20	7	14	6278 8617	2	2.2	-5.5	6312 4002	2	13	0.1	6366 0220	2	03	J.I 2 1
21	7	14	6294 3512	1	2.2	-6.3	6328 2064	2	1.5	2.6	6382 4126	2	0.5	_0.5
23	7	16	6310 5461	2	03	-5.5	6344 7313	2	0.1	44	6398 6115	2	0.5	-12
24	7	18	6327 4459	2	0.3	-3.8	6361 9709	2	0.7	13	6415 5174	2	0.2	-3.0
25	7	18	6345.0496	2	0.2	-2.4	6379.9357	2	0.1	3.8	6433.1323	3	0.4	-4.6
26	7	20	6363.3583	2	0.7	-0.3	6398.6140	1		-0.2	6451.4603	4	1.5	-3.0
27	7	20	6382.3714	1		1.8	6418.0214	1		4.9	6470.4984	1		-2.6
28	7	22	6402.0900	2	1.0	4.7	6438.1447	2	1.7	5.5				
29	7	22	6422.5138	1		8.2	6458.9878	1		5.6	6510.7266	2	1.8	7.1
30	7	24	6443.6431	1		12.3	6480.5561	1		9.9				
31	7	24	6465.4788	1		17.8	6502.8378	2	0.0	6.9				
32	7	26	6488.0195	2	1.5	23.4	6525.8435	2	0.5	6.6				
33	7	26					6549.5684	2	0.4	4.0				
34	7	28					6574.0172	2	0.2	3.9				
35	7	28					6599.1800	1		-4.3				
36	7	30					6625.0759	1		-1.2				
3/	/	30	6102 6674	1		0.1	6651.6858	1		-/.0	6270.0020		1.0	4.5
8	8	1	6182.6674	1		0.1	6213.0314	1	0.2	4./	6270.0938	4	1.0	-4.5
9	ð	1	6189.0249	1	0.6	-0.3	6219.4906	3	0.2	3.1	6276.4849	1	0.7	4.9
10	0	2	6202 8660	2	0.0	0.5	6224 5650	2	0.9	5.0 1.0	6205.5690	2	0.7	11.0
11	8	5	6212 3/07	2	0.9	-0.2	62/3 1707	2	1.5	1.0	6200 0467	2	0.5	247
12	8	5	6221 5445	1	0.5	-1.2	6252 5074	2	0.1	_36	0233.3407	2	0.5	24.7
14	8	7	6231 4518	2	02	-2.5	6262 5604	2	0.1	-17	6318 0664	2	19	-69.8
15	8	7	6242 0713	2	0.2	-43	6273 3287	3	0.1	-2.8	6328 6581	2	1.5	-42.7
16	8	9	6253.3975	2	2.1	-14.6	6284.8160	2	0.4	-3.2	6339.9506	1		-16.9
17	8	9	6265.4593	2	0.0	-6.1	6297.0224	1		-2.8	6351.9321	3	0.9	-4.6
18	8	11	6278.2310	3	0.9	-6.7	6309.9487	3	3.3	-1.0	6364.6120	3	1.7	3.5
19	8	11	6291.7292	3	6.5	-1.3	6323.5917	1		-1.0	6377.9920	2	0.7	8.7
20	8	13	6305.9583	2	1.1	12.8	6337.9528	3	3.8	-1.5	6392.0708	2	1.6	9.8
21	8	13					6353.0329	3	1.5	-1.7	6406.8535	3	0.3	12.3
22	8	15									6422.3379	2	0.3	12.3
23	8	15					6385.3506	2	1.0	-1.2	6438.5242	2	0.6	11.5
24	8	17					6402.5861	2	1.5	-2.7	6455.4131	2	0.5	10.2
25	8	17					6420.5443	2	0.3	-0.7	6473.0053	2	1.3	8.8
26	8	19					6439.2216	2	2.1	1.2	6491.2991	2	0.6	5.8
27	8	19					6458.6171	1		1.9	6510.2941	1		0.8
28	8	21					64/8./329	1		3.4	6529.9971	2	1.3	0.5
29	8	21					6499.5668	1		3.5	6550.3988	1		-4.4
3U 21	ð	23					6521.1199	1	07	2.9	05/1.5009	1		-0.1
22	0	25					6566 2957	2	0.7	2.9				
33	8	25					6500.000	2	0.2	1.0				
34	8	23					6614 5326	2	19	0.7				
35	8	27					6639.6825	1	110	-3.9				
36	8	29					6665.5577	1		-3.9				
37	8	29					6692.1445	2	0.0	-13.1				
38	8	31					6719.4605	2	2.9	-13.9				
9	9	0	6234.6720	1		1.3	6265.5118	2	0.1	2.8	6322.0188	2	1.9	12.1
10	9	2	6241.7237	1		0.4	6272.6896	2	0.1	2.6	6329.0544	3	3.1	7.5
11	9	2	6249.4840	2	0.5	2.4	6280.5861	2	1.6	3.3	6336.7980	2	1.5	7.0
12	9	4	6257.9474	1		1.8	6289.1971	3	0.5	0.5	6345.2432	4	1.9	4.1
13	9	4	6267.1189	2	0.5	3.2	6298.5281	3	1.2	-0.3	6354.3918	3	0.9	0.4
14	9	6	6276.9949	2	0.5	2.9	6308.5761	3	0.5	-2.1	6364.2459	4	0.5	-1.6
15	9	6	6287.5771	3	1.2	2.3	6319.3440	2	0.5	-2.1	6374.8022	4	0.4	-5.6
16	9	8	6298.8685	2	1.0	4.1	6330.8298	3	1.2	-2.2	6386.0641	3	1.3	-8.0
17	9	8	6310.8654	2	0.0	4.4	6343.0339	2	0.5	-2.2	6398.0294	1	1.0	-11.1
18	9	10	6323.5690	3	2.4	3.9	6355.9545	1	1.0	-4.0	6410.7008	3	1.0	-12.1
19	9	10	6336.9841	2	0.2	6.9	6369.5958	3	1.8	-3.3	6424.0722	3	0.9	-1/.2
20	9	12	6351.1042	2	0.7	0.0	6383.9599	1		1./	6438.1502	2	0.7	-19.9
21	9	12	6381 /696	2	0.3	20	0555.0554	1		-2.1	6468 4176	2	22	-22.1
23	9	14	6397 7162	2	0.2	1.8					6484 6134	3	1.0	_20.2
23	9	16	6414 6705	3	11	-2.9	6448 5776	1		_12	6501 5103	2	0.3	_23.7
25	9	16	6432.3320	1	1.1	-10.6	6466.5288	2	0.2	-1.6	6519.1123	2	2.3	-24.4
26	9	18					6485.2023	2	1.7	1.5	6537.4240	1		-19.3
27	9	18									6556.4408	3	2.0	-13.8
28	9	20					6524.7019	3	0.5	3.6	6576.1694	1		-1.4
29	9	20					6545.5276	2	1.2	2.1	6596.6031	2	0.7	10.9
30	9	22					6567.0757	1		4.0	6617.7526	2	2.8	33.5
31	9	22					6589.3394	2	0.0	2.2				
32	9	24					6612.3260	2	1.3	4.1				
34	9	26					6660.4513	2	0.1	1.8				
10	10	1	6292.6417	2	0.5	1.3	6324.0122	1		1.9				

Table 2 (continued)

I No Ke F(m ⁻¹) Nb At 0 - C F(m ⁻¹) Nb At O Nb At O State				(025)				(501)				(115)			
11 10 1 6003353 2 10 1.4 6313962 2 0.0 2.6 6376735 2 1.0 1.0 13 0 3 63083552 2 0.5 0.55 </td <td>J</td> <td>Ка</td> <td>Кс</td> <td>$E(cm^{-1})$</td> <td>Nb</td> <td>ΔE</td> <td>0-С</td> <td><i>E</i> (cm⁻¹)</td> <td>Nb</td> <td>ΔE</td> <td>0–C</td> <td><i>E</i> (cm⁻¹)</td> <td>Nb</td> <td>ΔE</td> <td>0-С</td>	J	Ка	Кс	$E(cm^{-1})$	Nb	ΔE	0-С	<i>E</i> (cm ⁻¹)	Nb	ΔE	0–C	<i>E</i> (cm ⁻¹)	Nb	ΔE	0-С
12 10 3 658.8528 2 0.5 0.5 654.0548 1 -0.4 650.5749 2 0.5 8.5 14 10 5 653.7887 1 2.2 655.88884 3 0.8 -0.3 661.5749 2 0.0 7.7 16 10 7 633.4748 1 0.0 632.1538 1 7.3 6442.6444 3 0.3	11	10	1	6300.3953	2	1.0	1.4	6331.9082	2	0.0	2.6	6387.6793	2	1.0	11.4
13 10 3 6 318.0159 2 1.5 -0.2 -0.2 -0.3 6 612.0240 2 0.5 0.3 0.612.144 2 0.5 0.3 0.61 0.7 0.7 0.612.7441 1 0.0 7 0.7 0.613.7440 1 -0.4 6328.1530 1 0.7 6438.4443 1 1 1.1 0.7 0.612.7441 1 0.4 0.328.1530 1 1.1 1.1 0.1 0.443.907.83 0.0 3.0	12	10	3	6308.8528	2	0.5	0.5	6340.5184	1		-0.4	6396.1256	3	0.5	11.0
14 10 5 6327,8874 1 2.2 6359,8894 3 0.8 -0.3 6415,1264 2 0.0 7.1 16 0 7 6387,4903 1 -0.5 6352,1503 1 2.5 6425,6844 3 0.7 7.1 18 0 9 0337,1801 2 0.3 -1.5 6425,0845 1 1.7 10.3 6448,0473 3 0.3	13	10	3	6318.0159	2	1.5	-0.2					6405.2749	2	0.5	9.8
15 10 5 6338.493 1 -0.43 6370.6633 1 0.7 6342.7844 1 -5 17 10 7 6347.744 1 -1.4 6348.484 3 1.7 11.3 6448.9075 3 0.3 3.5 18 10 6 6377.740 1 -4.43 6432.2520 1 -1.43 6448.9075 3 0.3 -2.5 20 10 11 6410.7157 2 0.2 -1.63 6453.250 1 -1.43 6537.4640 3 2.0 -2.2 0.3 -3.2 0.3 -3.2 21 10 13 6422.2282 2 0.2 -1.63 6463.200 1 -7.0 6537.4640 3 2.3 -2.6 22 10 15 -2.20 649.2701 2 0.5 -9.7 6537.4640 3 0.5 -3.2 0.5 -3.2 0.5 -3.2 0.5 -3.2 0.5 -3.2 0.5 -3.2 0.5 -3.2 0.5 -4.2 643.236	14	10	5	6327.8874	1		2.2	6359.8984	3	0.8	-0.3	6415.1264	2	0.0	7.1
16 10 7 638,743 1	15	10	5	6338.4593	1		-0.5	6370.6663	1		0.7	6425.6844	3	0.1	7.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	10	7	6349.7403	1		0.4	6382.1530	1		2.5	6436.9443	1		5.4
	17	10	7	6361.7240	1		-1.6	6394.3646	3	1.7	11.3	6448.9076	3	0.3	3.6
19 0 9 6387,8081 2 0.6 5.6 6420,8989 3 1.7 -17.3 6474,9462 3 0.9 1.3 21 10 11 6416,7157 2 0.2 -1.2.5 6450,3356 1.1 -1.2.1 6430,3772 3 1.7 -2.4 22 10 13 6442,4473 1 -2.00 6423,2563 3 1.1 -1.2.1 6533,4460 3 2.3 -2.6 24 10 15	18	10	9	6374.4143	2	0.3	-2.9	6407.2845	1		10.2	6461.5748	3	0.2	2.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	10	9	6387.8091	2	0.6	-5.6	6420.8959	3	1.7	-17.3	6474.9462	3	0.9	1.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	10	11	6401.9135	1		-4.8	6435.2560	1		-14.3	6489.0221	2	0.6	1.5
22 10 13 6452.4262 2 0.2 -10.3 6460.150 1 -10.3 6533.4344 2 0 3 -2.4 23 10 15 6443.447 1 -2.0 6439.5716 2 0.5 -9.4 6553.3322 2 1.0 -3.5 24 10 15 -2.4 6555.8730 2 0.5 -9.4 6556.3357 2 0.4 -8.8 25 10 19 - 6575.5758 1 -4.7 6566.3367 2 9.4 -8.8 26 10 19 - 638.4929 1 -0.7 6443.2869 1 -7.1 11 10 2 634.4993 1 0.5 6467.3357 2 0.4 -8.9 11 14 634.4993 1 0.5 -647.2339 1 -7.7 12 11 2 634.493 1 -2.3 6443.3869 1 1.2 12 14 4 6384.0181 1 8.6 4645.036	21	10	11	6416./15/	2	0.2	-12.5	6450.3335	3	1.1	-12.1	6503./9/2	3	1./	-2.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	10	13	6432.2282	2	0.2	-10.3	6400.1320	1		-7.0	6525 4640	2	0.3	-3.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	10	15	6448.4473	1		-20.0	6482.6404	1	0.5	-10.3	65533.4049	3	2.3	-2.0
bit 10 17 653 6,4902 2 1.3 -5.5 668 3250 2 0 -6.3 26 10 17 653 6,4902 2 0.9 -5.5 668 3250 2 0.9 -2.8 27 10 19 657 5.978 1 -4.7 6668 448 1 -7.1 11 10 21 634 4992 1 -0.7 644 7356 2 0.9 -7.3 13 11 2 6374 4992 1 0.5 640 6026 1 -2.3 6461 3868 2 0.1 2.2 14 11 2 6374 4992 1 0.5 640 67482 1 -2.3 6461 3868 2 0.1 2.2 15 11 4 6394 5900 1 5.0 6407 2510 2 1.0 6431 5900 3 0.1 3.6 3.0 1.3 1.6 6410 590 3 0.1 5.0 6477 2510 2 </td <td>24 25</td> <td>10</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td>6517 8106</td> <td>2</td> <td>1.6</td> <td>-9.7</td> <td>6560 9409</td> <td>2</td> <td>1.0</td> <td>-5.0</td>	24 25	10	15					6517 8106	2	1.6	-9.7	6560 9409	2	1.0	-5.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	10	17					6536 4902	2	0.3	-5.5	6588 2350	2	0.5	-7.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	10	17					6555 8730	2	0.9	-7.8	6607 2329	1	0.5	-8.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	10	19					6575 9798	1	0.5	_47	6626 9336	2	29	-8.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	10	19					0373.3730	•		1.7	6647 3357	2	0.4	-9.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	10	21									6668.4448	1	011	-7.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	10	21					6640.6026	1		-4.3				
12 11 2 6364.9932 1 0.5	11	11	0					6388.4929	1		-0.7	6443.7869	1		1.7
13 11 2 6374,1558 2 3.1 3.6 6406,342 1 -2.3 6461,3868 2 0.1 4.2 15 11 4 6384,0181 1 1.8 6416,4852 3 0.3 0.5 6471,2390 3 0.1 3.0 16 11 6 6405,8610 1 2.6 6438,7355 2 0.5 1.1 6493,0600 3 0.3 0.1 6506,0239 2 0.9 3.5 18 11 8 6430,202 2 0.0 643,87355 2 0.5 637,6392 2 0.9 3.5 18 11 8 6433,902 1 3.4 647,4966 2 0.5 637,1639 3 2.0 5.1 11 10 6478,2901 2 0.2 3.0 6491,865 1 1.6 4.4 23 11 12 6488,294 2 0.7 1.2 657,397 1 5.3 6663,3498 1 -2.20 23 11	12	11	2	6364.9932	1		0.5					6452.2352	1		3.2
14 11 4 6384.0181 1 1.8 6416.4852 3 0.3 0.5 6471.2399 1 3.2 15 11 4 6384.5900 1 2.6 6432.5355 2 0.5 1.1 6481.7980 3 0.8 4.2 17 11 6 6405.8610 1 4.2 6450.9363 3 0.3 0.1 6505.0239 2 0.9 3.5 18 11 8 6433.502 2 0.9 6463.8562 3 0.7 0.5 3.4 6531.0939 2 0.5 3.4 6531.5939 3 2.0 5.1 21 11 10 6472.7979 2 0.2 2.2 6591.5937 1 527.3987 1 52 23 11 14 6521.4093 1 -1.8 663.4089 1 663.4089 1 7.3 24 11 14 6521.4093 1 -7.6 6458.9186 1 66	13	11	2	6374.1558	2	3.1	3.6	6406.4342	1		-2.3	6461.3868	2	0.1	4.2
15 11 4 6394,5900 1 5.0 6427,2510 2 1.0 0.4 6431,7860 3 0.1 3.6 11 6 6407,8408 1 2.6 6438,7355 2 0.3 0.1 6693,00239 2 0.9 3.5 18 11 8 6430,502 2 2.0 0.9 6463,8567 3 0.7 0.5 5.4 6531,0592 1 -0.9 20 11 10 6453,0019 2 0.2 3.0 6491,8544 2 0.3 5.8 6534,1399 3 2.0 5.1 21 11 0 6458,0019 2 0.2 2.2 - 6559,9170 1 4.4 23 11 12 6488,284 2 0.7 1.2 - 6559,9170 1 - 7.3 24 11 14 6521,4093 1 -4.7 6554,4125 1 1.6 6563,4089 1 - 7.3 25 11 14 6426,3176	14	11	4	6384.0181	1		1.8	6416.4852	3	0.3	0.5	6471.2399	1		3.2
16 11 6 6405,8610 1 2.6 6438,7355 2 0.5 1.1 6493,0600 3 0.8 4.2 11 8 6440,5202 2 2.0 0.9 6463,8562 3 0.7 0.5 6517,6932 2 0.9 4.6 11 10 6443,9102 1 3.4 6477,4967 2 0.5 3.4 6531,6932 1 -0.9 21 11 10 6472,7979 2 0.2 2.0 4.4 6555,39770 1 4.4 23 11 12 6488,2984 2 0.7 1.2 6554,4557 1 15.3 6663,4967 1 5.4 23 11 14 6521,4093 1 -4.7 6556,4555 1 15.3 6663,4697 1 7.3 24 11 14 6521,4093 1 -4.7 6556,4555 1 16.8 6626,0612 1 7.3 27 11 14 6426,3176 1 -7.6 6458,9163 1 </td <td>15</td> <td>11</td> <td>4</td> <td>6394.5900</td> <td>1</td> <td></td> <td>5.0</td> <td>6427.2510</td> <td>2</td> <td>1.0</td> <td>0.4</td> <td>6481.7980</td> <td>3</td> <td>0.1</td> <td>3.6</td>	15	11	4	6394.5900	1		5.0	6427.2510	2	1.0	0.4	6481.7980	3	0.1	3.6
17 11 6 6417.8408 1 4.2 6450.9363 3 0.3 0.1 6505.0239 2 0.9 3.5 18 11 8 6430.5202 2 0.9 6463.8562 3 0.7 0.5 6517.6592 2 1.0 4.6 19 11 8 6430.5002 1 -0.9 3.4 6477.4967 2 0.5 3.4 6531.0592 1 -0.9 20 11 10 6472.7979 2 0.2 2.2 6555.3987 1 5.2 21 11 12 6548.2984 2 0.7 1.2 6551.3884 2 0.8 6.8 23 11 14 6524.4093 1 -4.7 6556.4655 1 16.8 6626.0612 1 7.3 27 11 16 -7.6 6458.9186 1 -0.4 6513.5346 1 -25.9 28 11 18 1.6 -0.4 6513.5346 1 -22.0 <t< td=""><td>16</td><td>11</td><td>6</td><td>6405.8610</td><td>1</td><td></td><td>2.6</td><td>6438.7355</td><td>2</td><td>0.5</td><td>1.1</td><td>6493.0600</td><td>3</td><td>0.8</td><td>4.2</td></t<>	16	11	6	6405.8610	1		2.6	6438.7355	2	0.5	1.1	6493.0600	3	0.8	4.2
18 11 8 6430,5020 2 2.0 0.9 6463,8562 3 0.7 0.5 6517.6932 2 1.0 4.6 9 11 10 6453,0019 2 0.2 3.0 6491,8544 2 0.3 5.8 6545,1399 3 2.0 5.1 21 11 10 6472,7979 2 0.2 2.2 6575,3987 1 5.2 23 11 12 6468,2984 2 0.7 1.2 6575,3987 1 5.2 23 11 14 6504,5015 1 -1.8 6591,64655 1 16.3 6662,6612 1 7.3 24 11 14 6521,4093 1 -6.4 6564,4155 1 16.8 6626,0612 1 7.3 28 11 16 6426,3176 1 -7.6 6458,9186 1 -0.4 6513,346 1 -25.9 12 1 6426,3176 1 -7.6 6458,9186 1 -0.4 6513,346 1 <td>17</td> <td>11</td> <td>6</td> <td>6417.8408</td> <td>1</td> <td></td> <td>4.2</td> <td>6450.9363</td> <td>3</td> <td>0.3</td> <td>0.1</td> <td>6505.0239</td> <td>2</td> <td>0.9</td> <td>3.5</td>	17	11	6	6417.8408	1		4.2	6450.9363	3	0.3	0.1	6505.0239	2	0.9	3.5
19 11 8 6443.9102 1 3.4 6477.4967 2 0.5 3.4 6531.0592 1 0.9 21 11 10 6485.0019 2 0.2 3.0 6491.8544 2 0.3 5.8 6551.9170 1 444 21 11 12 6488.2984 2 0.7 1.2 6559.15842 2 0.8 6559.15842 2 0.8 688.2984 2 0.7 1.2 6591.5842 2 0.8 688.2984 2 0.7 1.2 6591.5842 2 0.8 688.2984 2 0.8 688.2984 2 0.4 6.8 6663.3498 2 1.4 8.7 21 1 6426.3176 1 -7.6 6458.9186 1 -0.4 6513.5346 1 -22.0 13 12 1 6426.3176 1 -7.6 6479.2951 1 -0.4 6513.5346 1 -22.0 14 12 5 6467.1768 1 1.5 552.5661 2 0.3	18	11	8	6430.5202	2	2.0	0.9	6463.8562	3	0.7	0.5	6517.6932	2	1.0	4.6
20 11 10 6458.0019 2 0.2 3.0 6491.8544 2 0.3 5.8 6545.1399 3 2.0 5.1 21 11 12 6472.797 2 0.2 2.2 6555.99170 1 5.2 23 11 12 6504.5015 1 -1.8 6539.18642 2 0.8 6.8 24 11 14 6521.4093 1 -4.7 6556.4655 1 16.8 6662.0612 1 7.3 711 16 -7.6 6458.9186 1 -0.4 6613.3498 2 1.4 8.7 728 11 18 - -6648.2514 1 2.9 6522.6872 2 0.2 -23.3 13 12 1 6426.3176 1 -7.6 6458.9186 1 -0.4 6513.5346 1 -22.0 15 12 1 6426.3176 1 .5 .5 .5 .5 .5 .5 .5 .5 .6 .679.1486 2 0.2	19	11	8	6443.9102	1		3.4	6477.4967	2	0.5	3.4	6531.0592	1		-0.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	11	10	6458.0019	2	0.2	3.0	6491.8544	2	0.3	5.8	6545.1399	3	2.0	5.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	11	10	6472.7979	2	0.2	2.2					6559.9170	1		4.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	11	12	6488.2984	2	0.7	1.2					65/5.398/	1	0.0	5.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	11	12	6504.5015	1		-1.8		1		15.0	6591.5842	2	0.8	6.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 25	11	14	6521.4093	1		-4.7	6574 4125	1		15.5	6626.0612	1		5.4 7.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	11	14					0374,4123	1		10.0	6663 3498	2	14	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	11	18									6683 0489	1	1.4	10.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	12	1	6426.3176	1		-7.6	6458.9186	1		-0.4	6513.5346	1		-25.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	12	1	6435.4752	2	0.2	-6.3	6468.2514	1		2.9	6522.6872	2	0.2	-23.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	12						6478.2951	1		-0.7	6532.5421	1		-22.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	12						6489.0593	2	0.3	-1.3	6543.1032	2	0.4	-17.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	12	5	6467.1768	1		1.5								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	12	5	6479.1486	2	0.2	0.4	6512.7454	3	1.8	1.7	6566.3328	1		-12.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	12						6525.6661	2	0.3	4.4	6579.0040	2	0.6	-8.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	12										6592.3771	1		-5.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	12		6519.2946	2	0.5	3.9	6553.6618	2	1.8	10.5	6606.4547	4	0.4	-1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	12		6534.0851	2	0.0	5.8					6621.2336	2	0.4	1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	12										6636.7165	1		4.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	12										6652.9038	3	1.0	10.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	12										6669.7920	1		13.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	12										6705 6770	2	0.1	22.0
13130 033.2372 1 -0.3 14132 6545.2834 1 -6.1 15132 6556.0513 1 -1.7 16134 6567.5338 3 0.3 -0.3 19136 6606.2946 2 0.2 11.7 20138 6620.6487 1 14.3 14141 6617.4075 1 -13.8 15141 6628.1740 1 -8.9	20 12	12	0					6525 2272	1		6.2	0705.0779	2	0.1	22.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	13	2					6545 2024	1		-0.3				
	14	12	2					6556 0512	1		-0.1				
	16	13	4					6567 5338	3	03	-0.3				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	13	6					6606 2946	2	0.2	11.7				
14 14 1 6617.4075 1 -13.8 15 14 1 6628.1740 1 -8.9	20	13	8					6620.6487	1	0.2	14.3				
15 14 1 6628.1740 1 -8.9	14	14	1					6617.4075	1		-13.8				
	15	14	1					6628.1740	1		-8.9				

Notes: Nb is the number of observed transitions used to determine the upper energy level $E(\text{cm}^{-1})$. ΔE is the *rms* dispersion (in 10^{-3} cm^{-1} unit), the (O–C) is the difference (in 10^{-3} cm^{-1} unit) between the experimentally determined value and the value calculated from the effective Hamiltonian model.

energy levels. In the same manner than for the $2v_1 + v_2 + 4v_3$ band, we have searched for the transitions of the $4v_1 + 3v_2$ band and finally succeeded in observing 32 transitions (21 levels) with $K_a = 0$ and 1 (Table 3). One transition to the 13_6 energy level was also assigned due to the mixing with the 13_7 level of the (0 2 5) state.

Despite several attempts, only one transition of the $3v_1 + 2v_2 + 2v_3$ band could be assigned: it results from an intensity transfer from the 13_8 (1 1 5) level to the 13_7 (3 2 2) level.

2.4. Total fit

In order to improve the fits for the $(4 \ 3 \ 0)$ and $(2 \ 1 \ 4)$ states, it has been necessary to include an anharmonic resonance between the $K_a = 1-2$ levels of the $(2 \ 1 \ 4)$ state and the $K_a = 3-4$ levels of the $(4 \ 3 \ 0)$ state.

The total fit involving the six interacting vibrational states and all the above resonance interactions (Fig. 2) was then undertaken. The fit was made difficult by the fact that resonance couplings lead

Fig. 4. (a) Perturbation of the $K_a = 4$ of the (1 1 5) state illustrated by the mixing coefficients with (5 0 1), (2 1 4) and (3 2 2) states. Note that all the calculated levels are considered for this plot. (b) Perturbation of the $K_a = 5$ of the (2 1 4) state illustrated by the mixing coefficients of the $K_a = 6$ series of the (5 0 1) state and the $K_a = 4$ series of the (1 1 5) state. Note that this figure, at the contrary of Fig. 3, corresponds to all calculated levels, despite the fact that only the 20 $_5$ and 21 $_5$ levels of the (2 1 4) state have been determined.

to a 50–50% mixing for a number of levels, therefore a very small change in the Hamiltonian parameters can result in an alternation of vibrational assignments. The introduction of a few additional couplings corresponding to acute resonances was also found nec-

essary. This is in particular the case of the anharmonic resonance between the K_a = 7 (1 1 5) levels and the K_a = 9 (0 2 5) levels.

The complexity of the fit is illustrated in Fig. 4 where typical examples of mixing coefficients are given: Fig. 4a shows the various perturbations of the K_a = 4 series of the (1 1 5) by the (5 0 1), (2 1 4) and (3 2 2) states. Fig. 4b shows the case of the K_a = 5 series of the (2 1 4) state in interaction with the (5 0 1) and (1 1 5) states.

The fitted values of the Hamiltonian parameters are listed in Table 5. The total number of observed transitions, the range of quantum numbers and the *rms* statistics are summarized in Table 4. An *rms* value of 9.52×10^{-3} cm⁻¹ is obtained from the simultaneous fit of 1888 transitions wavenumbers. This is at least four times larger than the experimental accuracy but still satisfactory considering the complexity of the interaction scheme. Note that in our previous analysis of the corresponding bands of ¹⁶O₃ [2,5], we had to face similar difficulties to construct a satisfactory effective model accounting for the observations. The band by band *rms* is also included in Table 4. It is not surprising to see that the highest *rms* value (15.38 × 10⁻³ cm⁻¹) is relative to the (2 1 4) state in strong interaction with the (0 2 5), (5 0 1), (1 1 5) and (4 3 0) states.

The energy levels derived from observed transitions for A and B type bands are listed in Tables 2 and 3, respectively, where we give for each J, K_a values the number of transitions and the (Obs.–Calc.) value.

3. Line intensities

In addition to the line centres, the MultiFit [6] code provided the intensities with their experimental uncertainties. From the 1888 assigned transitions, 721 intensities corresponding to unblended lines have been selected. The number of selected transitions is given in Table 6 for each of the five bands as well as the maximum values of the *J* and K_a quantum numbers corresponding to the used intensities. A simultaneous fit of these experimental line intensities using the parameters of the effective transition moment operator for the five bands leads to the *rms* deviation of 17.4%. It is consistent with the estimated experimental accuracy discussed in Ref. [1]. The band by band *rms* given in Table 6 shows that, as usual [1,2,5], the intensities are more difficult to be reproduced for B-type bands than for A-type bands.

Fig. 5. Example of agreement between the observed and calculated spectra of ${}^{18}O_3$ in the region of the *P* branch of the $2v_2 + 5v_3$ band. *Upper panel:* simulation using the effective Hamiltonian model (Table 5) and the effective transition moment operator (Table 6). Note that the experimental values of the energy levels were used to calculate the line positions (see Text). *Lower panel:* CW-CRDS spectrum. The sample pressure was about 20 Torr.

153

Table 3Rovibrational energy levels derived from observed transitions for the two A_1 vibration states (2 1 4) and (4 3 0).

			(214)				(430)			
J	Ка	Кс	$E(cm^{-1})$	Nb	ΔE	0-C	$E(cm^{-1})$	Nb	ΔE	0-C
12	0	12	6101.3424	1		-29.1				
14	0	14	6119.9277	1		-15.3				
16	0	16	6141.1616	1		-3.1				
18	0	18	6165.0297	1		6.2	6133.6182	1		22.9
20	0	20	6191.5280	2	0.2	11.3	6161.5928	1		-4.9
22	0	22	6220.6608	1		5.0	6191.5835	2	0.8	2.9
24	0	24	6252.4034	2	0.1	22.3	6224.2953	1		6.2
26	0	26	6286.8461	2	0.3	9.4	6259.6966	2	1.2	12.3
28	0	28	6324.0295	2	0.4	10.1	6297.7510	2	5.1	2.9
30	0	30	6363.3772	2	0.9	-0.2	6338.4807	2	0.4	11.8
32	0	32	6405.9078	2	0.5	-18.9	6381.8553	1		15.3
34	0	34	6451.0412	2	1.1	-18.7	6427.9083	1		29.8
36	0	30	6498.8708	2	0.4	-4.1				
38 15	0	38	6549.4224	1		29.7				
15	1	15	6147 0757	1	0.0	-6.2				
10	1	15	6152 4912	2	0.0	-6.2	6122 2262	2	0.7	6.0
17	1	17	0155.4012	2	0.4	0.0	0122.2285	2	0.7	0.0
10	1	10	6178 4800	2	11	45	6148 0555	2	0.4	37
20	1	19	0170.4030	2	1.1	ч.5	0140.0555	2	0.4	-5.7
20	1	21	6206 2449	1		-15	6176 6125	2	0.6	-9.8
22	1	21	6231 5754	2	07	03	0170.0125	2	0.0	5.0
23	1	23	6236.3264	2	0.3	40.0	6207.8881	1		-10.6
24	1	23	6264.9133	2	0.7	-0.2		-		
25	1	25	6269.3938	3	0.7	21.7	6241.8663	2	0.3	-9.7
26	1	25	6300.9445	2	0.1	0.0				
27	1	27	6305.0887	2	2.4	11.3	6278.5347	2	0.6	-7.2
28	1	27	6339.6553	2	0.2	1.1				
29	1	29	6343.4926	2	0.7	14.7	6317.8776	2	1.3	-5.6
30	1	29	6381.0665	2	0.6	14.7				
31	1	31	6384.4608	1		-19.9	6359.8818	1		-4.9
32	1	31	6425.2914	2	0.5	77.7				
33	1	33	6428.2127	2	0.1	-19.7	6404.5326	1		-6.5
34	1	33								
35	1	35	6474.6744	3	0.7	-8.4	6451.8241	2	2.2	-3.4
36	1	35	6520.1776	1		32.2				
37	1	37	6523.8302	3	0.1	8.8	6501.7283	1		-14.7
38	1	37	6572.3492	2	0.5	49.9				
13	2	12	6121./408	2	0.0	-16.8				
14	2	12	C1 42 0 477	4	0.5	0.0				
15	2	14	0142.0477	4	0.5	-9.0				
10	2	16	6165 1258	2	03	-58				
18	2	16	6179 9381	1	0.5	2.1				
19	2	18	6190 9749	3	01	2.1				
20	2	18	6208.0729	1		10.3				
21	2	20	6219.5727	3	1.0	2.9				
22	2	20	6239.1242	2	0.4	17.4				
23	2	22	6250.9214	4	1.0	5.0				
24	2	22	6273.0653	2	1.3	19.3				
25	2	24	6285.0041	4	0.6	0.2				
26	2	24	6309.8760	1		22.0				
27	2	26	6321.8195	2	0.8	-6.0				
28	2	26	6349.5247	2	1.0	13.5				
29	2	28	6361.3650	3	0.6	-11.4				
30	2	28	6391.9905	2	1.2	4.6				
31	2	30	6403.6453	2	1.0	-10.2				
32	2	30	6437.2565	2	0.1	-6.8				
33	2	32	6448.6827	2	0.3	6.0				
36	2	34	6536.1276	2	1.3	-16.2				
3/	2	36	6546.6618	1	0.4	11.4				
38 17	2	30	6170.2614	2	0.4	7.1				
18	2	15	6102 1015	1		-4.4				
10	2	15	6205 3850	2	0.4	-2.9				
20	3	17	6219 9095	2	1.2	_2.7				
21	3	19	6234 3416	2	1.2	-2.5				
22	3	19	6250 5552	1		-2.0				
23	3	21	6266.1224	3	1.5	-6.8				
24	3	21	6284.1511	2	1.0	-2.7				
25	3	23	6300.7313	3	0.3	-8.3				
26	3	23	6320.7177	2	0.3	-4.0				
27	3	25	6338.1557	3	0.3	-14.4				
28	3	25	6360.2697	1		-3.9				
									(continue	d on next page)

Table 3 (continued)

			(214)				(430)			
J	Ка	Кс	$E (cm^{-1})$	Nb	ΔE	0-C	$E (cm^{-1})$	Nb	ΔE	0–C
29	3	27	6378.3983	3	1.8	-16.2				
30	3	27	6402.8053	2	0.4	-6.5				
31	3	29	6421.4462	2	0.8	-20.4				
32	3	29	6448.3194	1		-5.9				
33	3	31	6467.3062	3	0.4	-16.0				
34	3	31	6496.8234	2	0.1	-3.8				
35	3	33	6515.9803	4	1.3	-1.4				
36	3	33	6548.2325	1		-6.7				
37	3	35	6567.4940	3	0.1	26.0				
21	4	18	6253.3536	3	1.8	11.5				
22	4	18								
23	4	20	6285.1977	3	0.2	7.6				
24	4	20								
25	4	22	6319.9046	2	2.1	5.7				
26	4	22								
27	4	24	6357.4753	4	0.9	1.5				
28	4	24	6377.5721	1		-0.3				
29	4	26	6397.9200	2	0.0	-0.3				
30	4	26	6419.6057	2	0.6	0.5				
31	4	28	6441.2466	2	1.3	1.3				
32	4	28	6464.5884	1		5.0				
33	4	30	6487.4669	1		6.9				
34	4	30	6512.5364	1		9.3				
35	4	32	6536.6041	2	0.0	17.3				
20	5	15	6263.0272	1		14.0				
21	5	17	6277.9158	2	0.5	-10.7				
13	6	8					6181.9075	1		-6.8

Notes: Nb is the number of observed transitions used to determine the upper energy level E (cm⁻¹). ΔE is the rms dispersion (in 10⁻³ cm⁻¹ unit). (O–C) is the difference (in 10⁻³ cm⁻¹ unit) between the experimentally determined value and the value calculated from the effective Hamiltonian model. The only one "observed" level 13_7 (3 2 2) at 6309.199 cm⁻¹ is not reported in this table.

Table 4					
Statistics for the rovibrationa	al transitions included	l in the fit of the	parameters of	the effective Ham	niltonian.

Vibrational state	(025)	(430)	(501)	(214)	(115)	Total
Band centre (cm ⁻¹)	5984.44	6011.84	6013.05	6047.10	6072.13	
J _{max}	35	37	38	38	35	
K _{a max}	12	6	14	5	12	
Number of transitions	507	32	566	184	599	1888
Number of levels	283	21	313	92	307	1016
$rms (\times 10^3 cm^{-1})$	5.75	9.37	7.16	15.38	11.30	
Total $rms(\times 10^3 \text{ cm}^{-1})$			9.52			

Table 5

Spectroscopic parameters of the six vibrational states (in $\rm cm^{-1}$).

Parameter	(025)	(430)	(501)	(214)	(115)	(322)
E ^{VV}	5984.4391 ₀ (13)	6011.836 ₂ (13)	6013.0482 ₀ (13)	6047.1007 ₀ (76)	6072.1322 ₀ (13)	6112.22 ₄ (34)
A - (B + C)/2	2.71299 ₄ (12)	0.28880_1 (46)	2.732072 ₃ (84)	$2.70450_3(55)$	2.708283 ₀ (95)	2.851 ₂ (19)
(B + C)/2	0.3516666 ₈ (28)	0.362396 ₆ (70)	0.3586486 ₈ (45)	$0.35120_1(35)$	0.3514641 ₃ (55)	$0.35596_2(13)$
(B-C)/2	$0.024159_1(10)$	0.020443 ₈ (85)	$0.021889_3(16)$	0.022769 ₇ (11)	0.0230734 (12)	0.032824 (41)
$\Delta_K \times 103$	$0.1905_3(19)$	2.54 ₇ (71)	$0.1750_8(12)$	g	0.1891 ₇ (17)	$3.35_2(28)$
$\Delta_{IK} \times 10^5$	$-0.406_{1}(22)$	4.761 (14)	-0.248_{8} (15)	-3.5445 (80)	$-0.454_{9}(10)$	g
$\Delta_{\rm I} \times 10^6$	$-0.3729_4(51)$	1.983 ₁ (57)	0.12320 (74)	$-0.361_{5}(48)$	g	g
$\delta_{\rm I} \times 10^6$	0.1097 ₅ (52)	0.114 ₃ (35)	0.14586 (93)	0.33544 (49)	0.0699 ₁ (62)	g
$\delta_{\rm K} \times 10^5$	g	g	0.401 (16)	2.7198 (80)	0.6627 (92)	g
$H_{ m K} imes 10^7$	0.959 ₃ (93)	g	0.403 ₀ (42)	g	1.473 ₀ (84)	g
$H_{\rm KJ} imes 10^7$	-0.220_2 (20)	g	$-0.119_3(14)$	g	g	g

 $\begin{array}{l} C_{y/2}^{115,322}=0.0098_7(35)\\ C_{011}^{115,322}=0.00675_1(46) \end{array}$

 $\begin{array}{l} A_{200}^{115,025}=0.0007220_5(94)\\ A_{200}^{214,430}=0.0010589_5(48) \end{array}$

 $C_{011}^{214,115} = -0.001508_7(45)$

 $C_{y/2}^{501,430} = 0.012767_5(88)$

 $C_{011}^{V/2} = 0.001687_6(95)$ $C_{011}^{L15,430} = -0.001687_6(95)$ $C_{12}^{V30025} = 0.07057_1(16)$ $C_{12}^{V14501} = 0.03051_1(11)$ Note that, as there is no A₀₀₀ anharmonic coupling terms, the band centres coincide with E^{VV}, g – fixed to the ground state values [10]. The grey background corresponds to a

Table 6

Integrated band intensities S_v in (cm/molecule at 296 K) and parameters of the effective transition moment operator (in Debye). Note. The rms deviation applies to the quantity $(I_{obs.}-I_{calc.})|I_{obs.}$

Operator	Parameters	Value	Number of transitions (J max, Ka max)	rms deviation (%)
		$2v_2 + 5v_3$ band $S_v = 2$.	$63 \times 10^{-24} \text{ cm/molecule}$	
φ_z	$d_1 (\times 10^4)$	0.3927 ₅ (49)	169 (33, 12)	18.0
$\{ \boldsymbol{\varphi}_{z}, \mathbf{J}^{2} \}$	$d_2 (\times 10^8)$	-0.272_4 (40)		
$\{\varphi_z,J_z^2\}$	$d_3 (\times 10^7)$	0.3663 (48)		
		$4v_1 + 3v_2$ band $S_v = 1$.	11×10^{-25} cm/molecule	
$\varphi_{\rm x}$.	$d_1 (\times 10^4)$	0.21482 (71)	15 (34, 1)	27.6
$\{\varphi_z, iJ_v\}$	d ₅ (×10 ⁶)	$-0.300_2(14)$		
· •)		$5v_1 + v_3$ band $S_v = 3.7$	72×10^{-24} cm/molecule	
			187 (33, 13)	15.0
φ_z	$d_1 (\times 10^4)$	0.45487 (26)		
		$2v_1 + v_2 + 4v_3$ band S	$v_v = 7.78 \times 10^{-25} \text{ cm/molecule}$	
φ_{x}	$d_1 (\times 10^5)$	0.359 ₂ (41)	84 (38, 4)	20.5
$\{\varphi_z, iJ_v\}$	$d_5 (\times 10^6)$	-0.80329 (75)		
		$v_1 + v_2 + 5v_3$ band S_v	= 3.94×10^{-24} cm/molecule	
φ_z	$d_1 \; (imes 10^4)$	0.5003 ₆ (33)	266 (32, 11)	16.7
$\left\{ \varphi_{z}, J^{2} \right\}$	$d_2 (\times 10^8)$	-0.555 ₉ (36)		

Fig. 6. Same as Fig. 5 in the region of the *P* branch of the $5v_1 + v_3$ band.

Fig. 7. Same as Fig. 5 in the region of the *R* branch of the $v_1 + v_2 + 5v_3$ band.

Fig. 8. Overview comparison of the CW-CRDS and calculated spectra of ¹⁸O₃ between 5930 and 6080 cm⁻¹. Upper panel: simulation using the effective Hamiltonian model (Table 5) and the effective transition moment operator (Table 6). Note that the experimental values of the energy levels were used to calculate the line positions (see Text). Lower panel: CW-CRDS spectrum. The pressure of ¹⁸O₃ was about 20 Torr.

4. Line-lists and comparisons between observed and calculated spectra

Using the Hamiltonian parameters (Table 5) and the effective transition moment parameters (Table 6), the spectrum was simulated. The intensity cut-off was fixed to 2×10^{-28} cm/molecule (at 296 K). As in Refs. [2,7], the calculated energy levels have been replaced by their experimental values (Tables 2 and 3), keeping calculated intensities. This choice allows providing a complete line list and to preserve the experimental accuracy on the line positions which is not achieved by the EH modelling. The full line list is attached as Supplementary material. The number of transitions is 731, 839, 842, 318 and 62 for $2v_2 + 5v_3$, $v_1 + v_2 + 5v_3$, $5v_1 + v_3$, $2v_1 + v_2 + 4v_3$ and $4v_1 + 3v_2$ respectively, leading to a total of 2795 transitions including 3 transitions of $3v_1 + 2v_2 + 2v_3$ band. Adding the calculated intensities of all the transitions for each band provides the sum of intensities S_{ν} reported in Table 6.

Figs. 5-7 show examples of agreement between the CRDS and calculated spectra in selected spectral regions of the $2v_2 + 5v_3$, $5v_1 + v_3$ and $v_1 + v_2 + 5v_3$ bands. Note that the large number of unassigned lines observed in Fig. 5 is probably due to a hot band of ${}^{18}O_3$ or a band of the ${}^{18}O^{18}O^{16}O$ or ${}^{18}O^{16}O^{18}O$ isopotomers present in our sample. Fig. 8 shows an overview comparison for the whole investigated region.

5. Conclusion

This work has led to the first analysis of five weak bands of ¹⁸O₃ between 5930 and 6080 cm⁻¹ using the CW-CRDS technique. Despite a very complex scheme of interactions, 1888 transitions have been assigned and could be satisfactorily reproduced using effective Hamiltonian and transition moment operators. 1016 energy levels were determined from the observations with accuracy better than 2×10^{-3} cm⁻¹. A full list of 2795 transitions has been calculated. It allows generating a synthetic spectrum in good agreement with the observations.

Acknowledgments

This work is partly supported by CNRS in the frame of program "LEFE ChAt". We acknowledge the support from a collaborative program between CNRS-France and RFBR-Russia (PICS Grant No. 05-05-22001). The support from IDRIS computer centre of CNRS France and Champagne-Ardennes regional computer centre for global calculations is also acknowledged.

Appendix A. Supplementary data

Supplementary data for this article are available on ScienceDirect (www.sciencedirect.com) and as a part of the Ohio State University Molecular Spectroscopy Archives (http://msa.lib.ohiostate.edu/jmsa_hp.htm).

References

- [1] A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De-BackerBarilly, A. Barbe, E. Starikova, S.A. Tashkun, VI.G. Tyuterev, J. Mol. Spectrosc. (2009), doi:10.1016/ j.jms.2009.02.012.
- [2] A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, S. Kassi, A. Campargue, J. Mol. Spectrosc. 246 (2007) 22-38.
- [3] E.N. Starikova, A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, S.A. Taskhun, S. Kassi, A. Campargue, Chem. Phys. Lett. 470 (2009) 28-34.
- A. Chichery, Thesis, Univ. Reims, 2000.
- A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, A. Campargue, D. Romanini, S. [5] Kassi, J. Mol. Spectrosc. 242 (2007) 156-175.
- [6] J.J. Plateaux, L. Régalia, C. Boussin, A. Barbe, J. Quant. Spectrosc. Radiat. Transfer 68 (2001) 507-520.
- A. Campargue, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, S. Kassi, Phys. [7] Chem. Chem. Phys. 10 (2008) 2925-2946.
- [8] VI.G. Tyuterev, S.A. Tashkun, P. Jensen, A. Barbe, T. Cours, J. Mol. Spectrosc. 198 (1999) 57 - 76.
- VI.G. Tvuterev, S.A. Tashkun, H. Seghir, SPIE Proc. Ser. 5311 (2004) 164–175. [10] http://www.ozone.iao.ru/.

CW-Cavity Ring Down spectroscopy of ¹⁸O₃. Part 3:

Analysis of the 6490-6900 cm⁻¹ region

and overview comparison with the ${}^{16}O_3$ main isotopologue.

E. Starikova^{1,2}, A. Barbe^{*1}, Vl.G. Tyuterev¹, M.-R. De Backer-Barilly¹, S. Kassi³ and A. Campargue³

1. Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, UFR Sciences Exactes et Naturelles, BP 1039-51687 Reims Cedex 2, France

2. Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Av. Akademicheskii, Tomsk 634055, Russia

3. Laboratoire de Spectrométrie Physique, UMR CNRS 5588, Université Joseph Fourier, BP 87-38402 Saint Martin d'Hères Cedex, France

Running head: CRDS of ¹⁸O₃ between 6490 and 6900 cm⁻¹ Number of Pages: 35 Number of Figures: 6 Number of Tables: 13

* Corresponding author: e-mail: alain.barbe@univ-reims.fr

Keywords: Ozone; ${}^{18}O_3$; ${}^{16}O_3$; Cavity Ring Down Spectroscopy; Effective Hamiltonian model; Potential function

Abstract

This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the ¹⁸O₃ isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm⁻¹. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M-R. De-Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, VI.G. Tyuterev, J. Mol. Spectrosc, (2009) doi: 10.1016 / j.jms. 2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, VI.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009), doi: 10.1016 / j.jms. 2009.03.013], the effective operators approach was used to model the spectrum in the 6200-6400 cm⁻¹ and 5930-6080 cm⁻¹ region, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490-6900 cm⁻¹ upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490-6700 cm⁻¹ region, where 1555 rovibrational transitions were assigned to three A-type bands: $3v_2 + 5v_3$, $5v_1 + v_2 + v_3$ and $2v_1 + 3v_2 + 3v_3$ and one B-type band: $v_1 + 3v_2 + 4v_3$. The corresponding line positions were reproduced with an *rms* deviation of 18.4×10^{-3} cm⁻¹ by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region - 6700-6900 cm⁻¹ - 389and 183 transitions have been assigned to the $v_1 + 2v_2 + 5v_3$ and $4v_1 + 3v_2 + v_3$ A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the $v_1 + 2v_2 + 5v_3$ band were reproduced with an *rms* deviation of 7.3×10^{-3} cm⁻¹ by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the $4v_1 + 3v_2 + v_3$ band (*rms* = 5.7×10^{-3} cm⁻¹).

The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.

The results of the analyses of the whole 5930-6900 cm⁻¹ spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both ¹⁸O₃ and ¹⁶O₃ (average difference on the order of 1 cm⁻¹) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the ¹⁸O₃ and ¹⁶O₃ band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.

1. Introduction

Our two previous reports on the CW-Cavity Ring Down Spectroscopy (CRDS) of ¹⁸O₃ have covered the 5930-6400 cm⁻¹ range. Part1 and Part 2 have been devoted to the analyses of the 6200-6400 [1] and 5930-6080 cm⁻¹ regions [2], respectively. No bands were identified in the 6080-6220 cm⁻¹ and 6400-6490 cm⁻¹ spectral intervals. The present report is devoted to the remaining 6490-6900 cm⁻¹ region which completes the full domain presently accessible with our CW-CRDS spectrometer. Obviously, as these bands correspond to the highest wavenumber range recorded so far, the transitions become very weak. The observations are also made difficult because of overlapping with strong H₂O and CO₂ lines [3] present as impurities in the CRDS cell. Nevertheless, this spectral region presents specific interests. Due to the vibrational isotopic shifts on the order of 340 cm⁻¹ [4], we have access to bands which were not observed for the ¹⁶O₃ main isotopologue [5] as they are located above the high energy limit of the used CRDS spectrometer. In addition, the interpretation of the fact that the $3v_2 + 5v_3$ band was observed while the $7v_3$ remained undetected in the CRDS spectrum of ¹⁶O₃ spectra was left open in Ref [5]. This question may be clarified by the study of the corresponding bands of ¹⁸O₃.

The reader is referred to Ref. [1] for the description of the experimental setup, of the theoretical approach and of the procedure used for the rovibrational assignments.

After the presentation of the analyses of the 6490-6900 cm⁻¹ range, we will compare and discuss the resonance schemes and band strengths for the ${}^{18}O_3$ and ${}^{16}O_3$ isotopologues in the whole 5930-6900 cm⁻¹ domain.

2. Rovibrational analysis

Table 1 lists the 24 upper levels predicted between 6490 and 6900 cm⁻¹. They correspond to 13 B-type bands and 11 A-type bands from the vibrational ground state. More details concerning the potential energy surface (PES), the methods of calculations and the normal mode decomposition of the vibrational eigenstates can be found in Ref. [4]. In the case of B₁ upper vibration states, the band centre is defined as the $J \rightarrow 0$ limit of the energy level values and the wave function expansion corresponds to the lowest rovibrational levels allowed by the nuclear spin statistics.

a. The 6490-6700 cm⁻¹ region.

The overview of the ¹⁸O₃ CRDS spectrum in the 6490-6650 cm⁻¹ region is presented in Fig. 1. In the 6490-6700 cm⁻¹ region, eight A-type bands and six B-type bands are predicted (Table 1). Four of them could be identified: the $3v_2 + 5v_3$, $5v_1 + v_2 + v_3$ and $2v_1 + 3v_2 + 3v_3$ A-

type bands and the $v_1 + 3v_2 + 4v_3$ B-type band. The vicinity of 14 vibrational states made the elaboration of the EH model particularly difficult. The four observed bands may be affected by many resonance interactions between these four "bright" states and with the ten other "dark" states. The difficulty is increased by the accidental resonance of the $K_a = 7$ series of the (035), (134) and (063) vibrational states (see below). Fig. 2 summarizes the set of resonances which has been obtained at the final stage of the analysis.

a.1. The $3v_2 + 5v_3$ and $v_1 + 3v_2 + 4v_3$ bands

We considered first the strong $3v_2 + 5v_3$ A type band centered near 6560 cm⁻¹. As described in our first publication [1], the first assignments were obtained by using the ASSIGN code [6] together with an EH model corresponding to an isolated vibrational state. The main parameters of this model (band centre and *A*, *B*, *C* rotational constants) were calculated from the potential energy surface (PES) [7, 8] using variational calculations and contact transformations [9]. Using iterative extrapolations for the upper energy values, we could extend the rotational assignments up to J = 20 for the $K_a = 1$ -6 and $K_a = 8$, 9 series. After numerous attempts, transitions corresponding to the $K_a = 7$ series were identified but their line positions are strongly shifted from their unperturbed values (up to 4 cm⁻¹ for large *J* values) and their intensities are observed much smaller than expected. This large perturbation is due to multiple resonances which are examined below.

The $K_a = 2-3$ levels are affected by a strong Coriolis interaction with the $K_a = 1-2$ levels of the (134) state. The inclusion of the suitable interaction parameters in the EH model helped to assign transitions of the $v_1 + 3v_2 + 4v_3$ band up to J = 20 and $K_a = 5$.

In addition, a Coriolis resonance was found to perturb the $K_a = 4$ series of the (035) state by the $K_a = 3$ levels of the (106) state, with a maximum effect for J = 26. The corresponding mixing coefficients are plotted in Fig. 3a. This resonance also affects the $K_a = 3$ series of the (035) state. The resulting intensity transfer made it possible to assign one transition of the $v_1 + 6v_3$ band near 6518.6 cm⁻¹ and to obtain the corresponding value of the 26₃ energy level of the (106) "dark" state.

a.2. The $5v_1 + v_2 + v_3$ and $2v_1 + 3v_2 + 3v_3$ bands

Some levels of the $K_a = 6$ series of the (511) state are perturbed by Coriolis resonance interaction with $K_a = 5$ levels of the (440) state. In addition, a strong Coriolis resonance affects the $K_a = 1-5$ series of the (511) state which are coupled with $K_a = 2-6$ energy levels of the (134) state (Fig. 3b). The $2v_1 + 3v_2 + 3v_3$ band could be easily assigned up to J = 17 and $K_a = 4$. Nevertheless, the $K_a = 1$ levels of the (233) state are perturbed by the $K_a = 2$ levels of the (440) state, the mixing coefficients being larger than 40% for odd J values (Fig 3c). Due to the difficulty to correctly model this perturbation, four transitions reaching the 4_1 and 21_1 rovibrational levels of the (233) state were excluded from the fit of the EH parameters.

a.3. Effective Hamiltonian model involving eight interacting states

A calculation of the rovibrational energy levels of the 11 states predicted in the 6490-6700 cm⁻¹ region was performed, in order to check all possible resonance interactions. In fact, only eight of them were necessary to account for all observed resonance perturbations (see Fig. 2). The (134) state which is the upper state of transitions extending in the wide 6494-6614 cm⁻¹ region is the main responsible of the resonance interactions between all these vibrational states. As the (440) "dark" state is coupled with the (511) and (233) states, it was necessary to elaborate a EH model involving all the interacting states and to fit the full set of unweighted transitions, keeping the Hamiltonian parameters of the ground state fixed. The obtained EH parameters are reported in Table 2.

It became clear that the strong perturbation of the $K_a = 7$ series of the $3v_2 + 5v_3$ band, is due to a triple resonance interaction between the (035), (134) and (063) vibrational states. The corresponding mixing coefficients are presented in Fig.3d for the $K_a = 7$ series. In such situation where rovibrational states are strongly mixed, we had to face the difficulty of the vibrational reassignment of these perturbed levels during the fitting process. Finally, the transitions with J = 1-12 were assigned to the $6v_2 + 3v_3$ band ($K_a = 7$) and those with J = 13-30 to the $v_1 + 3v_2 + 4v_3$ band ($K_a = 6$). The maximum values of the rotational quantum numbers included in the fit are given for each state in Table 3 together with the statistics of the fit. The observed rovibrational energy levels for the four B₁ states are presented in Table 4 while those of the (134) A1 state are given in Table 5. In order to improve the modelling of the full set of 875 energy levels, some new resonances were introduced between three subsets of states $\{(035)/(134)/(063)/(106)\}$, $\{(511)/(134))/(440)\}$ and $\{(233)/(440)\}$, resulting in smaller perturbations (Fig 2). The achieved root mean square deviation of the (Obs.-Calc.) values is 18.4×10^{-3} cm⁻¹ for 1551 rovibrational transitions up to J = 48. This value is larger than those obtained at lower energy [1,2] and exceeds by one order of magnitude the experimental uncertainty [1]. It should nevertheless be considered as satisfactory considering the complexity of the interaction system, in particular the occurrence of a triple resonance interaction which is very sensitive to small changes of the Hamiltonian parameters.

In order to obtain the dipole transition moment parameters, the intensities of 392 well isolated lines were obtained by a line profile fitting. This number is relatively reduced as the congestion of the spectrum is such that many lines are blended. The number of selected transitions is given in Table 6 for each of the four observed bands, as well as the maximum values of the *J* and K_a quantum numbers corresponding to the fitted intensities. A simultaneous fit of these experimental line intensities using the parameters of the effective transition moment operator for the four bands leads to an *rms* deviation of 20.2%. It is consistent with the estimated experimental accuracy discussed in Ref. [1]. The integrated band intensities S_V of the $3v_2 + 5v_3$, $v_1 + 3v_2 + 4v_3$, $5v_1 + v_2 + v_3$ and $2v_1 + 3v_2 + 3v_3$ bands are also included in Table 6. They correspond to the sum of the intensities of all the transitions reaching the experimentally determined energy levels with calculated intensities above a cut off value of 2×10^{-28} cm/molecule corresponding to the detection limit.

Using the obtained dipole moment parameters, the full line list has been calculated. As in our previous reports [1, 4], the calculated line positions were based on the experimentally derived energy values and not on the EH calculated values. Fig. 4 shows an example of agreement between the CRDS and calculated spectra in the 6560-6563.3 cm⁻¹ spectral interval corresponding to the *R* branch of $3v_2 + 5v_3$. The assignment of the highest transition is indicated and the transitions of the $v_1 + 3v_2 + 4v_3$ band are marked by asterisks.

b. The $6700-6900 \text{ cm}^{-1}$ region

By comparison with the predictions of Table 1, the two A-type bands observed in this region were assigned to the $v_1 + 2v_2 + 5v_3$ and $4v_1 + 3v_2 + v_3$ bands.

b.1. The $v_1 + 2v_2 + 5v_3$ band near 6796 cm⁻¹

• Transitions reaching upper rotational levels up to J = 30 and $K_a = 9$ were assigned for this band (Table 7). Two perturbations have been identified. The first one concerns the $K_a = 4$ series perturbed by a Coriolis coupling with the $K_a = 5$ series of the (054) vibrational state. For even J values of the $K_a = 3$ series, we could assign transitions up to J =24 only. The corresponding mixing coefficients are displayed in Fig. 5a (calculated energy levels were used for J = 24-30 values). The second perturbation affects the $K_a = 1$, J even levels of the (125) state. It is due to a Coriolis resonance with $K_a = 2$ levels of the (026) state (Fig. 5b). The large perturbation, corresponding to the 19₇ level of the (125) state is not yet identified. The EH parameters and the rovibrational energy levels derived from the observed transitions are reported in Table 8 and Table 9, respectively. A fit of 67 selected transition intensities leads to the dipole moment parameters reported in Table 10. The EH (Table 8) and transition moment parameters (Table 10) were used to generate the list of 451 transitions given as Supplementary Materials. As usual, line positions were adjusted according to the experimental value of the energy levels (Table 9). Fig. 6 shows an example of agreement between the observed and synthetic spectra in the region of the head of the R branch.

• *b.2. The* $4v_1 + 3v_2 + v_3$ *band near* 6825 cm⁻¹

This very weak band corresponds to the most excited vibrational state of ozone observed so far in high resolution spectra. The analysis was made difficult by the numerous overlappings of ¹⁸O₃ lines with strong lines of the various ¹⁸O enriched isotopologues of water and carbon dioxide. In addition, the P branch transitions with J larger than 19 are superimposed with the compressed R branch of the $v_1 + 2v_2 + 5v_3$ band which prevented a confirmation of the rotational assignments by using ground state combination differences (GSCD) relations. The assignments were straightforward for K_a values smaller than 7, that is to say for the strongest transitions. Only the $K_a = 4$ series was found slightly perturbed by Coriolis resonance interaction with the $K_a = 3$ series of the (502) (maximum mixing coefficient of 7.8% for J = 19). An *rms* value of 5.6×10^{-3} cm⁻¹ was achieved for the (Obs-Calc) deviations of 183 line positions (109 energy levels). The corresponding statistics and EH parameters are reported in Table 7 and Table 11, respectively. A fit of 72 selected line intensities with $J_{\text{max}} = 26$ leads to the parameters reported in Table 10. The experimentally derived energy levels of the (431) state are given in Table 12. A list of 246 transitions reaching the "observed" levels was calculated using the EH parameter values (Tables 10 and 11).

b.3. The $2v_1 + 5v_3$ (II) band

The (205) state was found dominant in the normal mode expansion of the B₁ state at 6272.27 cm⁻¹ reported in Ref. [1]. Table 1 shows that a second state with (205) dominant character is predicted in our region at 6712 cm⁻¹. The observation of the corresponding $2v_1 + 5v_3$ (II) band would be particularly interesting as the (205) and (007) states belong to the same polyad coupled by Darling-Denison resonance [10] and as the $7v_3$ band has not been identified in the CRDS spectrum of ¹⁶O₃ (see below). In fact, the ¹⁸O₃ spectrum shows near 6717 cm⁻¹ an absorption structure similar to a compressed *R* branch of an A-type band in agreement with the prediction. Unfortunately, our attempts to find *P* branch transitions connected by GSCD relations with transitions of this hypothetic *R* branch remained unsuccessful.

3. Comparison between observed and predicted values for ¹⁸O₃ and ¹⁶O₃

a. Band centers

The results obtained from the analysis of the CRDS spectra of ${}^{16}O_3$ [5] and ${}^{18}O_3$ between 5900 and 7000 cm⁻¹ have confirmed the excellent accuracy of the band centres predicted from the PES of Refs. [7,8], obtained using either global variational calculations or contact transformation [9]. The theoretical predictions of the ${}^{18}O_3$ band centres have been compared in Ref. [4] to the values derived from the CRDS measurements. The resulting Table 2 of this reference includes 14 values, four of them corresponding to B-type bands and ten to A-type bands. The *rms* deviation of the (Obs-Calc) values is 1.1 cm⁻¹. All along our studies, the predictions relative to the "dark" states were used to identify resonance interactions perturbing the observed bands and to elaborate suitable EH models. The interaction schemes relative to ${}^{16}O_3$ and ${}^{18}O_3$ were often found similar but different *J*, *K*_a series are affected by perturbations. This is a consequence of both the difference of the rotational constants which are roughly in a 16/18 ratio and of the irregular variations of the vibrational isotopic shifts [4].

The corresponding *A*, *B* and *C* rotational constants have been accurately predicted from the same PES using contact transformations [9]. The preliminary results presented in Reference [11] show a very good agreement with the observations for almost all known vibration states. A full comparison of the rotational constants for ${}^{18}O_3$ or ${}^{16}O_3$ will be published separately [12].

b. Confirmation of the assignment of the $3v_2 + 5v_3$ band of ${}^{16}O_3$

The comparison of the experimental band centre (6556.817 cm⁻¹) with the predicted values listed in Table 1 suggests that the considered upper level has (035) as dominant contribution in the normal mode basis. Considering that the difference (about 25 cm⁻¹) with the centre of the 7v₃ band predicted at 6532 cm⁻¹ is much larger than the average errors of the predictions (about 1 cm⁻¹ for both ¹⁸O₃ and ¹⁶O₃), an assignment of the level at 6556.817 cm⁻¹ to the (007) state seems unlikely. No band was detected around the predicted 7v₃ band neither in ¹⁸O₃ nor in ¹⁶O₃ spectra [5]. This suggests that the $3v_2 + 5v_3$ band is much stronger than the 7v₃ band. This result contrasts with the observations at lower energy where the v₃, $3v_3$ and $5v_3$ bands were found to be the strongest bands with $\Delta \boldsymbol{u} \equiv \sum_{i} |\Delta \boldsymbol{u}_i| = 1$, 3 and 5, respectively,

these bands being also much stronger than the bands with larger Δu values.

In the case of ${}^{16}O_3$, the energy difference between the predicted $3v_2 + 5v_3$ and $7v_3$ band centres was only 13 cm⁻¹. Our assignment of the ${}^{16}O_3$ level at 6895 cm⁻¹ [5] to a mixture

between the (035) and (063) states and not to the (007) state was not definitely established. As ${}^{16}O_3$ and ${}^{18}O_3$ spectra have most of the time similar shape in intensity distribution (see Fig. 2 of Ref [5]), this work seems to confirm our previous (035)/(063) assignment of the considered ${}^{16}O_3$ band.

The vibrational assignment depends on the PES shape which is very difficult to characterize reliably in this high energy range approaching 80% of the dissociation energy. But up to now no other assignment could be proposed from all the available potential energy functions of the ozone molecule, including the most recent global *ab initio* PES [18].

c. Band strengths

In our analyses of the CRDS spectra of ¹⁸O₃ and ¹⁶O₃ [1, 2, 5, 13-16], we have derived the corresponding Hamiltonian and transition moment parameters for each set of interacting states. They have been used to generate line lists provided as Supplementary Materials, the line positions being generally (see relevant references) adjusted according to the experimentally determined energy levels. The sum of the line intensities, S_V , depends on the truncation of the line lists fixed either by using an intensity cut off or maximum values of the J and K_a quantum numbers. In our various publications, some S_V values corresponded to the calculated line lists while others were limited to the transitions reaching derived energy levels. In order to provide a meaningful comparison between the ¹⁸O₃ and ¹⁶O₃ band intensities, we have recalculated all the line lists and then S_V values using the same cut-offs: $I_{min} = 2 \times 10^{-28}$ cm/molecule and $J_{max} = 40$ and, $K_{a max} = 14$. The S_V values obtained for the A-type bands are reported in Table 13 together with the values of the principal transition moment parameter d_1 .

The main result of the comparison is that, in the considered range, the ¹⁸O₃ band intensities are generally lower than those of ¹⁶O₃, the differences being significant compared to the experimental uncertainties (see Ref. [1]). Only, the $2v_1 + 5v_3$ band of ¹⁸O₃ has intensity larger than the corresponding band of ¹⁶O₃. This is probably due to an intensity transfer from $2v_1 + 5v_3$ to $4v_1 + 3v_2 + v_3$ through the anharmonic resonance in ¹⁶O₃. This latter band has been detected only in the ¹⁶O₃ spectrum and the sum of the ¹⁶O₃ band strengths $S_V (2v_1 + 5v_3)$ $+ S_V (4v_1 + 3v_1 + 5v_3) = 3.83 \times 10^{-24}$ cm/molecule should be compared to $S_V (2v_1 + 5v_3) = 3.04$ $\times 10^{-24}$ cm/molecule for ¹⁸O₃

The B-type band comparison is not really meaningful as only three bands of this type have been observed and they do not correspond to the same normal mode labels.

4. Conclusion

This third contribution devoted to the 6490-6900 cm⁻¹ region has completed the analysis of the ¹⁸O₃ CRDS spectra between 5930 and 6900 cm⁻¹. The observed bands were divided into three interacting sets. In the 6490-6700 cm⁻¹ region, a complex interaction scheme involving eight vibrational states has been elaborated to account for 1551 rovibrational transitions belonging to four bands. The obtained *rms* deviation value (18.4 × 10^{-3} cm⁻¹) largely exceeds the experimental uncertainty as a consequence of the large number of possible resonances. An interesting result of the analysis is the observation of the band near 6557 cm⁻¹ assigned as the $3v_2 + 5v_3$ band while the $7v_3$ band is apparently too weak to be observed. The same unexpected situation was encountered in the CRDS spectrum of the main isotopologue, ¹⁶O₃ [5]. The assignment of the $3v_2 + 5v_3$ ¹⁶O₃ band which is confirmed by the ¹⁸O₃ results, relied on the mixing coefficients [4] computed via contact transformations [9] from the ozone PES of Refs. [8,9]. Though the predictions of band centres proved to be in general quite good, further studies of the potential and dipole moment functions of the ozone molecule are necessary to better understand such anomalies in ozone absorption band intensities in the vicinity of the dissociation limit (about 8600 cm⁻¹ [10]).

In the higher energy part of the investigated region, the very weak $v_1 + 2v_2 + 5v_3$ and $4v_1 + 3v_2 + v_3$ A-type bands were analysed. As a consequence of their weakness and of spectral congestion, the range of *J* and *K_a* quantum numbers is reduced. Nevertheless, these two bands are particularly interesting as they could not be observed in the case of ¹⁶O₃ and their upper levels are the highest vibrational states observed so far at high resolution in the ozone molecule.

Over the whole 5930-6900 cm⁻¹ region investigated by CRDS, we have been able to assign 5250 transitions of ¹⁸O₃. They provide accurate experimental information on 27 vibrational states (16 bright states and 11 dark states) while a total of 48 bands are predicted in the same region. The obtained results relative to the ¹⁶O₃ and ¹⁸O₃ isotopologues will help to characterize the ozone PES in the vicinity of the dissociation energy. The comparison of the strengths of the corresponding bands of ¹⁶O₃ and ¹⁸O₃ will help to characterize the variation of the dipole transition moments and the resonance intensity borrowing with respect to homogeneous isotopic substitutions.

Acknowledgments

This work is partly supported by CNRS in the frame of program "LEFE ChAt". We acknowledge the support from the Groupe de Recherche International SAMIA (Spectroscopy of Molecules of Atmospheric Interest) between CNRS-France, RFBR-Russia and CAS-China.
We are grateful to S. Tashkun for a fruitful collaboration in the software development as described in Ref. [1]. The support from IDRIS computer centre of CNRS France and Champagne-Ardennes regional computer centre for global calculations is also acknowledged.

Supplementary data for this article are available on ScienceDirect (<u>www.sciencedirect.com</u>) and as a part of the Ohio State University Molecular Spectroscopy Archives (http://msa.lib.ohio-state.edu/jmsa_hp.htm)

REFERENCES

- A. Campargue, A. Liu, S. Kassi, D. Romanini, M-R. De-Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc, (2009) doi: 10.1016 / j.jms. 2009.02.012.
- [2] E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, S. Kassi, A. Campargue, A.W. Liu, S. Kassi, J. Mol. Spectrosc. (2009), doi: 10.1016 / j.jms. 2009.03.013.
- [3] B.V. Perevalov, S. Kassi, D. Romanini, V.I. Perevalov, S.A. Tashkun, A. Campargue, J. Mol. Spectrosc. 238 (2006) 241-255.
- [4] E.N. Starikova, A. Barbe, M-R De Backer-Barilly, Vl.G. Tyuterev, S.A. Taskhun, S. Kassi, A. Campargue, Chem. Phys. Letter, 470 (2009) 28-34.
- [5] A. Campargue, A. Barbe, M-R De Backer-Barilly, Vl.G. Tyuterev, S. Kassi, Phys. Chem. Chem. Phys.10, (2008) 2925-2946.
- [6] A. Chichery, Thesis Univ. Reims 09/20/2000.
- [7] VI.G. Tyuterev, S.A. Tashkun, P. Jensen, A. Barbe, T. Cours, J. Mol. Spectrosc. 198 (1999) 57-76.
- [8] Vl.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, P. Jensen, T. Cours, A. Barbe, M. Jacon, Chem. Phys. Lett. 316 (2000) 271.
- [9] VI.G. Tyuterev, S.A. Taskhun, H. Seguir, SPIE Proceeding Series 2205 (1994) 188-191.
- [10] http://www.ozone.iao.ru/
- [11] E. Starikova, M-R De Backer-Barilly, Vl.G. Tyuterev, A.Barbe, A. Campargue, A. Liu, S. Kassi, S.A. Tashkun, ASA proceedings, Reims, sept. 2008, and <u>http://asa.univ-reims.fr/</u>22
- [12] Vl.G. Tyuterev et al, in preparation.
- [13] M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, D. Romanini, B. Moeskops, A. Campargue, J. Mol. Struct. 780-781 (2006) 225-233.
- [14] S. Kassi, A. Campargue, M.-R. De Backer-Barilly, A. Barbe, J. Mol. Spectrosc. 244 (2007) 122-129.
- [15] A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue, D. Romanini, S. Kassi, J. Mol. Spectrosc. 242 (2007) 156-175.
- [16] A. Campargue, S. Kassi, D. Romanini, A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, J. Mol. Spectrosc. 240 (2006) 1-13.
- [17] A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, S. Kassi, A. Campargue, J. Mol. Spectrosc. 246 (2007) 22-38.
- [18] R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererova, M.S.C. Farantos, J. Chem. Phys. 116 (2002) 9749.

Figure caption

Fig. 1

Overview of the experimental spectrum of ${}^{18}O_3$ in the 6490-6650 cm⁻¹ spectral range, after removal of the absorption lines corresponding to impurities. This Figure corresponds to 7 successive recordings with different diode laser, about 30 cm⁻¹ wide each. The arrows indicate the band centers.

Fig. 2

Scheme of the various resonances involved in the effective Hamiltonian model (see text for details). The full and dotted lines correspond to the "bright" and "dark" states respectively, while the full and dotted arrows represent anharmonic (Anh) and Coriolis (C) couplings, respectively. The K_a values for the series of levels perturbed by accidental resonances are indicated.

Fig. 3

Mixing coefficients (%) of EH wave functions due to various resonance interactions. Only levels corresponding to observed transitions are considered.

a. (106) state into the (035) state for the $K_a = 2, 3, 4$ series of the (035) state.

b. (134) state into the (511) state for the $K_a = 1, 3, 4$ series of the (035) state.

c. (440) state into the (233) state for the $K_a = 1$ series of the (233) state.

d. $K_a = 7$ series of the (063) and $K_a = 6$ of the (134) states into the $K_a = 7$ series of the (035) state.

Fig. 4

Example of agreement between the observed and calculated spectra of ¹⁸O₃ in the region of the *R* branch of the $3v_2 + 5v_3$ band and the *P* branch of the $v_1 + 3v_2 + 4v_3$ band. The highest transition of the $3v_2 + 5v_3$ band is indicated and transitions of the $v_1 + 3v_2 + 4v_3$ band are marked with asterisk.

Upper panel: simulation using the effective Hamiltonian model (Table 2) and the effective transition moment operator (Table 6). The line positions were adjusted according to the "experimental" values of the energy levels (see Text)

Lower panel: CW-CRDS spectrum. The sample pressure was about 20 Torr.

Fig. 5

Mixing coefficients (%) induced by various resonance interactions for the (125) vibrational state.

a. (054) state into the (125) state for the $K_a = 3$ (*J* even), 4 series of the (125) state. For the $K_a = 3$ series, all the calculated levels are included in this plot.

b. (026) state into the (125) state for the $K_a = 1$ (*J* even), 2 (*J* odd) of the (125) state. For the $K_a = 2$ series, all the calculated levels are included in this plot.

Fig. 6

Example of agreement between the observed and calculated spectra of ¹⁸O₃ in the region of the *R* branch of the $v_1 + 2v_2 + 5v_3$ band. The highest transition is indicated.

Upper panel: simulation using the effective Hamiltonian model (Table 8) and the effective transition moment operator (Table 10). The line positions were adjusted according to the "experimental" values of the energy levels (see Text)

Lower panel: CW-CRDS spectrum. The sample pressure was about 20 Torr.

Table captions

Table 1

Theoretical predictions of band centres between 6500 and 6900 cm^{-1} and corresponding normal mode assignments.

Table 2

Spectroscopic parameters (cm^{-1}) of the EH model in the region 6490-6700 cm⁻¹.

Table 3

Statistics for the rovibrational transitions included in the EH fit of the six vibrational states corresponding to observations. Statistic of the fit of 1551 rovibrational transitions.

Table 4

Rovibrational energy levels derived from observed transitions for the three B_1 vibration states (035)/(063), (233) and (511).

Table 5

Rovibrational energy levels derived from observed transitions for the A_1 symmetry state (134).

Table 6

Integrated band intensities S_V (in cm/molecule at 296 K) and parameters of the effective transition moment operator (in Debye).

Table 7

Statistics for the rovibrational transitions included in the fit for the (125) and (431) states.

Table 8

Spectroscopic parameters of the three vibrational states involved in the fit of the (125) state (in cm^{-1}).

Table 9

Rovibrational energy levels derived from observed transitions for the B_1 vibration state (125).

Table 10

Integrated band intensities S_V (in cm/molecule at 296 K) and parameters of the effective transition moments (in Debye) for the $v_1 + 2v_2 + 5v_3$ and $4v_1 + 3v_2 + v_3$ bands.

Table 11

Spectroscopic parameters of the two vibrational states involved in the fit of the (431) state (in cm^{-1}).

Table 12

Rovibrational energy levels derived from observed transitions for the B_1 vibration state (431).

Table 13

Comparison between the sum of transition intensities (S_V) for A-type bands of the ¹⁸O₃ and ¹⁶O₃ isotopologues.

			1 able 1				
Band cen	tre (cm^{-1})		Three ma	jor normal	mode contr	ibutions ^a	
calc_1 ^b	$calc_2^c$	P1(%)	W1	P2(%)	W2	P3(%)	W3
		A_1 u	pper vibrati	on states			
6522.7123	6524.2000	46	$(270)_0$	40	$(162)_0$	4	$(054)_0$
6573.1212	6573.8532	46	$(106)_0$	28	$(502)_0$	9	$(304)_0$
6591.8328	6592.7322	32	$(134)_0$	26	$(224)_0$	11	$(422)_0$
6600.4580	6599.0366	40	$(270)_0$	31	$(162)_0$	12	$(054)_0$
6634.3141	6633.3990	56	$(440)_0$	22	$(332)_0$	4	$(026)_0$
6704.7576	6704.2996	40	$(332)_0$	24	$(440)_0$	15	$(026)_0$
6761.0587	6760.2222	81	(610) ₀	8	$(412)_0$	4	$(502)_0$
6764.0283	6764.1266	29	$(054)_0$	26	$(252)_0$	22	$(162)_0$
6790.7694	6789.9236	31	$(026)_0$	25	(314) ₀	8	(116) ₀
6820.1637	6819.5957	76	$(190)_0$	20	$(082)_0$	1	$(280)_0$
6844.5877	6844.6411	41	$(502)_0$	31	$(304)_0$	13	$(700)_0$
6864.3370	6864.8926	25	$(054)_0$	15	$(360)_0$	10	$(026)_0$
6870.0289	6869.4378	20	$(054)_0$	15	$(026)_0$	14	$(360)_0$
		B_1 up	per vibratio	on states d			
6530.8951	6532.3513	61	$(007)_0$	25	$(403)_0$	7	$(601)_0$
6546.0432	6543.2884	59	$(063)_0$	14	$(171)_0$	10	$(261)_0$
6557.4851	6559.3122	37	$(035)_0$	13	$(323)_0$	12	$(125)_0$
6610.4845	6609.9962	69	$(511)_0$	16	(313)0	6	$(007)_0$
6644.2301	6642.1493	35	$(233)_0$	12	$(323)_0$	10	$(125)_0$
6688.0241	6690.3923	30	$(261)_0$	28	$(153)_0$	19	(091)0
6701.9857	6702.1464	79	(091) ₀	7	$(153)_0$	6	$(261)_0$
6712.5045	6713.3849	35	$(205)_0$	20	$(601)_0$	18	(007) ₀
6795.3118	6796.6223	38	$(125)_0$	16	(431) ₀	15	(413)0
6804.5885	6803.0953	48	(261) ₀	18	(153) ₀	10	$(045)_0$
6827.7437	6825.7470	38	(431)0	20	(323)0	11	$(233)_0$

Tabla 1

^{*a*} Columns Pn's indicate the mixing coefficients (in %) of Ψ^{eff} of the lowest allowed rovibrational state in the harmonic normal mode basis. Columns Wn's indicate the corresponding vibration normal mode quantum numbers $(\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3)_0$, *n* is the order of the contribution. The subscript "0" of $(\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3)_0$ means the normal mode representation.

^b Global variational predictions from the potential function V^{M} of Ref. [7] in internal coordinates (r_{1}, r_{2}, θ) .

^c Non-empirical effective Hamiltonian predictions derived from the potential function of Ref [8] in normal mode coordinates q_1,q_2,q_3 using 8th order Contact Transformation [9]. Band centres highlighted in bold correspond to the EH analysis presented in this work. The grey background

corresponds to "dark" perturber states. ^d Symmetry, nuclear spin statistics, and $J \rightarrow 0$ limit considerations are discussed in [4].

Table	2
-------	---

Parameter	(063)	(035)	(106)	(134)	(270)	(511)	(440)	(233)
E^{VV}	6547.99 ₅ (19)	6556.7869 ₀ (28)	6573.402 ₈ (25)	6592.6614 ₀ (56)	6600.372 (p)	6611.0390 ₀ (34)	6633.2449 (52)	6642.8973 ₀ (34)
A - (B + C)/2	2.9018 ₉ (40)	2.74105 ₈ (19)	2.636 (p)	2.73000 ₈ (80)	3.049 (p)	2.74942 ₄ (16)	2.93626 ₁ (33)	2.77358 ₇ (22)
(B+C)/2	0.3499854 (65)	0.3482970 ₀ (99)	0.351 (p)	0.347587 ₇ (20)	0.352 (p)	0.356458 ₂ (15)	0.36179 ₂ (12)	0.350355 ₀ (28)
(B-C)/2	0.021021 ₈ (29)	0.0241914 (19)	0.023 (p)	$0.023230_5(15)$	0.024 (p)	0.021718 ₆ (25)	0.02161 ₆ (52)	0.022745 ₈ (55)
$\Delta_K \times 10^3$	g	0.21137 (13)	g	0.214 ₀ (32)	g	g	g	0.1713 ₃ (28)
$\Delta_{JK} \times 10^5$	g	-0.257 ₂ (13)	g	0.717 ₅ (81)	g	0.982 (16)	g	0.792 ₉ (74)
$\Delta_J \times 10^6$	g	0.3968 (12)	g	0.5865 (20)	g	0.370 ₃ (19)	g	0.145 ₆ (55)
$\delta_J \times 10^6$	g	0.76 ₀ (12)	g	$0.058_0(55)$	g	0.123 ₃ (14)	g	0.495 ₅ (67)
$\delta_{K} \times 10^{5}$	g	0.37 ₆ (17)	g	-0.2607 (79)	g	$-0.26_8(24)$	g	-10.495 (73)
$H_K \times 10^7$	g	0.172 ₄ (17)	g	g	g	g	g	g
$H_J \times 10^{10}$	g	g	g	$0.600_5(64)$	g	g	g	g

$A_{000}^{035,063} = 0.519_6 \ (11)$	$C_{011}^{511,134} = 0.007654_3 \ (84)$
$A_{020}^{035,063} = 0.000235_7 \ (18)$	$C_{011}^{511,106} = 0.01396_9 (51)$
$A_{200}^{511,035} = 0.000514_2 \ (24)$	$C_{011}^{233,134} = 0.00666_6 \ (31)$
$C_{011}^{134,035} = 0.009099_8 \ (55)$	$C_{011}^{233,440} = 0.02770_6 \ (44)$
$C_{011}^{106,035} = 0.00302_9 \ (11)$	$C_{011}^{233,270} = 0.00245_0 \ (12)$

(p) - fixed to theoretical values [11] predicted from the potential energy function [7]; g - fixed to the ground state values [10]. The grey backgrounds correspond to "dark" perturber states. E^{VV} is the diagonal vibrational matrix element involved in EH, which does not coincide with band centres (Table 3) in case of anharmonic vibrational coupling.

Vibrational state	$(063)^{a}$	(035)	(134)	(511)	(233)	Total
Band centre (cm ⁻¹)	6547.964	6556.817	6592.66	6611.03	6642.89	
J_{min}, J_{max}	7-12	1-37	8-48	2-35	1-34	
K _{a max}	7	12	6	6	9	
Number of transitions	11	574	352	255	364 ^b	1555 ^c
Number of levels	6	310	162	164	233	875
Total rms($\times 10^3$ cm ⁻¹)			18.40			

Table 3

3		
$0 < \partial v \le 10$	1055 transitions	68.0%
$10 < \delta v \le 20$	293 transitions	18.9%
$20 < \delta v \le 50$	162 transitions	10.4%
$50 < \delta v < 100$	35 transitions	2.2%
$100 < \delta v < 165$	6 transitions	0.4%

Fit statistics

 $\delta v = |v_{obs} - v_{calc}| \times 10^3 \text{ cm}^{-1}$

^a One series of lines originally assigned to the series $K_a = 7$ of the (035). This series was separated into two parts during fitting process. The transitions with $J = 7 \div 12$ were assigned to the (063) state and those with $J = 13 \div 30$ to the (134) state consequently.

^b Four transitions of the $2v_1 + 3v_2 + 3v_3$ band were excluded from the fit (see Text).

^c Plus one transition of the $v_1 + 6v_3$ band observed due to an intensity borrowing from the (035) state.

Table 4

				(035)				(233)				(511)		
J	Ka	Kc	$E (\rm cm^{-1})$	Nb	ΔE	0 - C	$E (\rm cm^{-1})$	Nh	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nh	ΔE	0 - C
1	0	1	6557 5141	1		-14	6643 6081	1		11.7				
3	0	3	6560 9944	2	07	-1.7	6647 1039	2	18	62	6615 2000	2	0.2	-13.5
5	0	5	6567 2440	2	0.7	-1.1	6653 30/15	2	0.2	6.8	0015.2777	2	0.2	-15.5
7	0	7	6576 2446	1	0.5	-1.0	6662 4510	2	0.2	0.0 5.4	6630 0105	2	0.1	15.1
0	0	0	6597 0572	1		0.9	6674 2455	2	0.0	5.4 2.7	6642 0225	2	0.1	-13.1
9	0	9	0387.9373	1		-0.5	0074.2433	ے 1	0.8	2.7	0042.9323	2	0.0	-17.0
11	0	11	6602.3496	1		-0.5	0088.7480	1		2.8	0057.7155	2	0.2	-14.2
13	0	13	6619.3828	1		-1.2	6705.9228	1		2.3	66/5.2242	2	0.6	-12.6
15	0	15	6639.0267	2	1.1	-0.3	6/25./416	1		4.0	6695.4367	2	1.1	-10.8
17	0	17	6661.2541	1		-2.4	6748.1878	2	0.8	11.8	6718.3283	2	0.3	-8.9
19	0	19	6686.0565	2	0.4	-3.5	6773.2549	1		29.9	6743.8855	2	1.4	-6.5
21	0	21	6713.4320	2	0.1	-0.9	6800.9511	1		70.0	6772.1031	1		-2.1
23	0	23	6743.3836	1		7.9					6802.9766	1		1.1
25	0	25	6775.8868	2	0.2	-3.8					6836.5111	1		6.5
27	0	27	6810.9772	2	0.1	-3.6					6872.7052	2	0.9	10.3
29	0	29	6848.6558	1		7.1					6911.5606	2	0.7	11.2
31	0	31	6888.8957	2	0.9	-1.6					6953.0796	1		8.6
33	0	33	6931.7262	2	1.4	-2.9					6997.2619	1		-1.7
35	0	35	6977.1346	2	0.3	-13.4					7044.1043	1		-30.9
1	1	0	6560.2789	1		-2.1	6646.4001	2	0.2	7.3				
2	1	2	6561 5782	1		0.7	0010.1001	-	0.2	1.0	6615 8492	1		-12.1
3	1	2	6563 8858	2	0.1	1.2	6650 0428	2	0.1	78	6618 1799	1		-15.4
1	1	4	6566 2827	1	0.1	-0.3	6652 7650 *	$\frac{2}{2}$	17	220.8	6620 6795	2	62	-10.1
5	1	4	6570 2604	2	0.2	-0.5	6656 5874	2	1.7	220.0 5 9	6624 7027	1	0.2	10.0
5	1	4	(572 ((0)	2	0.5	1.9	0030.3874	ے 1	1.5	5.0	0024.7927	2	0.1	-10.9
0	1	0	05/3.0098	2	1.1	-2.3	0059.7539	1	1.0	9.0	0028.2808	2	0.1	-14.9
/	1	6	6579.7250	2	0.0	1.9	6666.0170	2	1.0	-3.0	6634.3210	1	0.6	-20.8
8	I	8	6583./3/0	2	0.1	-1.0	6669.9120	2	0.1	-30.7	6638.6355	2	0.6	-11.5
9	1	8	6591.9444	2	0.4	2.7	6678.3294	2	0.6	-7.0	6646.7899	2	0.1	-11.5
10	1	10	6596.4723	2	0.9	0.1	6682.7664	1		-37.0	6651.7328	2	0.6	-12.9
11	1	10	6607.0123	2	0.4	2.9	6693.5023	2	0.6	-12.6	6662.1629	1		-11.8
12	1	12	6611.8647	1		-0.4	6698.2897	1		-50.9	6667.5730	2	0.4	-10.5
13	1	12	6624.9108	2	0.0	3.0	6711.5258	1		-11.7	6680.4318	2	1.0	-9.2
14	1	14	6629.9036	2	0.1	-2.5	6716.4906	1		-60.1	6686.1437	1		-8.2
15	1	14	6645.6166	2	0.2	3.3	6732.3816	2	0.8	-2.9	6701.5766	2	0.8	-8.8
16	1	16	6650.5817	1		-3.5	6737.3627	1		-64.1	6707.4367	1		-5.2
17	1	16	6669.1002	2	1.1	4.1	6756.0437	2	0.4	8.7	6725.5732	2	0.9	-10.4
18	1	18	6673.8824	2	0.7	-9.7	6760.9032	1		-59.1	6731.4422	1		-3.1
19	1	18	6695.3220	2	0.1	1.3	6782.4900	2	0.1	17.3	6752.3995	2	0.6	-8.0
20	1	20	6699.8160	2	0.2	-2.3	6787.1488	1		-2.2	6758.1558	1		1.5
21	1	20	6724,2495	2	1.4	2.7	6811.6900 *	2	0.1	1001.3	6782.0160	2	1.1	-8.3
22	1	22	6728 3523	1	1.1	-3.3	6815 9900	2	0.1	2.0	6787 5703	1	1.1	7.5
23	1	22	6755 8314	2	03	-0.4	6842 6318	1	0.5	-1.5	6814 3928	1		-6.5
23	1	24	6750 4074	2	0.5	-0.4	0042.0510	1		-1.5	6810 6684	2	0.1	-0.5
24	1	24	6700.0220	2	0.1	-0.5					6840 4040	2	17	1.2
25	1	24	6702 2221	2	0.7	-2.4					6954 4706	2	0.2	-1.0
20	1	20	6926 9105	2	1./	-/.1					0034.4/00	ے 1	0.2	-5.4
2/	1	20	0020.0195	2	0.2	-4.5					008/.2/88	1		-1./
28	1	28	0829.5/65	2	0.4	0.2					(007 72 10	~	1 7	
29	I	28	6866.1703	1		-3.4					6927.7340	2	1.7	7.5
30	1	30	6868.5612	2	1.9	55.2								
31	1	30	6908.0653	1		-6.5					6970.8283	1		14.5
32	1	32	6910.0223	2	1.0	-4.6								
33	1	32	6952.4510	1		-63.5					7016.5530	1		20.2
34	1	34	6954.1292	1		-10.0								
35	1	34	6999.4959	2	1.1	-8.4					7064.9118	1		20.4
36	1	36	7000.8234	1		-22.4								
2	2	1	6569.8679	2	0.0	-3.7								
3	2	1	6571.9630	2	1.1	-1.6	6658.1990	2	0.8	8.3				
4	2	3	6574.7472	1		-0.2	6660.9921	2	1.1	7.8	6629.1582	1		-5.1
5	2	3	6578.2507	1		-0.5	6664,5080	2	1.8	83	6632.7435	2	0.7	-2.1
6	2	5	6582 4054	2	02	-0.3	6668 6809	$\frac{1}{2}$	0.7	8.0	6637 0004	2	12	-3.1
7	2	5	6587 3555	2	0.2	_0.0	6673 6420	2	13	57	6642 0523	1	1.2	-3.1 _2 0
8	$\frac{2}{2}$	7	6597 8380	1	0.0	_2 3	6679 1560	2 1	1.5	<i>J</i> .7 <i>∆</i> 2	6647 6887	2	0.2	-2.9
0	2	7	6500 3056	2	07	0.3	6685 6214	2	1 1	71	665/ 7615	2- 1	0.2	_1 /
~ ~	2	/	0577.5050	5	0.7	0.5	0005.0514	4	1.1	/.1	0054.2015	1		-1.4

				(035)				(233)				(511))	
J	Ka	Kc	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C
10	2	9	6606.0465	1		-0.7	6692.4182	2	1.3	-0.5	6661.2142	2	1.7	2.4
11	2	9	6614 1262	2	07	-0.1	6700 4940	1		3.6	6669 3930	1		0.8
12	2	11	6622.0143	1	0.7	-1.0	6708 4593	1		-5.1	6677 5673	1		0.6
13	2	11	6631 8477	2	07	1.0	6718 2607	2	0.8	0.8	6687 4712	2	0.8	49
14	2	13	6640 7320	$\frac{2}{2}$	13	-3.0	6727 2687	1	0.0	-12.7	6696 7/90	2	0.0	4.5
14	2	13	6652 4872	1	1.5	-5.0	6728.0404	2	1 1	-12.7	6708 5053	1	0.5	4.5
15	2	15	0032.4673	2	0.0	1.9	0730.9494	2 1	1.1	-2.2	0708.3033	2	0.5	1.4
10	2	15	0002.1927	2	0.0	-1.9	0748.8397	1	0.0	-19.4	0/18.7422	2	0.5	7.1
1/	2	15	6676.0523	2	0.0	2.0	6/62.5/13	2	0.0	-2.0	6/32.51/3	2	1.0	2.4
18	2	17	6686.3785	2	0.2	-2.4	67/3.1644	1		-21.8	6743.5357	1		8.1
19	2	17	6702.5359	2	0.6	1.1	6789.1174	2	0.1	-4.0	6759.5009	2	0.6	2.0
20	2	19	6713.2777	1		-2.2	6800.2327	1		-17.1	6771.1177	1		7.7
21	2	19	6731.9507	1		-16.0	6818.5786	2	0.1	-2.8	6789.4491	2	1.6	3.3
22	2	21	6742.8709	2	2.2	-5.5	6830.0429	2	0.2	6.1	6801.4771	1		7.3
23	2	21	6764.2016	1		-2.4	6850.9241	2	1.5	-5.4	6822.3396	2	1.0	2.2
24	2	23	6775.1506	1		-4.6	6862.5863	2	0.3	51.0	6834.6006	1		6.7
25	2	23	6799.3177	2	0.1	-4.8	6886.0948	1		-8.3	6858.1512	2	1.6	1.5
26	2	25	6810.0955	2	0.1	-5.8					6870.4760	2	1.4	6.4
27	2	25	6837.2335	2	0.3	-20.8					6896.8602	1		7.0
28	2	27	6847.6948	2	0.3	-5.5					6909.0923	2	1.2	7.6
29	2	27	6877.9332	1		-22.9						_		
30	2	29	6887 9330	2	0.1	-5.8					6950 4341	1		65
31	2	29	6021 3572	$\frac{2}{2}$	0.1	-15.0					0750.4541	1		0.5
31	2	29	6030 7004	2	0.2	-15.1					6001 1811	2	0.5	5.0
22	2	21	6067 7510	2	0.5	-5.0					0774.4044	2	0.5	-5.0
24	2	22	0907.7319	2	0.5	-51.0					7041 2412	2	0.4	22.0
25	2	22	0970.2955	2	1.0	4.5					/041.2415	2	0.4	-22.0
35	2	33	/016.29/3	2	0.2	-26.0	< 50 0550							
3	3	0	6585.6536	2	0.8	-3.2	6672.0558	1		5.4				
4	3	2	6588.4431	2	1.6	-1.2	66/4.8565	1		6.7				
5	3	2	6591.9251	3	1.1	-4.1	6678.3558	2	0.3	6.2				
6	3	4	6596.1108	2	0.8	-0.8	6682.5570	1		7.0				
7	3	4	6600.9903	2	0.2	-2.9	6687.4588	2	0.3	6.2				
8	3	6	6606.5688	2	0.8	-2.3	6693.0610	1		6.3	6661.6665	2	0.5	58.2
9	3	6	6612.8514	1		-2.0	6699.3654	1		1.3	6668.0765	1		62.0
10	3	8	6619.8232	1		-2.4	6706.3716	2	0.6	4.5	6675.1976	2	0.4	60.0
11	3	8	6627.5158	1		-1.3	6714.0938	1		2.7	6683.0461	2	1.3	53.4
12	3	10	6635.8755	1		-2.3	6722,4915	1		1.6	6691.5975	1		51.5
13	3	10	6644.9914	2	0.3	-2.6	6731.6421	1		-0.6	6700.9014	2	0.3	47.3
14	3	12	6654 7275	2	0.4	-1.8	6741 4227	2	03	-2.3	6710 8650	1	0.0	41.4
15	3	12	6665 2968	2	0.7	-1.3	6752 0263	2	0.2	-5.2	6721 6371	1		34.7
16	3	14	6676 3778	2	0.7	-2.6	6763 1683	2	0.2	-4.6	6733.0035	1		36.0
17	3	14	6688 4460	2	0.2	-2.0	6775 2630	2	0.7	10.0	6745 2800	2	14	31.6
17	2	14	6700 8272	1	0.4	-1.5	6787 7248	2	0.0	-10.0	6757 0008	2	1.4	27.2
10	2	10	6714 4629	1		-2.0	6901 2759	ے 1	0.5	-7.5	6731.9996	2 1	0.7	21.5
19	3	10	0/14.4028	1	0.1	-1.0	0801.3738	1	0.0	-10.0	0771.8328	1		24.7
20	3	18	6/28.0/10	2	0.1	-0.2	6815.0910	2	0.9	-8.1	6/85.8559	1	0.1	18.4
21	3	18	6/43.3/21	1		-0.1	6830.3998	1		7.2	6801.3200	2	0.1	19.2
22	3	20	6758.0987	2	0.8	-0.8	6845.2627	2	0.1	-5.7	6816.5757	2	0.1	19.4
23	3	20	6775.1914	2	0.7	-3.3					6833.7579	2	0.2	10.2
24	3	22	6790.9033	2	0.7	0.2	6878.2353	2	0.3	2.5	6850.1323	2	0.3	10.7
25	3	22	6809.8742	2	0.5	-36.5					6869.1747	1		5.4
26	3	24	6826.4624	2	0.6	0.1	6913.9987	1		14.2	6886.5287	1		4.2
27	3	24	6847.7438	2	0.1	-12.2					6907.5829	1		1.2
28	3	26	6864.6497	2	0.0	16.7	6952.5507	2	1.0	31.8	6925.7487	2	1.0	-5.3
29	3	26	6888.4099	2	0.0	-12.0					6948.9874	2	0.5	-5.4
30	3	28	6905.9420	2	0.3	-11.0	6993.8850	2	0.7	42.0	6967.7900	2	0.3	-8.1
31	3	28	6932.0306	2	1.3	-17.0					6993.3856	2	0.3	-15.0
32	3	30	6949.7115	2	0.1	-8.0	7038.0060	2	0.6	-12.7	7012.6296	1		-13.5
33	3	30	6978 5697	2	0.6	-26.6		-	5.5		7040 7861	1		-5.2
34	3	32	6996 2043	$\frac{2}{2}$	0.0	-57					7060 2528	2	02	-22.1
35	2	32	7027 0800	2	0.7	-30.0					1000.2020	4	0.2	-22.1
35	2	34	7045 2066	2	0.2	-39.0								
27	2	24 24	7043.3900	ے 1	0.5	2.1 10 6								
5/	С /	54 1	1000.2293	1	0.8	-49.0	6604 0420	1		4 7	6662 1000	1		16.6
4	4	1	0007.3979	1	0.0	-3.5	0094.2439	1		4./	0002.1299	1		10.0
5	4	1	0011.083/	2	0.9	-2.1	0097.7430	1	0.4	4./	0005.0938	1	0.0	15.6
6	4	3	6615.2642	2	2.4	-3.3	6/01.9452	2	0.6	6.1	6669.9696	2	0.0	13.2
7	4	3	6620.1444	2	0.8	-2.3	6706.8442	3	0.5	4.3	6674.9582	1		10.7

				(035)				(233)				(511)		
J	Ka	Kc	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
8	4	5	6625.7227	2	0.1	-0.9	6712.4452	2	0.6	3.7	6680.6588	1		6.8
9	4	5	6631.9990	2	1.2	0.5	6718.7488	1		4.4	6687.0768	1		6.9
10	4	7	6638.9722	1		0.5	6725.7522	1		3.4	6694.2042	1		3.0
11	4	7	6646.6443	3	0.4	0.6	6733,4583	2	1.5	3.0	6702.0463	3	0.4	0.2
12	4	9	6655 0169	1	0.1	2.5	6741 8659	1	1.5	2.3	6710 6030	2	1.2	-1.0
12	4	9	6664 0892	3	04	3.9	6750 9768	1		1.4	6719 8718	1	1.2	-4.3
13	4	11	6673 8604	1	0.4	5.5	6760 7884	1		0.4	6720.8544	1		-4.5
14	4	11	6684 2220	2	0.5	5.5	6771 2064	1		-0.4	6740 5521	2	07	-0.0
15	4	11	0004.3329	ے 1	0.5	5.0	6771.5004	1		-2.4	0740.3331	2	0.7	-0.9
10	4	13	0093.3003	1		9.0	0782.3243	1		-5.1	0731.9014	2 1	1.0	-/.1
1/	4	15	0/0/.3830	1	07	9.0	6794.4546	1		-5.0	0/04.08/0	1		-7.5
18	4	15	6/19.9562	2	0.7	11.4	6807.0769	1		-6.2	6776.9149	1		-8.0
19	4	15	6/33.2465	3	0.5	14.4	6820.4220	l		-11.4	6790.4683	2	1.7	-5.9
20	4	17	6747.2212	1		17.6	6834.4482	1		-9.8	6804.7092	1		0.2
21	4	17	6761.9301	2	0.1	21.1	6849.2226	2	1.6	-14.0	6819.6923	1		16.3
22	4	19	6777.3033	2	0.1	23.6	6864.6453	2	0.9	-9.2				
23	4	19	6793.4462	1		31.7	6880.8627	2	0.5	-14.8				
24	4	21	6810.2212	2	0.8	33.8								
25	4	21	6827.8016	2	0.4	40.9	6915.3541	2	0.9	-12.3				
26	4	23	6845.5842	1		-18.5	6933.5122	1		-5.9				
27	4	23	6865.0153	2	0.3	52.6	6952.7088	2	0.8	-6.8				
28	4	25	6884.3304	2	0.8	57.5	6972.1849	2	1.7	-1.4				
29	4	25	6905.1031	2	2.4	64.3	6992.9466	2	0.1	6.5				
30	4	27	6925.7435	2	0.1	135.6	7013.6860	2	1.6	6.1				
31	4	27	6948.0935	1		82.8	7036.0895	2	1.0	33.2				
32	4	29	6969.8914	2	0.0	165.5	7058.0094	2	2.0	6.4				
33	4	29	6994 0096	1		107.8	7082 1555	1		74 3				
34	4	31	077110070	1		107.0	7105 1525	1		-17.3				
35	4	31	7042 8139	1		81.0	7105.1525	1		17.5				
5	5	0	6635 6930	2	0.1	1.0	6722 6451	1		32	6690 3731	1		15.1
6	5	2	6630 8715	2	0.1	-0.3	6726.8459	1		3.2	6694 6510	2	0.1	12.1
7	5	2	6644 7460	2	0.4	-0.5	6721 7450	2	1	5.1 1.5	6600 6363	2	1.2	2.4
0	5	4	6650 2228	2 1	0.2	-2.1	6727 2462	2	1	1.5	6705 2276	2	1.2	2.0
0	5	4	0030.3228	1	06	-0.7	6742 6400	5 1	1	-0.4	6711 7400	2	0.5	-2.0
9	5	4	0050.5925	2	0.0	-2.7	6743.0499	1		0.0	0/11./499	2	0.0	-11.5
10	2	6	6663.5622	3	0.3	-1.9	6/50.6526	1	0.0	-1.5	6/18.8/83	2	0.3	-17.5
11	5	6	6671.2300	2	0.4	-0.7	6758.3586	2	0.3	-1.1	6726.7230	2	1.6	-20.9
12	5	8	6679.5903	1		-4.9	6/66./643	l		-2.7	6735.2783	1		-27.3
13	5	8	6688.6519	2	0.4	-5.8	6775.8705	1		-5.6	6744.5475	1		-33.2
14	5	10	6698.4113	2	0.0	-7.2	6785.6803	1		-7.1	6754.5333	1		-36.2
15	5	10	6708.8670	2	1.8	-10.7	6796.1903	1		-10.8	6765.2318	1		-40.0
16	5	12	6720.0273	1		-8.6	6807.4033	1		-14.2	6776.6462	1		-41.4
17	5	12	6731.8837	2	0.4	-9.6	6819.3201	1		-17.1	6788.7741	1		-43.0
18	5	14	6744.4376	2	0.5	-12.3	6831.9340	1		-26.0	6801.6140	1		-45.7
19	5	14	6757.6951	3	0.7	-11.5	6845.2633	1		-23.9	6815.1693	1		-46.8
20	5	16	6771.6478	2	0.8	-15.2	6859.2816	1		-36.1	6829.4426	1		-42.5
21	5	16	6786.3063	3	0.5	-14.7	6874.0169	1		-37.6	6844.4276	2	1.3	-40.5
22	5	18	6801.6621	2	0.2	-16.2	6889.4805	2	0.8	-13.5	6860.1303	1		-31.9
23	5	18	6817.7234	2	0.1	-16.4	6905.6167	2	2.8	-26.0	6876.5425	1		-28.0
24	5	20	6834.4806	3	1.2	-18.3	6922.5252	2	0.9	33.0	6893.6711	1		-15.4
25	5	20	6851.9478	2	1.4	-19.2	6940.0742	1		17.8	6911.5132	1		-4.4
26	5	22	6870.1079	2	0.2	-20.6					6930.0647	1		15.7
27	5	22	6888.9861	2	0.1	-22.1								
28	5	24	6908.5499	2	0.2	-20.9								
29	5	24	6928 8456	2	0.7	-24.2								
30	5	26	6949 8157	2	03	-13.8								
31	5	26	6971 5251	$\frac{2}{2}$	0.5	-26.2								
37	5	20	6993 800/	2	1.0	-170								
32	5	20	7017 0620	ے۔ 1	1.0	.777								
2/	5	20 20	7017.0039	1 2	0.2	-27.7 5 1								
25	5	20	7040.0032	∠ 2	0.2	-3.1								
55	S	3U 1	/003.4391	2	0.2	-22.1	(757 0007	1		0.4				
07	6	1	0009.938/	2	0.0	18.5	0/5/.238/	1	2.0	-0.4	(700 7700	2	0.0	16.0
	6	1	00/4.8137	1	1 -	19.7	0/02.13/9	2	2.9	-1.9	6/29./789	2	0.9	16.8
8	6	3	6680.3823	2	1.7	18.3	6/6/./426	l		1.9	6/35.4895	3	0.5	13.2
9	6	3	6686.6491	2	0.5	18.5	6//4.0447	1		2.4	6/41.9184	3	1.6	14.1
10	6	5	6693.6109	2	0.8	17.0	6781.0502	1		5.8	6749.0514	2	1.3	5.2
11	6	5	6701.2697	3	1.1	15.8	6788.7552	1		7.9	6756.9087	3	0.7	7.0

				(035)				(233)				(511)		
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C
12	6	7	6709 6245	2	0.3	13.8	6707 1570	1		68	6765 4719	1		12
12	6	7	6719 6760	2 1	0.5	12.0	6906 2642	1		0.0	67747526	2	0.2	0.5
15	0	/	0/18.0/09	1	0.6	12.2	0800.2043	1		8.2	07/4./550	2	0.3	0.5
14	6	9	6728.4256	3	0.6	9.8	6816.0715	1		9.3	6784.7452	3	0.9	-3.6
15	6	9	6738.8721	3	1.0	8.0	6826.5796	1		9.8	6795.4516	1		-6.0
16	6	11	6750.0153	3	1.1	5.0	6837.7888	1		9.7	6806.8718	1		-7.8
17	6	11	6761.8552	3	0.3	1.1	6849.7011	1		10.9	6819.0044	2	0.3	-10.1
18	6	13	6774.3934	2	0.3	-2.5	6862.3148	1		11.4	6831.8548	2	1.0	-7.3
19	6	13	6787 6338	1	0.5	_2.2	6875 6318	1		13.1	6845 4120	2	0.2	-10.5
20	6	15	6901 5620	2	0.2	117	6000 6402	1		11.0	6950 6955	2	0.2	-10.5
20	0	15	0801.3030	2	0.5	-11./	0889.0485	1	0.0	11.0	0839.0833	2	0.2	-9.9
21	6	15	6816.1994	2	0.1	-12.7	6904.3667	2	0.9	9.6	68/4.6/12	2	0.6	-9.6
22	6	17	6831.5322	3	0.4	-16.8	6919.7935	2	0.8	12.9	6890.3716	1		-6.7
23	6	17	6847.5642	2	0.4	-20.8	6935.9188	1		11.3	6906.7842	2	0.4	-4.0
24	6	19	6864.2971	3	0.4	-24.4	6952.7458	2	1.1	8.1	6923.9118	2	0.2	1.6
25	6	19	6881.7317	2	0.1	-26.0	6970.2792	2	1.4	7.2	6941.7537	2	0.9	-2.3
26	6	21	6899 8675	1		-28.2	6988 5152	2	03	51	6960 3075	1		23.1
27	6	21	6018 7047	1		20.2	7007 4567	2	2.0	3.1	6070 5717	1		23.1
27	6	21	6028 2562	2	07	-29.2	7007.4307	2	2.0	J.2 1.4	6000 5520	1		10 10
28	0	23	0938.2302	2	0.7	-19.7	7027.1022	2	0.7	1.4	0999.5529	1		48.0
29	6	23	6958.5065	1		-11.4	7047.4491	2	0.6	-6.1				
30	6	25	6979.4717	2	0.2	4.9	7068.5042	2	0.7	-9.3	7041.6456	1		84.3
31	6	25	7001.1490	1		34.0	7090.2672	2	0.7	-14.5				
32	6	27	7023.5491	1		74.7	7112.7288	2	0.3	-24.0				
33	6	27					7135 9040	2	0.1	-34.6				
24	6	20		(0(2))			7150 7926	2	0.1	41.4				
54	0	29	(700.0705	(003)		01.4	(709.0121	2	0.5	-41.4				
/	/	0	6709.0785	1		-21.4	6/98.0131	2	2.6	5.3				
8	7	2	6714.6634	2	1.3	-14.9	6803.6134	2	0.3	2.7				
9	7	2	6720.9450	2	0.2	-5.4	6809.9205	2	1.7	6.1				
10	7	4	6727.9186	3	0.6	4.1	6816.9147	1		-4.0				
11	7	4	6735.5760	1		7.0	6824.6240	1		0.1				
12	7	6	6743 9248	2	0.8	12.2	6833 0326	1		27				
12	7	6	0713.5210	-	0.0	12.2	6842 1385	1		1.5				
13	7	0					0042.1303	1		1.5				
14	/	8					6851.9469	1		1.6				
15	7	8					6862.4567	1		2.0				
16	7	10					6873.6671	1		1.5				
17	7	10					6885.5799	1		2.0				
18	7	12					6898.1914	1		-0.4				
19	7	12					6911 5082	2	07	0.8				
20	7	14					6025 5273	1	0.7	2.5				
20	7	14					0923.3273	1		2.5				
21	/	14					6940.2408	1		-3.4				
22	1	16					6955.6607	2	1.5	-5.1				
23	7	16					6971.7798	1		-9.9				
24	7	18					6988.6069	2	1.7	-9.2				
25	7	18					7006.1366	2	0.2	-8.7				
26	7	20					7024.3623	2	0.7	-15.1				
27	7	20					7043 2941	2	0.3	-18.8				
20	7	20					7062 0200	2	1.0	-10.0				
20	7	22					7002.9290	2	1.0	-22.9				
29	/	22					/085.20/1	2	0.7	-21.1				
30	/	24					/104.3080	2	1.1	-34.2				
31	7	24												
32	7	26					7148.4920	1		-60.4				
8	8	1	6756.3354	1		-8.6	6844.9242	2	0.7	3.6				
9	8	1	6762.6229	1		-7.6	6851.2302	2	1.3	1.5				
10	8	3	6769 6084	2	09	-67	6858 2414	2	0.9	37				
11	o o	2	6777 2012	ว้	1.0	69	6865 0522	ے۔ 1	0.7	57				
	0	5	0777.2912	2	1.0	-0.8	0003.9332	1		5.1				
12	8	5	6/85.6699	3	0.5	-9.2	68/4.3633	l		5.0				
13	8	5	6794.7487	3	1.6	-9.7	6883.4745	1		4.6				
14	8	7	6804.5286	3	0.3	-7.1	6893.2880	1		5.5				
15	8	7	6815.0010	3	1.0	-10.0	6903.8016	1		5.5				
16	8	9	6826.1742	2	0.8	-10.2	6915.0184	1		7.8				
17	8	9	6838.0457	3	1.1	_9.9	6926,9343	1		8.2				
18	8	11	6850 6167	3	0.5	-8.1	6939 5/10/	1		67				
10	0	11	6862 0000	2	17	0.1	6052 9647	1		12				
19	0	11	0003.0820	2	1./	-9.9	0932.804/	1		4.3				
20	8	13	68//.8468	3	1.1	-9.9	6966.8932	l	<u> </u>	13.9				
21	8	13	6892.5095	3	0.9	-9.7	6981.6152	3	0.4	15.8				
22	8	15	6907.8739	2	0.7	-5.7	6997.0374	2	1.2	16.3				
23	8	15	6923.9322	2	0.6	-5.5	7013.1612	2	0.4	17.1				

				(035)				(233)				(511)		
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	$E(\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
24	8	17	6940.6897	1		-3.8	7029.9896	2	1.1	20.8				
25	8	17	6958.1408	2	0.1	-6.1	7047.5168	2	1.2	21.4				
26	8	19	6976.2907	1		-7.5	7065.7461	2	0.6	22.1				
27	8	19	6995.1390	1		-8.2	7084.6801	1		25.2				
28	8	21	7014.6951	2	0.3	1.2	7104.3111	2	0.3	22.7				
29	8	21	7034.9389	2	0.1	0.3	7124.6498	1		25.0				
30	8	23	7055.8829	1		1.8	7145.6824	2	0.5	17.8				
31	8	23	7077.5238	1		2.1	7167.4215	2	0.3	13.3				
32	8	25					7189.8662	2	1.3	10.2				
9	9	0	6808.8258	2	0.1	-0.3	6897.9550	1		8.8				
10	9	2	6815.8044	3	0.3	-0.7	6904.9781	2	0.4	6.4				
11	9	2	6823.4822	3	0.4	0.5	6912.7005	2	0.0	2.2				
12	9	4	6831.8574	2	2.0	1.5	6921.1225	3	1.7	-3.2				
13	9	4	6840.9238	3	3.3	-4.0	6930.2454	2	1.0	-8.3				
14	9	6	6850.6974	3	0.8	0.3	6940.0704	2	0.0	-11.7				
15	9	6	6861.1608	3	2.1	-3.3	6950.5965	2	0.0	-14.5				
16	9	8	6872.3271	3	1.3	-1.2	6961.8245	2	1.0	-15.5				
17	9	8	6884.1854	2	2.0	-4.7	6973.7528	3	1.3	-16.4				
18	9	10	6896.7460	3	0.5	-3.2	6986.3820	3	0.6	-16.3				
19	9	10	6910.0045	3	0.3	-1.2	6999.7118	2	0.6	-15.8				
20	9	12	6923 9602	2	0.3	0.8	7013 7452	3	0.2	-117				
21	9	12	6938.6123	2	1.4	1.9	7028.4766	2	0.2	-9.7				
22	9	14	6953 9608	2	0.0	21	7043 9113	3	16	-4.6				
23	9	14	6970 0066	1	0.0	2.5	7060.0436	1	110	-2.2				
24	9	16	6986 7488	1		2.2	7076 8784	2	0.6	2.4				
25	9	16	7004 1921	1		5.8	7094 4111	1	0.0	4.2				
26	9	18	7022 3286	3	0.8	5.6	7112 6500	1		11.6				
27	9	18	7022.3200	1	0.0	8.0	7131 5878	1		167				
28	9	20	7060 6980	2	0.4	10.4	7151.3070	1		20.3				
20	9	20	7080.9281	$\frac{2}{2}$	13	12.7	7171 5636	2	0.8	20.5				
30	9	20	7000.9201	1	1.5	12.7 14.7	7192 6034	1	0.0	22.0				
10	10	1	6867 2662	1		84	/1/2.0034	1		24.0				
11	10	1	6874 9402	1		6.9								
12	10	3	6883 3128	2	0.5	6.5								
12	10	3	6802 3834	2	0.5	6.4								
14	10	5	6002.1514	2	1.0	6.2								
14	10	5	6012.6174	1	1.0	6.6								
15	10	7	6023 7781	2	0.8	0.0 4 3								
10	10	7	6025 6250	2	0.8	4.5								
17	10	0	6049 1020	2	0.5	1.7								
10	10	9	6061 4407	5	1.0	1.2								
19	10	9	6075 2078	1	0.8	5.0								
20	10	11	6000 0465	2	0.0	-0.9								
$\begin{vmatrix} 21\\ 22 \end{vmatrix}$	10	11	0990.0403	2	1.1	-1.5								
22	10	13	7005.5905	3	1.1 1 1	-3.4								
23	10	15	7021.4329	2 2	1.1	-3.9								
24	10	15	7055 6002	23	0.5	-5.7								
23	10	15	7033.0082	2 2	0.0	-5.0								
20	10	17	7002 5600	ے 1	0.0	-3.0								
21	10	1/ 10	7112 0001	1 2	06	-0.5								
20	10	19	7122 2202	2	0.0	-4.4								
29	10	17	7152.3202	ے 1	0.1	-4.9								
11	10	21 0	(133.23/0	1		-0.4								
11	11	2	6040 0294	1	0.2	9.J 10.2								
12	11	2	6040.0384	2	0.2	10.3								
13	11	لے ۸	0747.1043	2	0.0	J.Y Q A								
14	11	4 1	6060 2271	2	0.9	0.U								
15	11	4 2	6080 4074	2	1.0	0.1								
10	11	0	0980.4974	2	0.0	4.2								
1/	11	6	0992.3580	2	0.8	5.3								
18	11	ð	7004.9135	2	0.3	4.2								
19	11	ð 10	/018.16/9	2	0.2	5.0								
20	11	10	/032.118/	1	0.4	5.2								
21	11	10	/046./652	3	0.4	4.2								
22	11	12	/062.1114	2	0.3	6.3								
23	11	12	7078.1531	2	0.4	7.2								

				(035)		
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
24	11	14	7094.8883	1		5.1
25	11	14	7112.3233	3	0.7	6.3
26	11	16	7130.4519	1		4.8
12	12	1	7001.9927	1		-4.5
13	12	1	7011.0614	1		-6.2
14	12	3	7020.8301	1		-5.3
15	12	3	7031.2968	3	2.0	-3.7
16	12	5	7042.4571	3	0.5	-5.8
17	12	5	7054.3168	2	2.0	-5.6
18	12	7	7066.8726	1		-6.4
19	12	7	7080.1263	2	0.2	-6.1
20	12	9	7094.0746	2	0.5	-8.2
21	12	9	7108.7261	2	0.9	-3.6
22	12	11	7124.0723	2	0.1	-1.1
23	12	11	7140.1146	2	0.2	1.1
24	12	13	7156.8519	2	0.1	1.9
25	12	13	7174.2860	1		3.4
26	12	15	7192.4127	1		1.3

Notes:

Nb is the number of observed transitions used to determine the upper energy level *E*. ΔE is the *rms* error of the experimental energy determination (in 10⁻³ cm⁻¹ unit). (O-C) is the difference (in 10⁻³ cm⁻¹ unit) between the experimentally determined value and the value calculated using the effective Hamiltonian model.

* Excluded from the fit

Table 5

			(134)							(continued)			
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C
8	0	8	6617.5512	1		-9.7	15	2	14	6686.7426	2	0.8	0.9
10	0	10	6630.5938	2	1.6	-7.7	16	2	14	6699.3926	2	1.1	3.4
12	0	12	66446.3000	2	0.6	-2.9	1/	2	16	6709.5186	3	0.5	0.1
14	0	14 16	6685 5576	2	0.4	-0.5	10	$\frac{2}{2}$	10	6735 0132	23	0.4	2.8
18	0	18	6709.0664	$\frac{2}{2}$	0.1	4 5	20	2	18	6752 1595	2	0.5	3.2 8.4
20	Ő	20	6735,1435	2	0.3	5.2	20	$\frac{2}{2}$	20	6763,2063	3	0.6	4.5
22	Õ	22	6763.7865	$\frac{1}{2}$	0.2	3.8	22	$\overline{2}$	20	6782.8732	2	0.3	8.3
24	0	24	6794.9994	2	1.9	1.7	23	2	22	6794.0822	4	1.2	3.4
26	0	26	6828.7931	2	1.3	0.4	24	2	22	6816.4423	2	0.7	9.9
28	0	28	6865.2860	2	1.9	-15.0	25	2	24	6827.6297	2	0.0	3.9
30	0	30	6903.9812	2	0.1	10.0	26	2	24	6852.8270	1		16.9
32	0	32	6945.4963	2	1.0	4.7	27	2	26	6863.8339	3	0.3	5.6
34	0	34	6989.5687	2	0.6	6.2	29	2	28	6902.6793	3	0.7	7.0
36	0	36	7036.2078	2	2.4	-1.0	30	2	28	6933.9895	2	0.2	-33.0
38	0	38 40	7085.4249	2	0.4	-1.1	31	2	30	6944.1540	3	0.5	8.4
40	0	40	7101 5754	2	0.0	-5.7	32	2	30	6088 2460	2	0.1	-27.2
44	0	42	7248 5142	2	0.7	-5.0	34	2	32	7025 9133	2	0.4	-29.0
46	0	46	7308.0261	$\frac{2}{2}$	0.2	-0.2	35	$\frac{2}{2}$	34	7034.9584	$\frac{2}{2}$	0.6	11.7
48	Õ	48	7370.1202	2	1.0	-7.3	36	2	34	7075.8210	1	0.0	-31.8
9	1	9	6625.5746	1		-5.5	37	2	36	7084.3001	2	1.7	13.6
10	1	9	6634.8165	1		-5.1	38	2	36	7128.3024	2	0.1	-34.5
11	1	11	6639.6295	2	0.8	-5.3	39	2	38	7136.5318	2	0.4	3.0
13	1	13	6656.3367	2	0.1	-4.7	40	2	38	7183.3212	2	0.3	-41.5
14	1	13	6670.5027	1		0.9	41	2	40	7190.3454	2	0.8	17.6
15	1	15	6675.6902	2	1.4	0.5	42	2	40	7240.8649	1		-44.4
16	1	15	6692.5402	2	0.5	4.6	43	2	42	7247.4519	2	0.3	-24.8
17	1	17	6697.6703	2	0.7	1.2	44	2	42	7300.8963	2	0.2	-70.3
18	1	17	6722 2725	2	0.8	9.4	45	2	44	7360 2248	2	0.4	19.5
20	1	19	6744 8430	2	0.4	2.4	47	2	40	6680 5260	1	0.0	-10.4
20	1	21	6749 4880	$\frac{2}{2}$	0.5	9.0 4 1	14	3	11	6690 3343	3	0.5	-10.4
22	1	21	6775.0339	2	0.8	14.3	15	3	13	6700.7267	4	1.6	-8.2
23	1	23	6779.3089	2	0.2	6.1	16	3	13	6711.9845	1		-15.6
24	1	23	6807.8451	1		2.5	17	3	15	6723.7157	3	0.5	-8.4
25	1	25	6811.7238	2	0.8	3.4	18	3	15	6736.4924	2	0.1	-8.2
26	1	25	6843.2764	1		9.9	19	3	17	6749.4915	3	0.1	-9.2
27	1	27	6846.7362	2	0.9	4.1	20	3	17	6763.8609	3	2.3	-4.0
28	1	27	6881.2734	1		9.8	21	3	19	6778.0526	4	0.6	-6.7
29	1	29	6884.3391	2	0.2	3.6	22	3	19	6794.1140	3	1.2	-3.2
30	1	29	6921.8250	2	0.9	9.9	23	3	21	6809.3852	4	2.3	-7.0
22	1	31 21	6924.5572	2	1.0	-0.7	24	2	21	0827.2827 6842.4921	3	1./	1.4
32	1	33	6967.0163	23	0.3	-8.0	25	3	23	6863 3789	4	0.5	-7.0
34	1	33	7010 5398	2	0.5	9.7	20	3	25	6880 3277	3	1.0	-10.4
35	1	35	7012.5701	2	0.8	3.6	28	3	25	6902.4147	2	0.5	4.8
36	1	35	7058.7146	$\frac{1}{2}$	1.0	10.2	29	3	27	6919.9161	4	0.7	-9.4
37	1	37	7060.4943	2	0.9	-3.4	30	3	27	6944.3867	1		5.8
38	1	37	7109.4327	2	1.0	11.5	31	3	29	6962.2276	4	1.4	-8.8
39	1	39	7111.0028	2	0.4	-2.0	32	3	29	6989.2834	1		10.6
40	1	39	7162.7018	2	0.9	15.0	33	3	31	7007.2488	3	1.7	-6.2
41	1	41	7164.0759	2	0.5	-5.0	34	3	31	7037.0769	2	0.4	20.0
42	1	41	7218.5258	1	0.0	19.5	35	3	33	7054.9613	3	0.8	-4.5
43	1	43	7219.7246	2	0.9	-7.0	36	3	33	7087.7315	1	0.1	42.6
44	1	43	/2/6.8885	2	1.5	4.3	5/	3	35	/105.3511	2	0.1	-2.7
45	1	45 45	1211.9490	2	0.5	-8./	38 30	5 2	55 37	/141.2124	1	0.5	128.3
40	1	43 17	7338 7500	∠ 2	1.2 1.1	19.7 _& 7	39 //1	2	37	7136.4103	2 1	0.5	5.0 7 2
47	1	+7 47	7401 3607	$\frac{2}{2}$	0.6	-0.2 29.8	41	3	<u> </u>	7279 4758	1		7.5 _34.7
13	2	12	6666.6914	4	1.1	-1.6	19	4	16	6768.4200	2	1.1	-31.1
14	2	12	6677.3722	2	0.2	1.5	20	4	16	6782.3940	1		-7.5

			(134) (continu	ed)			(134) (continued)						
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
21	4	18	6797.0074	3	0.6	-22.4	13	6	8	6752.9601	2	1.5	15.5
22	4	18	6812.3831	2	1.5	-16.7	14	6	8	6762.6816	3	1.0	16.5
23	4	20	6828.3913	2	0.6	-16.6	15	6	10	6773.0962	2	1.3	21.3
24	4	20	6845.2053	1		-10.0	16	6	10	6784.1945	2	0.4	19.1
25	4	22	6862.5746	2	0.9	-11.7	17	6	12	6795.9886	3	1.3	20.8
26	4	22	6880.8561	2	0.1	0.3	18	6	12	6808.4742	2	0.8	21.0
27	4	24	6899.5566	3	0.7	-7.9	19	6	14	6821.6519	3	1.8	19.0
28	4	24	6919.3901	1		18.7	20	6	14	6835.5243	2	0.1	16.5
29	4	26	6939.3369	3	0.9	-3.3	21	6	16	6850.0925	3	2.0	13.7
30	4	26	6960.7492	3	1.4	21.1	22	6	16	6865.3536	3	0.4	6.4
31	4	28	6981.9058	2	1.5	-3.7	23	6	18	6881.3136	2	0.8	-0.7
32	4	28	7005.0064	1		28.4	24	6	18	6897.9676	1		-20.4
33	4	30	7027.2611	3	1.3	-4.8	25	6	20	6915.3241	2	0.7	16.5
34	4	30	7052.1752	2	0.8	33.9	26	6	20	6933.3771	3	0.6	-17.3
35	4	32	7075.3974	3	0.4	-3.9	27	6	22	6952.1330	3	0.3	-34.9
36	4	32	7102.2786	3	1.1	39.0	28	6	22	6971.5957	3	0.9	-55.3
37	4	34	7126.3036	2	0.7	-2.0	29	6	24	6991.7748	3	0.4	-80.0
39	4	36	7179.9661	3	0.9	-1.0	30	6	24	7012.6768	3	0.9	-118.3
41	4	38	7236.3762	1		2.6							

Notes:

Nb is the number of observed transitions used to determine the upper energy level. ΔE is the *rms* error of the experimental energy determination (in 10⁻³ cm⁻¹ unit). (O-C) is the difference (in 10⁻³ cm⁻¹ unit) between the experimentally determined value and the value calculated using the effective Hamiltonian model.

Operator	Parameters	Value	Number of transitions (J max, K _a max)	rms deviation (%)				
	$3v_2 + 5v_3$ band	$S_V = 5.94 \times 10^{-25} \text{ cm/m}$	molecule					
${oldsymbol{arphi}}_z$	$d_1 (\times 10^4)$	0.2018 ₂ (25)						
$\left\{ \pmb{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	-0.365 ₆ (22)	156	18.3				
$\frac{1}{2} \left[\left\{ \varphi_x, iJ_y \right\} - \left\{ i\varphi_y, J_x \right\} \right]$	$d_4 (\times 10^7)$	0.339 ₃ (69)	(32, 9)					
	$v_1 + 3v_2 + 4v_3$ band $S_V = 1.74 \times 10^{-25}$ cm/molecule							
$arphi_x$	d_{1} (×10 ⁴)	-0.01487 (21)	86	25.0				
$\left\{ oldsymbol{arphi}_{z},ioldsymbol{J}_{y} ight\}$	$d_5 (\times 10^6)$	0.31977 (37)	(48, 4)	25.0				
	$5v_1 + v_2 + v_3$ band	d $S_V = 1.36 \times 10^{-25} \text{ cm}$	n/molecule					
${\cal P}_z$	$d_1 (\times 10^4)$	0.0930 ₃ (28)	47	•1 0				
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	0.0671 (28)	(31, 4)	21.0				
$2v_1 + 3v_2 + 3v_3$ band $S_V = 3.49 \times 10^{-25}$ cm/molecule								
${\cal P}_z$	$d_1 (\times 10^4)$	0.1712 ₀ (27)	103	10.0				
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	-0.2699 (44)	(27, 8)	18.0				

Table 6

Note. The *rms* deviation applies to the quantity $(I_{obs}-I_{calc})/I_{obs}$

Vibrational state	(125)	(431)
Band centre (cm ⁻¹)	6796.46	6825.51
J_{min}, J_{max}	1-30	1-25
K _{a max}	9	6
Number of transitions	389	183
Number of levels	213	109
$rms (\times 10^3 \text{ cm}^{-1})$	7.26	5.66

Table 7

Par	ameter	(054)	(026)	(125)		
E^{VV}		6762.069 (27)	6789.183 ₂ (53)	6796.4612 ₀ (17)		
A-(B+	<i>C)/2</i>	2.8224 ₃ (81)	2.403 ₂ (13)	2.690047 (20)		
(B+C)	/2	0.365194 (24)	0.348221 (12)	0.34688705 (97)		
(B-C)/2		0.01872 (15)	0.01808 (12)	0.0230563 (17)		
Δ_K	$\times 10^3$	g	g	0.38412 (62)		
Δ_{JK}	$\times 10^5$	g	g	0.1017 (57)		
Δ_J	$\times 10^{6}$	g	g	0.5809 (13)		
δ_J	$\times 10^{6}$	g	g	0.2224 (14)		
H_K	$\times 10^{6}$	g	g	0.7181 (46)		
H_{JK}	$\times 10^7$	g	g	$0.67_0(11)$		

Table 8

$$C_{011}^{125,026} = 0.01568_8(21) ,$$

$$C_{011}^{125,054} = 0.007784_6(77) ,$$

$$C_{201}^{125,054} = -0.00002363_6(61) .$$

The band centres coincide with E^{VV} as there is no A_{000} anharmonic coupling terms in the EH model.

g - fixed to the ground state values [10], grey backgrounds correspond to "dark" perturber states.

Table 9

	(125)						(125)						
J	K_a	K_c	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	J	K_a	K_c	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
1	0	1	6797,1501	1		-4.9	23	2	21	7002.1386	1		0.9
3	Ő	3	6800 6131	1		-8.0	24	2	23	7013 7528	2	0.2	-5.4
5	õ	5	6806 8364	1		-10.9	3	3	0	6824 8078	1	0.2	33
7	õ	7	6815 8040	2	16	-8.0	4	3	2	6827 5796	2	0.2	15
9	0	9	6827 4810	2	0.3	-4.8	6	3	4	6835 2067	1	0.2	-0.9
11	0	11	68/1 8335	2	0.3	-4.0	7	3	4	6840.0665	1		-0.5
12	0	12	6959 9729	1	0.2	-0.2	0	2	4	6945 6199	2	0.2	2.6
15	0	15	6979 1017	2	0.1	3.2 7 9	0	2	6	6951 9715	2	1.0	5.0
13	0	15	6000 5979	2	0.1	7.0	9	2	0	6050 0076	2	1.0	2.0
1/	0	1/	0900.3878	2	0.2	-20.7	10	3	8	0858.8070	3	1.8	3.9
19	0	19	6925.3130	2	0.1	-5.2	11	3	8	6866.4596	2	0.2	3.8
21	0	21	6952.6625	2	0.4	3.9	12	3	10	68/4./808	2	0.4	4.9
23	0	23	6982.5606	1	- -	5.0	13	3	10	6883.8471	1		3.3
25	0	25	7015.0263	2	0.7	0.6	14	3	12	6893.5380	1		3.9
27	0	27	7050.0727	2	0.6	-3.5	15	3	12	6904.0455	1		2.1
29	0	29	7087.7096	2	0.7	-6.6	16	3	14	6915.0838	2	0.2	3.8
3	1	2	6803.4677	1		5.1	17	3	14	6927.0745	2	1.1	2.6
4	1	4	6805.9137	1		-6.4	18	3	16	6939.4155	1		0.6
5	1	4	6809.9274	2	0.3	7.1	19	3	16	6952.9542	2	2.6	1.9
6	1	6	6813.1538	4	1.8	1.9	20	3	18	6966.5429	1		0.5
7	1	6	6819.2370	2	0.0	5.6	21	3	18	6981.7130	2	0.1	0.4
8	1	8	6823.2112	1		-5.2	22	3	20	6996.4752	2	0.3	0.2
9	1	8	6831.3874	2	0.4	0.6	23	3	20	7013.3904	2	0.7	2.8
10	1	10	6835.9162	1		-14.1	24	3	22	7029.2660	1		-3.5
11	1	10	6846.3748	2	1.1	0.9	25	3	22	7048.0287	1		2.8
12	1	12	6851.2870	2	0.4	-6.9	26	3	24	7065.2310	1		24.6
13	1	12	6864,1733	2	0.5	-2.7	27	3	24	7085.7138	2	4.9	-1.9
14	1	14	6869 2976	2	0.1	-2.6	4	4	1	6846 3459	-	,	03
15	1	14	6884 7691	2	0.1	-2.0	5	4	1	6849 8152	2	04	1.6
16	1	16	6889 9426	$\frac{2}{2}$	0.9	2.1	6	4	3	6853 9782	$\frac{2}{2}$	14	2.5
17	1	16	6008 1287	2	0.5	_3.2	7	-	3	6858 8334	$\frac{2}{2}$	1. 4 2.2	1.1
18	1	18	6013 2000	2	0.0	-3.2	8	4	5	6864 3850	2	0.7	2.0
10	1	10	6024 2225	2	0.2	4.7	0	4	5	6870 6222	2	0.7	2.0
19	1	10	0934.2253	2	0.4	-2.1	9	4	3	0870.0323	2	1.1	1.3
20	1	20	0939.0908	1	1.1	8.4	10	4	7	08//.5/10	2	0.2	-2.8
21	1	20	6963.0140	2	1.1	-1.1	11	4	/	0885.2158	2	0.0	1.7
22	1	22	6967.5940	2	0.7	8.1	12	4	9	6893.5545	2	0.7	2.2
23	1	22	6994.4634	2	0.3	2.0	13	4	9	6902.5934	2	0.5	1.3
24	I	24	6998.7144	1		3.9	14	4	11	6912.3346	2	0.8	0.8
25	1	24	7028.5310	2	0.3	3.1	15	4	11	6922.7894	1	•	1.4
27	1	26	7065.1875	2	0.2	3.5	16	4	13	6933.9574	2	2.0	-0.6
28	1	28	7068.6401	1		10.2	17	4	13	6945.8765	2	0.1	-1.3
29	1	28	7104.4120	2	0.3	1.5	18	4	15	6958.5719	1		-1.1
2	2	1	6809.2958	1		-1.0	19	4	15	6970.5148	2	0.2	3.4
3	2	1	6811.3789	1		0.2	20	4	17	6984.6140	2	1.1	2.9
4	2	3	6814.1470	2	0.9	-0.3	21	4	17	6999.3533	1		1.9
5	2	3	6817.6312	2	1.0	-0.5	22	4	19	7014.6843	2	0.1	0.7
6	2	5	6821.7674	2	0.8	1.1	23	4	19	7030.7732	2	1.0	-1.7
7	2	5	6826.6890	2	1.3	2.7	24	4	21	7047.4237	2	0.3	-3.0
8	2	7	6832.1557	2	3.2	6.6	25	4	21	7064.9441	2	1.1	-2.7
9	2	7	6838.5645	1		-1.4	26	4	23	7082.9151	2	0.1	-5.5
10	2	9	6845.2937	2	1.2	3.7	27	4	23	7101.9173	2	0.3	-4.2
11	2	9	6853.2957	2	0.2	-0.8	28	4	25	7121.1799	2	0.3	-6.0
12	2	11	6861.1834	2	0.1	1.8	29	4	25	7141.7261	2	0.4	-1.9
13	2	11	6870.9025	1		0.0	30	4	27	7162.2204	1		-69
14	2	13	6879.8160	2	1.7	0.8	6	5	2	6878.0125	2	1.6	-8 5
15	$\frac{1}{2}$	13	6891 3993	1	1.1	-1.0	7	5	2	6882 8469	2	1.0	-74
15	2	15	6001 1707	2	0.0	-1.0	¢	5	2	6888 2805	2	1.0	-7.4 60
10	2	15	601/ 7029	2	0.0	-1.4	0	5	-+ 1	6804 6110	2	1.4	-0.0
1/	2	15	6025 2640	2	0.5	-1.3	7	5	4 2	6001 5270	2	0.0	-5.4
18	2	17	0923.2040	ے 1	0.5	-4.4	10	5 F	0	0901.33/2	2	1.1	-Z.Z
19	2	1/	0941.0745	1	0.2	1.1	11	S	0	0909.15/1	2	0.2	-1.4
20	2	19	6952.0620	2	0.3	-4.0	12	2	8	6917.4730	2	1.5	0.7
21	2	19	69/0.209/	1		2.0	13	5	8	6926.4820	2	1.6	1.4
22	2	21	6981.5604	2	1.3	-3.6	14	5	10	6936.1873	2	1.0	3.9

			(125)							(125)			
J	K_a	K_c	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
15	5	10	6946.5826	2	0.3	1.8	15	7	8	7010.5721	2	0.6	10.3
16	5	12	6957.6763	2	2.0	3.7	16	7	10	7021.6540	2	1.1	14.2
17	5	12	6969.4604	3	1.3	1.0	17	7	10	7033.4413	2	1.4	31.0
18	5	14	6981.9426	2	0.6	1.8	19	7	12	7058.9777	2	1.2	-51.8
19	5	14	6995.1199	3	0.4	2.1	20	7	14	7072.8453	2	1.9	-32.8
20	5	16	7008.9906	1		1.3	21	7	14	7087.3948	1		-24.7
21	5	16	7023.5621	2	2.2	4.5	22	7	16	7102.6347	2	0.5	-18.8
22	5	18	7038.8223	3	0.3	2.7	23	7	16	7118.5666	2	0.8	-13.7
23	5	18	7054.7817	2	0.2	1.1	24	7	18	7135.1892	1		-10.6
24	5	20	7071.4333	1		0.4	25	7	18	7152.4976	2	0.2	-1
25	5	20	7088.7898	2	1.4	0.8	26	7	20	7170.5038	2	2.2	-13.0
26	5	22	7106.8289	2	0.2	-2.1	27	7	20	7189.2041	2	1.3	-10.2
27	5	22	7125.5871	2	0.9	1.2	28	7	22	7208.6029	1		-1.5
28	5	24	7145.0174	2	1.7	2.2	29	7	22	7228.6828	1		-4.3
29	5	24	7165.1763	1		1.7	8	8	1	6992.2344	1		2.1
30	5	26	7185.9912	2	0.2	4.9	9	8	1	6998.4627	2	0.2	1.4
6	6	1	6907.4057	1		-6.3	10	8	3	7005.3861	2	2.8	3.7
7	6	1	6912.2509	2	0.9	-6.7	12	8	5	7021.3062	2	0.1	5.2
8	6	3	6917.7888	3	0.7	-6.9	13	8	5	7030.3044	2	2.1	5.8
9	6	3	6924.0231	3	0.8	-3.4	14	8	7	7039.9915	1		3.2
10	6	5	6930.9468	3	0.8	-3.3	16	8	9	7061.4453	2	0.3	1.1
11	6	5	6938.5662	1		-0.4	17	8	9	7073.2163	1		6.0
12	6	7	6946.8760	2	0.9	-0.2	18	8	11	7085.6727	3	0.5	4.2
13	6	7	6955.8767	2	0.5	-2.1	19	8	11	7098.8248	3	0.5	6.0
14	6	9	6965.5759	3	1.0	1.1	20	8	13	7112.6672	1		6.0
15	6	9	6975.9617	1		-2.4	21	8	13	7127.2014	4	0.8	5.9
16	6	11	6987.0498	1		3.2	22	8	15	7142.4277	2	0.1	5.8
17	6	11	6998.8239	3	1.0	1.1	23	8	15	7158.3455	1	0.0	5.4
18	6	13	7011.2968	1	0 7	4.3	25	8	17	7192.2613	2	0.3	9.1
19	6	13	7024.4579	3	0.7	2.1	26	8	19	7210.2556	2	0.9	9.7
20	6	15	7038.3158	l		2.9	27	8	19	7228.9440	2	1.0	12.8
21	6	15	7052.8668	1	1 1	2.9	10	9	2	7050.3907	1	1.7	1.4
22	6	17	7068.1128	3	1.1	4.2	11	9	2	7058.0010	2	1.5	0.6
23	6	1/	7084.0542	2	0.4	6.7	12	9	4	7066.3034	1	0.0	0.2
24	6	19	/100.68/9	1	0.0	1.1	13	9	4	7075.2941	3	0.9	-3.9
25	6	19	/118.012/	2	0.9	5.4	14	9	6	7084.9844	1	15	-0.2
26	6	21	/136.034/	2	2.8	6.4	15	9	0	7095.3620	2	1.5	-1.1
27	6	21	/154./52/	2	0.0	8.6	1/	9	8	/118.1934	2	1.0	-2.0
29	6	23	/194.2691	2	3.4	10.7	18	9	10	/130.6453	2	0.1	-3.9
8	/	2	6952.4047	1	0.7	-3.2	19	9	10	/143./916	2	0.3	-3.1
9	/	2	6958.6362	3	0.7	-2.0	20	9	12	/15/.62/2	2	3.3	-4.5
10	/	4	0905.5608	2	0.0	-0.1	21	9	12	/1/2.1591	2	1./	-1.3
11	/	4	09/3.1//3	2	1.5	1.2	22	9	14	/18/.3808	1		0.3
12	/	6	6981.4868	2	0.8	3.1	23	9	14	7203.2838	1		-8.4
14	1	8	7000.1843	3	2.0	7.8							

Notes:

Nb is the number of observed transitions used to determine the upper energy level E (cm⁻¹). ΔE is the *rms* error of the experimental energy determination (in 10⁻³ cm⁻¹ unit). (*O*-*C*) is the difference (in 10⁻³ cm⁻¹ unit) between the experimentally determined value and the value calculated from the effective Hamiltonian model.

Operator	Parameters	Value	Number of transitions (J max, Ka max)	rms (%)	
	$v_1 + 2v_2 + 5v_3$	3 band $S_V = 2.5$	7×10^{-25} (cm/molecule)		
\pmb{arphi}_z	d_{1} (×10 ⁴)	0.1394 ₁ (21)	67	10.0	
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	-0.219 ₃ (32)	30,11	19.3	
	$4v_1 + 3v_2 + v_3$	band $S_V = 1.1$	0×10^{-25} (cm/molecule)		
\pmb{arphi}_z	$d_1 (\times 10^4)$	0.1028 ₈ (13)	72 26. 6	19.9	

Table 10

Parameter	(431)	(502)
E^{VV}	6825.5123 ₀ (12)	6842.57 ₁ (42)
A - (B + C)/2	2.77723 ₉ (17)	2.68198 (p)
(B+C)/2	0.351026 ₃ (11)	0.357644 (83)
(B-C)/2	0.0228061 (15)	0.00228237 (p)
$\Delta_K \times 10^3$	0.1933 ₀ (46)	g
$\Delta_{JK} \times 10^5$	-0.542_0 (61)	g
$\Delta_J \times 10^6$	0.3174 (23)	g
$\delta_J \times 10^6$	0.154 ₄ (19)	g

Table 11

The band centres coincide with E^{VV} as there is no A_{000} anharmonic coupling term in the EH model.

(p) - fixed to theoretical values [11] predicted from the potential energy function [7];

g - fixed to the ground state values [10],

grey background corresponds to "dark" perturber state.

 $C_{011}^{431,502} = 0.00391_7(35)$

Table 12

	(431)							(431) (continue)					
J	K_{a}	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
1	0	1	6826.2126	2	0.6	-1.8	3	3	0	6854.7218	1		16.9
3	Ő	3	6829.7192	2	1.6	-2.5	4	3	2	6857.5297	2	0.0	15.6
5	Ő	5	6836.0215	2	2.6	-1.7	5	3	2	6861.0431	1	0.0	16.7
7	Ő	7	6845 0956	$\frac{1}{2}$	$\frac{2.0}{2.0}$	-2.9	6	3	4	6865 2547	1		13.2
9	Ő	ý 9	6856 9160	$\frac{2}{2}$	13	-4.0	7	3	4	6870 1715	1		10.6
11	0	ú	6871 4496	$\frac{2}{2}$	0.3	-4.8	8	3	- -	6875 7933	2	07	11.0
13	Ő	13	6888 6646	$\frac{2}{2}$	13	-2.9	9	3	6	6882 1204	1	0.7	8.0
15	0	15	6908 5279	$\frac{2}{2}$	0.1	-2.9	10	3	8	6889 1374	2	55	-2.0
17	0	17	6931 0187	2	1.6	$^{-1.0}$	11	3	8	6806 8018	$\frac{2}{2}$	1.6	-2.0
10	0	10	6056 1133	2	1.0	2.4	12	3	10	6005 3102	2	1.0	4.0
21	0	21	6083 8734	2	4.2 17	-2.7	12	3	10	6014 4064	1	1.7	2.2
21	0	21	7014 1360	2	1.7	0.7	13	3	12	6024 3168	2	07	2.0 5.2
25	0	25	7014.1500	2	1.5	1.9	14	3	12	6034 0405	2	2.7	3.2
25	1	25	6920 2299	2	2.0	-1.0	15	2	14	6046 1225	1	2.2	-5.1
2	1	2	6922 6270	2	0.5	1./	10	2	14	6059 2206	1	5 1	4.5
5	1	2	6825.0780	2	1.9	-1.1	17	2	14	6938.2390	2	J.I 1 2	-12.0
4	1	4	0055.0709	2	0.5	-1.5	10	2	10	09/0./0/3	2	1.2	0.9
5	1	4	0839.1332	2	0.1	-4./	19	3	10	0984.4302	2	2.0	-8.3
0	1	0	0842.5452	2	0.5	-0.1	20	3	18	0998.2195	2	2.0	-1.1
/	1	6	6848.5658	1		-2.0	22	3	20	/028.4892	1		2.7
8	1	8	6852./151	1	1.0	-0.8	5	4	1	6880.4199	1	0.1	-14./
9	1	8	6860.8581	2	1.0	-1.1	6	4	3	6884.6347	2	0.1	-15.6
10	1	10	6865.5854	2	1.8	0.6	7	4	3	6889.5585	3	0.2	-10.5
11	1	10	6876.0162	2	0.3	-3.9	8	4	5	6895.1828	2	0.3	-8.5
12	1	12	6881.1428	2	1.6	-0.8	9	4	5	6901.5090	3	0.2	-8.1
13	1	12	6894.0352	2	0.4	0.6	10	4	7	6908.5469	2	1.7	0.1
14	1	14	6899.3814	2	2.6	-1.9	11	4	7	6916.2837	3	3.5	2.7
15	1	14	6914.8812	2	0.2	-1.1	12	4	9	6924.7294	1		9.6
16	1	16	6920.2946	1		-0.1	13	4	9	6933.8668	1		2.4
17	1	16	6938.5380	2	0.2	0.5	18	4	15	6990.2086	2	2.2	-0.3
18	1	18	6943.8688	1		-0.2	19	4	15	7003.6084	1		2.7
19	1	18	6964.9740	2	1.1	3.9	21	4	17	7032.6150	1		-3.0
20	1	20	6970.1006	2	0.9	2.4	5	5	0	6905.3491	1		-9.2
22	1	22	6998.9705	1		-5.1	6	5	2	6909.5679	1		-5.7
23	1	22	7026.0260	1		1.6	7	5	2	6914.4868	1		-4.9
24	1	24	7030.4901	1		-5.0	8	5	4	6920.1142	2	5.1	1.4
2	2	1	6838.7300	1		5.5	9	5	4	6926.4349	2	0.8	-2.1
4	2	3	6843.6417	2	0.5	3.2	10	5	6	6933.4651	2	1.2	0.8
5	2	3	6847.1694	2	3.8	2.3	11	5	6	6941.1959	3	5.0	0.9
6	2	5	6851.3591	2	1.6	1.9	12	5	8	6949.6330	1		3.8
7	2	5	6856.3420	2	0.2	4.8	13	5	8	6958.7748	1		7.6
8	2	7	6861.8732	2	6.2	-3.0	14	5	10	6968.6125	2	6.6	3.5
9	2	7	6868.3650	2	2.5	-0.9	15	5	10	6979.1681	1		13.0
10	2	9	6875.1916	2	0.4	2.1	16	5	12	6990.4062	1		0.6
11	2	9	6883.2766	2	1.5	-2.7	22	5	18	7072.7126	1		-4.6
12	2	11	6891.2920	2	0.6	2.4	6	6	1	6940.0025	1		7.2
13	2	11	6901.1021	1		0.1	7	6	1	6944.9184	1		4.7
14	2	13	6910.1664	2	2.1	-1.2	8	6	3	6950.5388	1		3.8
15	2	13	6921.8526	2	0.7	-1.2	9	6	3	6956.8617	2	0.7	2.5
16	2	15	6931.8134	2	0.3	0.3	10	6	5	6963.8872	2	1.3	1.0
17	2	15	6945,5417	2	0.0	-2.1	11	6	5	6971.6178	3	4.1	1.4
18	$\frac{1}{2}$	17	6956.2174	1	0.0	2.6	13	6	7	6989,1800	1		-6.1
19	$\frac{1}{2}$	17	6972 1714	2	03	0.9	14	6	, 9	6999 0162	1		_9.8
20	$\frac{1}{2}$	19	6983 3588	$\frac{1}{2}$	0.3	_1 2	15	6	ý	7009 5659	1		_3 5
20	$\frac{2}{2}$	19	7001 7225	∠ 1	0.4	-1.2 1 Q	15	0)	1007.3037	1		-5.5
21	$\frac{2}{2}$	21	7013 2305	1		_5 3							
24	2	21	7015.2505	1		-5.5							
∠4	2	23	/043.8301	1		1.2							

Note: See footnotes of Tables 4, 5 and 9.

I GOIC IC	Tab	le 1	3
-----------	-----	------	---

		¹⁶ ()3		¹⁸ O ₃				
Band	Band centre (cm ⁻¹)	Main parameter $d_1 (\times 10^4)$	$S_V \times 10^{24}$	Number of calculated transitions	Band centre (cm ⁻¹)	Main parameter $d_1 (\times 10^4)$	$S_V \times 10^{24}$	Number of calculated transitions	
$2v_2 + 5v_3$	6305	0.639	7.96	1248	5984	0.393	3.11	1226	
$5v_1 + v_3$	6356	0.572	7.46	1292	6013	0.455	4.48	1271	
$v_1 + v_2 + 5v_3$ ($2v_1 + 2v_2 + 3v_3$) II ^{<i>a</i>}	6387	0.662	7.49	1186	6072	0.500	4.39	1221	
$4\nu_1+2\nu_2+\nu_3$	6568	0.215	1.55	1086					
$2v_1 + 5v_3$	6587	0.385	2.28	944	6271	0.414	3.04	1166	
$(2v_1 + 3v_2 + 3v_3)_{I}$	6716	0.292	1.73	1029	6392	0.193	0.68	1015	
$3v_2 + 5v_3$	6895	0.253	1.42	993	6557	0.202	0.62	879	
$5v_1 + v_2 + v_3$	6982	0.134	0.43	692	6611	0.093	0.19	599	
$(2v_1 + 3v_2 + 3v_3)_{II}$	6990	0.185	0.60	716	6643	0.171	0.49	862	
$v_1 + 2v_2 + 5v_3$					6796	0.139	0.29	543	
$4\nu_1+3\nu_2+\nu_3$					6825	0.103	0.24	758	

Note: All calculations have used the same cut-offs: minimum line intensity = 2×10^{-28} cm/molecule at 296 K and maximum quantum numbers: J = 40, $K_a = 14$. ^{*a*} The normal mode assignment of this band is modified by the isotopic substitution (see Ref.[4]).

Figure 1

Figure 2

figure 4

Article 4 (partie III)

Chemical Physics Letters 470 (2009) 28-34

Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

Isotopic shifts in vibration levels of ozone due to homogeneous substitution: Band centres of ¹⁸O₃ derived from analysis of CW-CRDS spectra in the $5900-7000 \text{ cm}^{-1} \text{ range}$

E.N. Starikova^{a,b}, A. Barbe^a, M.-R. De Backer-Barilly^a, Vl.G. Tyuterev^{a,*}, S.A. Tashkun^b, S. Kassi^c, A. Campargue^c

^a GSMA, UMR CNRS 6089, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France

^b Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Av. Akademicheskii, Tomsk 634055, Russia ^c Laboratoire de Spectrométrie Physique, UMR CNRS 5588, Université Joseph Fourier, BP 87, 38402 Saint Martin d'Hères, France

ARTICLE INFO

Article history: Received 25 September 2008 In final form 29 December 2008 Available online 6 January 2009

ABSTRACT

More than 5050 rovibrational transitions were assigned in the very sensitive CW-CRDS ¹⁸O₃ spectra in the 5900-7000 cm⁻¹ range leading to the first determination of 14 new vibrational band centres. Three bands correspond to the highest ozone states observed so far under high resolution. The good agreement between predicted and observed centres (*rms* deviation of 1.1 cm⁻¹) confirms the accuracy of the potential function previously determined from $^{16}O_3$ data. At this energy range situated $\sim 20\%$ below the dissociation energy, the small changes of masses associated with the ${}^{16}O_3 \rightarrow {}^{18}O_3$ homogeneous isotopic substitution result in irregular isotopic shifts.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Despite considerable effort from the scientific community devoted to the investigation of ozone properties and spectra, there remain many issues and puzzling problems which are far from being completely solved, like, for example, the interpretation of anomalous isotopic enrichment effect in the ozone formation [1–3], the calculation of the dissociation and recombination rates [4,5], a detailed description of non-local thermodynamic equilibrium processes in the upper atmosphere [6], or the search of optimal channels for multi-photon laser excitation of ozone. A solution for many of these problems requires detailed information on high-energy rovibrational states of the ozone isotopic species. Accurate measurements and calculations of these states in the energy range approaching the dissociation limit are a particular challenging issue.

The high-resolution spectroscopy of ozone has a long history. Up to 5800 cm⁻¹ the infrared spectra have been mostly obtained by FTS (Fourier Transform Spectroscopy). The range of fundamental and first overtone and combination bands of the principal isotopologue, ¹⁶O₃, has been covered in series of studies by Flaud, Camy-Peyret and co-workers [7–9] resulting in an atlas of line parameters up to 3000 cm^{-1} [9]. Barbe et al. [10–13] have extended the range of observations assigning more than 30 bands of $^{16}\mathrm{O}_3$ up to 5800 cm⁻¹. Ozone spectroscopy studies available up to 2003 have

* Corresponding author. E-mail address: vladimir.tyuterev@univ-reims.fr (Vl.G. Tyuterev). been reviewed by Steinfeld et al. [14], Flaud and Bacis [15], Mikhailenko et al. [16], and Rinsland et al. [17].

FTS spectra of ozone enriched in ¹⁸O and ¹⁷O were analysed in Refs. [15,18-26]. The most extended spectral regions were investigated by Chichery et al. [21,22] for the homogeneous isotopic variant ¹⁸O₃ and by De Backer, Barbe and co-workers [23–26] for the mixed variants ¹⁶O¹⁸O¹⁶O, ¹⁸O¹⁶O¹⁸O, ¹⁶O¹⁶O¹⁸O and ¹⁶O¹⁸O¹⁸O. All previously available studies of isotopically substituted ozone spectra were performed below 4900 cm⁻¹ and involved bands having at maximum a $\Delta v \equiv \sum_i |\Delta v_i| = 5$ variation of the vibration quantum numbers. A large part of the related results are available in the S&MPO (Spectroscopy & Molecular Properties of Ozone) information system [27], which is accessible via the websites http:// ozone.univ-reims.fr and http://ozone.iao.ru.

There are two major problems in deriving information about the vibration levels of ozone approaching the dissociation limit (situated near 8500 cm⁻¹ [15]) from high-resolution absorption spectra. One is experimental: band strengths are quickly decreasing with the vibrational excitation, and a higher sensitivity than that provided by FTS is necessary: up to eight orders of magnitude are noted between the band strength of the v_3 fundamental and that of the bands near 7000 cm⁻¹ corresponding to $\Delta v = 8$. The other problem is related to an increasing complexity of analyses due to many accidental vibration-rotation resonance perturbations and missing information on 'dark' states.

A breakthrough in the extension of experimental measurements to higher energy has been achieved with the development of very sensitive laser techniques [28-34]. Wentz et al. [28] measured more than 3500 lines in the ¹⁶O₃ spectrum recorded with a tunable

^{0009-2614/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.cplett.2008.12.098

single mode diode laser between 6430 and 6670 cm⁻¹ but only about 400 of them could be assigned. A further progress has been achieved with the CW-Cavity Ring Down Spectrometer (CW-CRDS) developed at Grenoble University [34] in the wide 5850–7000 cm⁻¹ region [29–34], where more than 7500 lines of ¹⁶O₃ have been recently recorded and assigned in collaboration with the Reims group. These results have been recently reviewed by Campargue et al. [34].

On the theoretical side, considerable efforts have been devoted to the determination of the potential energy surface (PES) [5,35– 41] and references therein, for the electronic ground state of ozone. Extended *ab initio* calculations have been performed by Siebert and Schinke et al. [36,37]. Babikov et al. [38] and Grebenshchikov et al. [39] used these calculations to study the metastable states and the van der Waals states, respectively. Related dynamical studies have been summarized and reviewed in Ref. [5]. Up to date, the most accurate empirical PES for the spectroscopic calculations at the open configuration have been determined by Tyuterev et al. [40,41] from the fit of FTS experimental vibration–rotation data of ¹⁶O₃ below 5800 cm⁻¹. This PES has been used, for a theoretical interpretation of rates of formation of ozone isotopologues [3], for the assignment of CW-CRDS spectra of ¹⁶O₃ [29–34] and for the extrapolation towards highly excited vibrational states [35].

In this Letter, we report the first results of experimental and theoretical studies of the isotopic effect in high-resolution spectra of the ozone molecule due to the ${}^{16}O_3 \rightarrow {}^{18}O_3$ substitution in the 5900–7000 cm⁻¹ wavenumber range. Ro-vibrational levels corresponding to the high energy edge of this range are at about 82% of the dissociation limit. Contrary to the low energy range, the isotopic shifts of the band centres appear to be irregular even though the change in masses is small and homogeneous. This reflects the complexity of anharmonic interactions in the ozone molecule. Due to the shifts of about 340 cm⁻¹ towards lower wavenumbers for the band centres with respect to the major isotopologue, we were able to record three ${}^{18}O_3$ new bands which correspond to the largest vibrational excitation ever detected in ozone spectra at high resolution. One of the goals of this study was to use these new observations to check to what extent the PES of Refs. [40.41] determined from ¹⁶O₃ data, is valid for accurate predictions of the ${}^{18}O_3$ bands.

In Section 2, theoretical calculations of energy levels and wave functions relevant to the observed bands are briefly described; Section 3 is devoted to the experimental set up and recorded spectra; Section 4 to the spectral analysis and Section 5 to the discussion of the obtained results.

2. Band centres predicted from PES

At low vibrational excitation, the assignment of ozone bands has been traditionally based on Dunham-type expansions involving Darling–Dennison resonance terms which couple stretching vibrations due to the proximity of the ω_1 and ω_3 harmonic frequencies [15,16]. This simple approach is no more valid at higher energies because of the increasing density of states and of the overlapping of stretching polyads defined by the condition $v_1 + v_3 = const$. The overlapping of the polyads results in numerous unusual resonances corresponding to large differences in vibrational quantum numbers up to $\Delta v = 10$.

In previous analysis of the CW-CRDS spectra of ${}^{16}O_3$ [29–34], our assignments relied on extrapolations from the empirical PES of Refs. [40,41]. For the 21 band centres of ${}^{16}O_3$ reported in the 5850–7000 cm⁻¹ range, the deviations of the predictions from observations vary from 0.1 to 2.4 cm⁻¹ with a *rms* error of about 1 cm⁻¹. For the vibrational assignments of the present ${}^{18}O_3$ spectra, we used two versions of the same PES, one adapted to the

Morse–cosine kinetic model [40], another adapted to the exact kinetic energy operator [41]. The corresponding calculations using both versions of the PES result in energies for J = 0 and J = 1 levels which are in a good agreement at least up to 7000 cm⁻¹ (see Table 1): the *rms* deviation between two calculations is 0.9 cm⁻¹.

As far as techniques of calculations are concerned, two complementary and completely independent methods were applied. The first method uses variational calculations involving numerical integration in a large basis set of primitive wave functions defined in internal bond length and bond angle or Radau coordinates, as described in Refs. [40,41]. In order to achieve a convergence of calculations in the considered energy region, it was necessary to extend the size of the basis by at least one order of magnitude compared to similar calculations for water molecule (see Ref. [41] for the corresponding discussion). The second method is purely algebraic and uses successive high-order contact transformations (CT) of the complete vibration-rotation Hamiltonian into series of effective Hamiltonians defined for groups of strongly interacting vibrational states. In our analysis, the MOL_CT suite of computational codes [42] was used to allow for a systematical building of effective Hamiltonians in normal coordinates [42,43]. These calculations account for various resonance interactions specific to the ozone molecule including inter-polyad couplings. This method has the advantage to directly provide with the expansion of eigen-functions $|\Psi_{\Gamma N_{\nu}}\rangle$ of the final transformed Hamiltonian in the normal mode basis:

$$\Psi_{\Gamma N_V} \rangle = \sum_{\nu_1 \nu_2 \nu_3} C_{\nu_1 \nu_2 \nu_3}^{\Gamma N_V} |\nu_1 \nu_2 \nu_3 \rangle_0 \tag{1}$$

Here Γ is the symmetry type of the state and N_V is the rank number of the vibration state according to the increasing energy for a given Γ . The normal mode basis $|v_1v_2v_3\rangle_0 = |v_1\rangle_0 |v_2\rangle_0 |v_3\rangle_0$ corresponds to vibrations which are decoupled near the minimum of the potential well. Eq. (1) stands for vibration wave functions. Similar expansions are also obtained for vibration–rotation wave functions involving asymmetric top rotational basis $|JK_aK_c\rangle$ as a direct product in the right hand side of Eq. (1). This offers a rigorous procedure for normal mode spectroscopic assignments of ro-vibrational states from a given PES.

The mixing coefficients are defined as squares of the expansion coefficients:

$$P_n = (C_{v_1 v_2 v_3}^{\Gamma N_V})^2 \text{ with } \sum_n P_n = 1$$

Here n = 1 corresponds to the largest contribution in Eq. (1) and the terms with n = 2, 3, ... correspond to the decreasing order of the mixing coefficients. The convergence of MOL_CT algebraic calculations with increasing orders of CT was checked against variational calculations with the same PES. For the ¹⁶O₃ and the ¹⁸O₃ vibration levels, the *rms* deviation between these two calculations up to 7000 cm⁻¹ are less than one wavenumber for the 8th order of contact transformations. For this reason, only CT calculations ('calc_2') corresponding to the PES of [41] are provided in Table 1.

In this work, we use two types of vibration state identification. The first one is the (Γ, N_V) global assignment containing the symmetry species Γ (=A₁ or B₁) and the ranking number N_V only. If a PES is sufficiently accurate i.e. (obs.–calc.) errors are much smaller than the energy separation, this global assignment is *unambiguous*. Further comparisons with observations clearly show that this is our case: there is no ambiguity in the global (Γ, N_V) assignment in the considered spectral range. Between 5900 and 7000 cm⁻¹, both PES [40,41] result in 28 calculated (B₁ \leftarrow A₁) A-type bands due to the dipole moment component parallel to the 'linearization' *z*-axis and in 33 calculated (A₁ \leftarrow A₁) B-type bands due to the dipole moment correspond to the standard choice of axes for the open configuration of the ozone molecule as described in

Table 1

			1 0			- 0		0	
N _v	E/hc (cm ⁻¹)		JK _a K _c	P ₁ (%)	W1	P ₂ (%)	W ₂	P ₃ (%)	W ₃
	Calc_l	Calc_2							
				A ₁ vibra	ation states				
65	6012.31	6011.74	000	72	(430) ₀	10	(322) ₀	9	(124) ₀
66	6047.95	6046.71	000	41	(214) ₀	17	(124) ₀	14	(412) ₀
71	6245.81	6245.50	000	49	(016) ₀	23	(304) ₀	10	(106) ₀
82	6591.83	6592.73	000	32	(134) ₀	26	(224) ₀	11	(422) ₀
			B ₁ vi	ibration states (A ₂	ro-vibrational sym	metry)			
44	5985.28	5985.58	101	49	(025) ₀	10	(223) ₀	10	(313) ₀
45	6013.84	6013.71	101	74	(501) ₀	22	(303) ₀	3	(105) ₀
46	6073.20	6071.34	101	28	(115) ₀	27	(313) ₀	23	(223) ₀
51	6272.97	6271.24	101	44	(205) ₀	28	(403) ₀	12	(115) ₀
54	6394.42	6394.58	101	38	(233) ₀	23	(143) ₀	11	(035) ₀
58	6558.19	6560.01	101	37	(035) ₀	13	(323) ₀	12	(125) ₀
59	6611.19	6610.71	101	69	(511) ₀	16	(313) 0	6	(007) ₀
60	6644.93	6642.85	101	35	(233) ₀	12	(323) ₀	10	(431) ₀
64	6796.01	6797.32	101	38	(125) ₀	16	(413) ₀	15	(215) ₀
66	6828.44	6826.45	101	38	$(431)_{0}$	20	(323)o	11	(233)

Theoretical prediction of the lowest rovibrational levels of excited states corresponding to the observed bands of ¹⁸O₃ and their global and normal mode assignment.

 N_V : global ranking number for A₁ and B₁ vibrational states. Calc_1: variational predictions from the PES V^M of Ref. [40] in internal coordinates (r_1, r_2, θ) ; Calc_2: non-empirical effective Hamiltonian predictions derived from the PES of Ref. [41] in normal coordinates q_1, q_2, q_3 using 8th order contact transformations [42]; $J K_a K_c$: rotational quantum numbers; Columns P_1, P_2, P_3 indicate the first three mixing coefficients (in%) according to Eqs. (1) and (2) Columns W_1, W_2, W_3 indicate the corresponding vibration normal mode quantum numbers (v_1, v_2, v_3). The subscript '0' of (v_1, v_2, v_3)₀ means that these contributions correspond to the harmonic normal mode basis.

[9,15]. The second type of assignment is the traditional normal mode assignment relying on $v_1v_2v_3$ labels corresponding to the major normal mode contribution in the expansion (1).

According to the nuclear spin statistics only ro-vibrational levels of A₁ and A₂ symmetry types are allowed in the case of ¹⁶O₃ and ¹⁸O₃ [9,15]. This means that the lowest allowed levels correspond to $\{(v_1)(v_2)(v_3)_{even} [JK_aK_c = 000]\}_{A_1}$ for A₁ type vibrations and to $\{(v_1)(v_2)(v_3)_{odd} [JK_aK_c = 101]\}_{A_2}$ for B₁ type vibrations. Predictions for these lowest allowed levels corresponding to the bands observed in this work are given in Table 1 together with their three major mixing coefficients P_n associated with normal mode contributions $W_n = |v_1v_2v_3\rangle_0$ for n = 1,2,3.

3. Experiment

For this work, the CW-CRDS spectra of ¹⁸O₃ were recorded with the same CW-CRDS spectrometer as used in our previous studies of the main ozone isotopologue [29-34] and of other species of atmospheric importance such as H₂O [45,46] and ¹²CO₂ [47,48]. The detailed description of the fibered set up can be found in Refs. [29,44,48]. Briefly, the full $5900-7000 \text{ cm}^{-1}$ range was covered with a set of about 50 Distributed Feed-Back (DFB) laser diodes. The tuning range of each DFB laser is about 7 nm (\sim 30 cm⁻¹) for a temperature variation from -10 to 65 °C. The typical sensitivity (noise equivalent absorption $\alpha_{min} \sim 2-5 \times 10^{-10} \ cm^{-1}$), the wide spectral coverage and the four to five decades linear dynamic range make this CW-CRDS spectrometer an ideal tool for high sensitivity absorption spectroscopy in the important atmospheric window of transparency around 1.5 µm. The typical ring down times are on the order of 60 µs. A few hundreds ring down events are averaged for each spectral data point, and the duration of a temperature scan is about 70 min for each DFB laser. The pressure, measured by a capacitance gauge, as well as the ring down cell temperature, was monitored during the spectrum acquisition. Note that the DFB line width is much smaller than the Doppler broadening (about $10 \times 10^{-3} \text{ cm}^{-1}$ (FWHM) at 6000 cm⁻¹), so that the observed resolution is mostly Doppler limited since the pressure broadening is about 5×10^{-3} cm⁻¹ (FWHM) at a typical pressure of 20 Torr.

The 140 cm long CRDS cell fitted by the super mirrors was filled with a typical pressure of 30 Torr of ¹⁸O enriched oxygen. The quasi complete conversion of oxygen in ozone (P = 20 Torr) was obtained

after a few minutes with a silent electric discharge (12 kV, 400 Hz). The ¹⁸O enrichment of the molecular oxygen used for the ozone synthesis was 95%, leading to an 86% partial pressure of the ¹⁸O₃ homogeneous isotopologue. Consequently, the other minor isotopic species – mainly ¹⁶O¹⁸O¹⁸O and ¹⁸O¹⁶O¹⁸O – contributed to the absorption spectra through many weak absorption lines superimposed on the ¹⁸O₃ spectrum. The spectrum analysis was further complicated by the presence of absorption lines of several impurities which were generally ¹⁸O enriched: H₂¹⁸O (and H₂¹⁶O), ¹²C¹⁸O, ¹⁶O¹²C¹⁸O and ¹²C¹⁸O transitions were identified on the basis of the HITRAN database [49] and of our recent CW-CRDS investigation of the CO₂ spectrum [48].

The wavenumber calibration of the spectrum is based on the wavelength values measured by a wavemeter (Burleigh WA1640) during the DFB frequency scan. When necessary, it is further refined by simply stretching the frequency scale (with an origin at 0) in agreement with highly accurate positions of reference lines due to impurities. H₂¹⁸O and H₂¹⁶O line positions as provided by the HITRAN database [49] were used as reference lines. The obtained absolute wavenumber calibration is estimated accurate within 2×10^{-3} cm⁻¹.

The entire spectrum range of our recordings with band assignments and impurity absorption features is shown in Fig. 1.

4. Band centres determined from the rovibrational analysis of the CRDS spectra

Among triatomic atmospheric molecules, the ozone molecule is a relatively heavy one with dense rotational structure. In the case of an absorption band at room temperature, depending on the band type, the most intense lines correspond to *J* values in the 15–35 range. As seen in Table 1, most of the bands falling in our spectral region correspond to 7 or 8 vibration quanta of the excited state. These bands are extremely weak and a complete set of transitions from low-populated levels with small *J* values could not be detected for some of them, even with the achieved CW-CRDS sensitivity. This makes difficult an experimental determination of the band centres.

The centre of a rovibrational band is defined as the $J \rightarrow 0$ extrapolation of the upper state energies. This $J \rightarrow 0$ limit could be accurately determined by following line series in *P*, *Q* or *R* branches in a sufficiently large range of *J*, *K*_a values. This implied the full rovibra-

Fig. 1. Overview of the CW-CRDS spectrum of ${}^{18}O_3$ between 5925 and 6850 cm⁻¹. The ${}^{18}O_3$ sample pressure was about 18 Torr. The displayed spectrum was obtained by concatenating 39 individual spectra recorded successively with different DFB laser sources (the corresponding ranges are shown with different colors/grey levels). The CW-CRDS spectrum is observed above the baseline fixed by the reflectivity of the used super mirrors. The A-type parallel bands are indicated and assigned with the usual normal mode label. Note the rapid decrease of their band strength with the energy. The stronger absorption bands due to impurities (CO₂ and H₂O) are also indicated.

tional assignment of the recorded spectrum. As illustrated in our previous analysis of the CW-CRDS spectrum of ¹⁶O₃ case [29–34], the assignment and modelling of the thousands of ¹⁸O₃ lines observed between 5900 and 7000 cm⁻¹ represents a considerable task. The very large number of possible rovibrational resonance interactions, in particular with dark states, made an accurate modelling in the frame of the effective Hamiltonian, very difficult. The obtained spectra, displayed in Fig. 1, were divided in five spectral intervals corresponding to interacting bands systems which could be treated independently: 5930-6080, 6170-6280, 6320-6400, 6490–6650 and 6745–6840 cm⁻¹. Conceptually, the assignment procedure had many features in common with those encountered for ¹⁶O₃ spectra [29–34]. However as a consequence of the irregular behaviour of the isotopic shifts (see below), the resonance situation is in fact quite different. The detailed presentation of these analyses and of the derivation of the rotational, centrifugal distortion and resonance coupling parameters is beyond the scope of this letter and will be published separately. As an illustration of the achieved results, we include in Table 2 the total number of transitions assigned for the different bands. Here, we limit our discussion to the derivation of the band centre with the best possible accuracy.

The simultaneous modelling of the bands belonging to coupled band systems made it possible to identify the levels perturbed by resonance interactions. The line series remaining after the exclusion of these strongly perturbed levels were fitted using an isolated band model i.e. by using the standard Watson rotational Hamiltonian. The band centre was then obtained through the $J \rightarrow 0$ extrapolation. For most of the bands a sufficient accuracy of the band centre was achieved using line series truncated at I and K_a maximum values of 20 and 4, respectively. In the case of the $v_1 + 3v_2 + 4v_3$ band, rovibrational lines up to I = 30 have been included into the fit because the number of lines observed for $I \leq 20$ was too limited to achieve a sufficient accuracy on the band centre determination. The obtained band centres are listed in Table 2 with their respective accuracy taken as the rms deviation between the truncated (see above) sets of observed and calculated line positions for each considered band. The uncertainty for all observed retrieved band centres is smaller than 3×10^{-2} cm⁻¹ which is largely sufficient in comparison with the isotopic shifts which are observed to vary between 296 and 372 cm⁻¹ in our range.

Once the experimental value of the band centre was obtained, the global (Γ, N_V) vibrational assignment was rather straightforward relying on the good agreement between predicted and experimentally determined band centres (Table 2). (The rms value of the deviations is 1.1 cm⁻¹). The situation is more complicated for the normal mode assignment. As stated in previous works about ¹⁶O₃ [29–34,40], a normal mode labelling becomes ambiguous for some high vibration states above half the dissociation energy. The main reason is a strong mixing of the basis wave-functions due to various anharmonic interactions. Table 1 shows that for many bands no normal mode contribution is truly dominant. In addition to the global (Γ, N_V) assignment, we provide in Table 1 the normal mode vibrational quantum numbers (v_1, v_2, v_3) corresponding to the major contributions in Eq. (1). Since for small values of the I rotational quantum numbers, the normal mode mixing coefficients remain nearly unchanged, we use the decomposition given in Table 1 for the normal mode assignment of the observed bands. Labelling the vibrational bands with the dominant (v_1, v_2, v_3) state follows the

Table 2

Bands of ¹⁸O₃ analysed in the CW-CRDS spectrum between 5900 and 7000 cm⁻¹ and comparison with the calculations from the PES.

· · ·	-		-					
Observed bands:	Normal mode assignment of the	Global band	Number of assigned	Band centres				
spectroscopic notations	upper vibration state	assignment	ro-vib. lines	$\sigma(\exp.)$ (cm ⁻¹)	dσ (10 ⁻³ cm ⁻¹)	Calc_1 (cm ⁻¹)	obs-calc (cm ⁻¹)	
B-type bands								
$4v_1 + 3v_2$	(430)	$\mathbf{65A} \leftarrow \mathbf{1A}$	32	6011.836	9	6012.31	-0.5	
$2v_1 + v_2 + 4v_3$	(214)	$\textbf{66A} \leftarrow \textbf{1A}$	184	6047.101	14	6047.95	-0.8	
$v_2 + 6v_3$	(016)	$71A \gets 1A$	91	6245.039	11	6245.81	-0.7	
$v_1 + 3v_2 + 4v_3$	(134/224)	$\text{82A} \leftarrow \text{1A}$	339	6592.661	14	6591.83	0.9	
A-type bands								
$2v_2 + 5v_3$	(025)	$44B \gets 1A$	507	5984.439	6	5984.58	-0.1	
$5v_1 + v_3$	(501)	$45B \gets 1A$	567	6013.048	8	6013.12	-0.1	
$v_1 + v_2 + 5v_3$	(115/313/223)	$46B \gets 1A$	599	6072.132	6	6072.49	-0.4	
$2v_1 + 5v_3$	(205/403)	$51B \gets 1A$	659	6270.604	7	6272.27	-1.7	
$2v_1 + 3v_2 + 3v_3(I)$	(233/143)	$54B \gets 1A$	344	6392.214	9	6393.72	-1.5	
$3v_2 + 5v_3$	(035)	$\mathbf{58B} \leftarrow \mathbf{1A}$	574	6556.788	2	6557.49	-0.7	
$5v_1 + v_2 + v_3$	(511)	$59B \gets 1A$	254	6611.039	34	6610.48	0.6	
$2v_1 + 3v_2 + 3v_3(II)$	(233/323)	$60B \gets 1A$	355	6642.896	21	6644.23	-1.3	
$v_1 + 2v_2 + 5v_3$	(125/413/215)	$64B \gets 1A$	385	6796.463	6	6795.31	1.2	
$4v_1 + 3v_2 + v_3$	(431/323)	$\textbf{66B} \gets \textbf{1A}$	165	6825.512	6	6827.74	-2.2	

In case of a large normal mode mixing of the upper states, several contributions are given in column 2 according to Table 1. Column 3 represents the global unambiguous assignment (see text), $d\sigma$ is the uncertainty estimation for the experimental band centre determination. The bands at 6392 and 6643 cm⁻¹ have the same principal normal mode contributions (Table 1) for the upper states.

spectroscopic tradition of ozone studies, but one should keep in mind that these 'nominative' notations may be ambiguous at high energy range: for instance, the two bands at 6392 and 6643 cm⁻¹ correspond to upper states having the same principal normal mode contribution (see Table 1). However the knowledge of the normal mode mixture is of great help for a better understanding of possible resonance interactions.

Note that the local mode labeling [50] does not provide a satisfactory alternative in a sufficiently wide frequency range for the ozone vibrations either [40], because strong interactions with the bending mode break down the pure stretching model for the normal-to-local mode transitions.

5. Discussion: isotopic effect on band centres and assignments

Fig. 2 shows a comparison of the simulated spectra using assigned rovibrational lines for ¹⁸O₃ (upper panel) and ¹⁶O₃ (lower panel) in the region of the $5v_1 + v_3$ band as obtained in this work and in Ref. [33], respectively. On average, the ¹⁸O₃ bands lie at about 340 cm⁻¹ below the corresponding ¹⁶O₃ bands, but it is clear that individual isotopic shifts are not regular. For instance, the overlapping between the $5v_1 + v_3$ and $2v_2 + 5v_3$ bands is quite different for the two isotopologues.

Irregular variations of isotopic shifts due to isotopic substitutions have been observed for other molecules; however contrary to these previous studies the ${}^{16}O_3 \rightarrow {}^{18}O_3$ substitution is *homogeneous* that makes this situation rather unique. Indeed, usually an isotopic substitution changes the mass dependent normal vibrations which then probe different directions onto the molecular PES. In our case, the **L** matrices which link internal and normal coordinates are exactly proportional, the ratio of the matrix elements \mathbf{L}_{nm} and of the harmonic frequencies ω_k being all equal:

$$\mathbf{L}_{nm}({}^{16}\mathbf{O}_3)/\mathbf{L}_{nm}({}^{18}\mathbf{O}_3) = \omega_k({}^{16}\mathbf{O}_3)/\omega_k({}^{18}\mathbf{O}_3)$$
$$= \sqrt{m({}^{18}\mathbf{O})/m({}^{16}\mathbf{O})} = 1.0608$$
(2)

independently of *n*, *m*, *k* = 1,2,3. Consequently the *forms of normal mode vibrations are identical* for ¹⁶O₃ and ¹⁸O₃. In these conditions, if one assumes that ozone normal modes form regular stretching Darling–Dennison (DD) polyad sequences (due to the $\omega_1 \approx \omega_3$ resonance), these polyad structures are expected to be very similar for both isotopic species and consequently the isotopic shift is expected to be regular as well. This is not what we observe in our energy range. Considering that the change of the relative mass is small, this result is particularly remarkable.

Isotopic substitutions modify importantly the effect of resonance interactions leading, in some cases, to different vibrational mixing and then different vibrational labelling as illustrated by the highest frequency bands of Fig. 2. Note that upper states of these two bands have the same global assignment, 46B, but the

Fig. 2. Comparison of the simulated spectra using assigned ro-vibrational lines for ${}^{18}O_3$ (upper panel) and ${}^{16}O_3$ (lower panel) in the region of the $5\nu_1 + \nu_3$ bands. The global and normal mode band assignments are shown. The vertical axe represents the absorption coefficient in arbitrary units at the same scale for both isotopologues.

normal mode assignments belong to different stretching polyads: $(v_1 + v_3 = 5, v_2 = 2)$ for ¹⁶O₃ and $(v_1 + v_3 = 6, v_2 = 1)$ for ¹⁸O₃. In terms of normal modes these are strongly mixed states (see Table 1 and [33]) with the extra-polyad contributions different for ¹⁶O₃ and ¹⁸O₃. Extra-polyad interactions responsible for this reassignment depend on accidental coincidences of polyad patterns corresponding to different v_2 values. This suggests that such interactions localised in narrow energy intervals and distributed in an irregular way are very sensitive to mass changes even though the latter are small and homogeneous. In order to verify this suggestion, we have proceeded with the following test: band centres were calculated *via* the vibrational extrapolation by the polyad effective Hamiltonian model following increasing values of $P = v_1 + v_3$. This simplified DD model contains all intra-polyad coupling terms $\langle v_1 \pm 2 | H^{eff} | v_3 \mp 2 \rangle$, $\langle v_1 \pm 4 | H^{eff} | v_3 \mp 4 \rangle$, accounting for the Darling– Dennisson $\omega_1 \approx \omega_3$ resonance but excludes all extra-polyad couplings terms. The computed centre for the $45B \leftarrow 1A$ band (in the centre of Fig. 2) was in excellent agreement with our full calculations and with experiment for both isotopologues, the error being less than 1 cm⁻¹. This is consistent with the normal mode decomposition of Table 1, which does not contain extra-polyad contributions for the 45B state. But the situation is quite different for other

Fig. 3. Isotopic shift due to the ${}^{16}O_3 \rightarrow {}^{18}O_3$ homogeneous isotopic substitution for the centers of the ${}^{18}O_3$ bands observed by CW-CRDS between 5900 and 6850 cm⁻¹. *Upper panel* (diamonds): wavenumber difference between the band centres having the same global assignment; *Lower panel* (circles): wavenumber difference between the centers of bands associated with the most similar compositions of the normal mode upper states. See text of the Section 5 explaining the distinctions between filled, grey and open symbols.

two bands displayed in Fig. 2. For the high energy band $46B \leftarrow 1A$, the DD polyad model gave the same normal mode assignment $v_1 + v_2 + 5v_3$ for both isotopologues contrary to full calculations (Tables 1 and 2, and [33]), the error being -20 cm^{-1} for $^{16}O_3$ and -10 cm^{-1} for $^{18}O_3$. For the low energy band $44B \leftarrow 1A$, the DD polyad model gave the error $+17 \text{ cm}^{-1}$ for $^{16}O_3$ and $+8 \text{ cm}^{-1}$ for $^{18}O_3$ with the sign opposite to the previous case. For both bands the test result is consistent with the normal mode decomposition of wave functions (Table 1 and [33]), because the extrapolyad contributions are larger for $^{16}O_3$ than for $^{18}O_3$. This means that accidental extrapolyad normal mode couplings contribute to the isotopic shift in a rather irregular manner.

Fig. 3 represents the energy dependence of the isotopic shift in two ways:

(i) in the upper panel, we plotted the difference of the ${}^{16}O_3$ and ${}^{18}O_3$ band centres corresponding to the same (Γ , N_V) global assignment. All observed ${}^{18}O_3$ bands given in Table 2 were included in this comparison. The filled symbols stand for the partner bands of the ${}^{16}O_3$ isotopologue which were directly observed in Refs. [29–34], the grey-filled symbols correspond to the ${}^{16}O_3$ values which were determined via 'dark' state resonance perturbations

Fig. 4. Principal normal mode mixing coefficients for upper vibration states involved in Fig 3. *Upper panel*: ¹⁸O₃ states observed in this work. *Lower panel*: corresponding ¹⁶O₃ states (lower panel of Fig. 3). The vertical axe represents the mixing coefficients P_1 for the normal mode expansion of the wave-functions, Eqs. (1) and (2). Triangles correspond to ψ for the $[JK_aK_c] = [000]$ level of A₁ vibration states. Stars correspond to ψ for the lowest possible $[JK_aK_c]=[101]$ level of B₁ vibration states.
as described in Refs. [29–34], open symbols correspond to the bands which have not yet been observed in ${}^{16}O_3$ spectra. In the latter case, we used calculated positions for ${}^{16}O_3$ which proved to be sufficiently accurate at the scale of the Figure.

(ii) in the lower panel of Fig. 3, the comparison of the band centres is based on the normal mode assignments which are traditionally employed in ozone spectroscopy: we associated the bands of ${}^{16}O_3$ and ${}^{18}O_3$ for which the upper states correspond to the most similar normal mode mixtures. As stated before, this procedure leads to ambiguities in some cases because the resonance situations change quite substantially from one isotopologue to the other. This is clearly observed in Fig. 4, where the first expansion coefficients for the partner bands of ${}^{16}O_3$ and ${}^{18}O_3$ are plotted. Certain correlations are noted between the irregular variation of P_1 (Fig. 4) and that of the isotopic shifts (Fig. 3).

In conclusion, fourteen new band centres of ¹⁸O₃ were determined from high-sensitive CRDS observations. The *rms* deviation of theoretical predictions from observed band centres is 1.1 cm^{-1} confirming the validity of the empirical PES of Refs. [40,41] for this isotopologue. In particular, the three highest ozone bands observed so far at high resolution with upper states (Γ , N_V) = (A₁,82), (B₁,64), (B₁,66), which were beyond the accessible range for ¹⁶O₃, are also in a good agreement with calculations.

Previous studies of ¹⁸O₃ spectra [15,19,21,22] below 5000 cm⁻¹ suggested that isotopic shifts varied smoothly according to the simple relation for harmonic vibration frequencies, Eq. (2), allowing for a direct transfer of the vibrational labelling to the partner bands. This is no more valid in our spectral range reaching 82% of the ozone dissociation energy. The variation of the isotopic shifts still depends on normal mode quantum numbers (v_1, v_2, v_3) but appears to be more irregular as a consequence of drastic changes in the resonance interactions pattern and in the normal mode composition of the considered states. As discussed above, the extrapolyad interactions play an important role in such behaviour. This work gives thus an experimental evidence for the strong mixing of the normal modes vibrations for some ozone states in the $6000-7000 \text{ cm}^{-1}$ range. The coupling of normal modes should also have a considerable impact on the probabilities for dipole excitation channels in this high energy range.

Very few molecules allow studying effects of *homogeneous* isotopic substitutions, and to our knowledge for none of them a sufficiently large set of experimental data on high-energy vibrations was yet available. A further step of this study will be to determine a full set of accurate rotational constants, centrifugal distortion, dipole moment transition and resonance coupling parameters as well as 'dark' state perturbations for all bands involved in order to produce a synthetic spectrum. In addition, we plan to study the isotopic effects on the spectrum of the non-homogeneously substituted species ($^{16}O^{18}O^{16}O$, $^{18}O^{16}O^{18}O$, $^{16}O^{16}O^{18}O$, and $^{16}O^{18}O^{18}O$) for which even stronger changes are expected.

Acknowledgements

We acknowledge the support from a collaborative program between CNRS-France and RFBR-Russia (PICS Grant No. 05-05-22001). We are grateful to S. Mikhailenko for stimulating discussions. The support from IDRIS computer centre of CNRS France and Champagne-Ardennes regional computer centre for global calculations is also acknowledged.

References

- [1] Y.Q. Gao, R.A. Marcus, Science 293 (2001) 259.
- [2] C.H. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky, Phys. Chem. Chem. Phys. 3 (2001) 4718.
- [3] A. Miklavc, S.D. Peyerimhoff, Chem. Phys. Lett. 359 (2002) 55.

- [4] R. Hernandez-Lamoneda, M.R. Salazar, R.T. Pack, Chem. Phys. Lett. 355 (2002) 478.
- [5] R. Schinke, S.Yu. Grebenshchikov, M.V. Ivanov, P. Fleurat-Lessard, Annu. Rev. Phys. Chem. 57 (2006) 625.
- [6] M. Lopez-Puertas et al., C. R. Physique 6 (2005) 848.
- [7] J.-M. Flaud, C. Camy-Peyret, A. Barbe, C. Secroun, P. Jouve, J. Mol. Spectrosc. 80 (1980) 185.
- [8] C. Camy-Peyret, J.-M. Flaud, M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, J.J. Plateaux, A. Barbe, J. Mol. Spectrosc. 141 (1990) 134.
- [9] J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, Atlas of Ozone Line Parameters from Microwave to Medium Infrared, Academic Press, Boston, 1990.
- [10] A. Barbe, S.N. Mikhailenko, VI.G. Tyuterev, A. Hamdouni, J.J. Plateaux, J. Mol. Spectrosc. 171 (1995) 583.
- [11] S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, L. Régalia, J.J. Plateaux, J. Mol. Spectrosc. 180 (1996) 227.
- [12] A. Barbe, J.J. Plateaux, S.N. Mikhailenko, VI.G. Tyuterev, J. Mol. Spectrosc. 185 (1997) 408.
- [13] A. Barbe, A. Chichery, Vl.G. Tyuterev, S.A. Tashkun, S.N. Mikhailenko, J. Phys. B 31 (1998) 2559.
- [14] J.I. Steinfeld, S.M. Adler-Golden, J.W. Gallagher, J. Phys. Chem. Ref. Data 16 (1987) 911.
- [15] J.-M. Flaud, R. Bacis, Spectrochim. Acta A 54 (1998) 3.
- [16] S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, A. Chichery, Atmos. Ocean Opt. 12 (1999) 771.
- [17] C.P. Rinsland et al., JQSRT 82 (2003) 207.
- [18] C. Camy-Peyret, J.-M. Flaud, A. Perrin, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, J. Mol. Spectrosc. 118 (1986) 345.
- [19] A. Perrin, A.M. Vasserot, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, J. Mol. Spectrosc. 143 (1990) 311.
- [20] D. Consalvo, A. Perrin, J.-M. Flaud, C. Camy-Peyret, A. Valentin, Ch. Chardonnet, J. Mol. Spectrosc. 168 (1994) 92.
- [21] A. Chichery, A. Barbe, VI.G. Tyuterev, M.-T. Bourgeois, J. Mol. Spectrosc. 206 (2001) 1.
- [22] A. Chichery, A. Barbe, Vl.G. Tyuterev, J. Mol. Spectrosc. 206 (2001) 14.
- [23] M.-R. De Backer-Barilly, A. Barbe, VI.G. Tyuterev, Atmos. Ocean Opt. 16 (2003) 183.
- [24] M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, M.-T. Bourgeois, J. Mol. Spectrosc. 221 (2003) 174.
- [25] A. Chichery, A. Barbe, VI.G. Tyuterev, S.A. Tashkun, J. Mol. Spectrosc. 205 (2001) 347.
- [26] A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, S.A. Tashkun, Appl. Opt. 42 (2003) 5136.
- [27] S.N. Mikhailenko, Yu. Babikov, Vl.G. Tyuterev, A. Barbe, Comput. Technol. 7 (2002) 64 (in Russian).
- [28] H. Wenz, W. Demtroder, J.-M. Flaud, J. Mol. Spectrosc. 209 (2001) 267.
- [29] M.-R. De Backer-Barilly, A. Barbe, VI.G. Tyuterev, D. Romanini, B. Moeskops, A. Campargue, J. Mol. Struct. 780-781 (2006) 225.
- [30] A. Campargue, S. Kassi, D. Romanini, A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, I. Mol. Spectrosc. 240 (2006) 1.
- [31] A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, A. Campargue, D. Romanini, S. Kassi, J. Mol. Spectrosc. 242 (2007) 156.
- [32] S. Kassi, A. Campargue, M.-R. De Backer-Barilly, A. Barbe, J. Mol. Spectrosc. 244 (2007) 122.
- [33] A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, S. Kassi, A. Campargue, J. Mol. Spectrosc. 246 (2007) 22.
- [34] A. Campargue, M.-R. De Backer-Barilly, A. Barbe, VI.G. Tyuterev, S. Kassi, Phys. Chem. Chem. Phys. 10 (2008) 2925.
- [35] J. Zúñiga, J.A.G. Picón, A. Bastida, A. Requena, J. Chem. Phys. 126 (2008) 1244305.
- [36] R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererova, M.S.C. Farantos, J. Chem. Phys. 116 (2002) 9749.
- [37] R. Schinke, P. Fleurat-Lessard, J. Chem. Phys. 121 (2004) 5789.
- [38] D. Babikov, B.K. Kendrick, R.B. Walker, R. TPack, P. Fleurat-Lesard, R. Schinke, J. Chem. Phys. 118 (2003) 2577.
- [39] S.Yu. Grebenshchikov, R. Schinke, P. Fleurat-Lessard, M. Joyeux, J. Chem. Phys. 119 (2003) 6512.
- [40] VI.G. Tyuterev, S.A. Tashkun, P. Jensen, A. Barbe, T. Cours, J. Mol. Spectrosc. 198 (1999) 57.
- [41] VI.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, P. Jensen, T. Cours, A. Barbe, M. Jacon, Chem. Phys. Lett. 316 (2000) 271.
- [42] VI.G. Tyuterev, S.A. Tashkun, H. Seghir, SPIE Proc. Ser. 5311 (2004) 164.
- [43] J. Lamouroux, S.A. Tashkun, VI.G. Tyuterev, Chem. Phys. Lett. 452 (2008) 225.
 [44] J. Morville, D. Romanini, A.A. Kachanov, M. Chenevier, Appl. Phys. D78 (2004)
- 465.
- [45] P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, VI.G. Tyuterev, J. Mol. Spectrosc. 227 (2004) 90.
- [46] S.N. Mikhailenko, W. Le, S. Kassi, A. Campargue, J. Mol. Spectrosc. 244 (2007) 170.
- [47] B.V. Perevalov, S. Kassi, D. Romanini, V.I. Perevalov, S.A. Tashkun, A. Campargue, J. Mol. Spectrosc. 238 (2006) 241.
- [48] B.V. Perevalov, S. Kassi, V.I. Perevalov, S.A. Tashkun, A. Campargue, J. Mol. Spectrosc., in press, doi: 10.1016/j.jms.2008.06.012.
- [49] L.S. Rothman et al., JQSRT 96 (2005) 139.
- [50] M. Kellmann, J. Chem. Phys. 83 (1985) 3843.

UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE et INSTITUT D'OPTIQUE ATMOSPHERIQUE DE TOMSK

THESE

(version russe)

Presentée à

L'U.F.R. Sciences Exactes et Naturelles

Pour l'obtention du titre de

DOCTEUR DE L'UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE

Spécialité : PHYSIQUE

Par

Evgeniya STARIKOVA

Sujet de la thèse

CONTRIBUTION A L'ETUDE DES ETATS EXCITES ROVIBRATIONELS DE D₂O ET O₃ PAR L'ANALYSE DE SPECTRES INFRAROUGES HAUTE RESOLUTION

Soutenue: le 16 juin 2009 devant le jury:

C. CAMY-PEYRET J.-M. FLAUD A.V. NIKITIN O. BOYARKIN A. CAMPARGUE S. MIKHAILENKO M.-R. DE BACKER-BARILLY Directeur de Recherche CNRS, Rapporteur Directeur de Recherche CNRS, Rapporteur Docteur en Physique, IAO, Tomsk, Examinateur Maitre d'Enseignement et de Recherche, Suisse, Examinateur Directeur de Recherche CNRS, Examinateur Docteur en Physique, IAO, Tomsk, Co-directeur de Thèse Professeur de l'Universite de Reims, Co-directrice de Thèse

Содержание

Введение	4
Глава 1 Теоретические основы колебательно-вращательной спектроскопии	15
§1.1 Уравнение Шрёдингера для движения ядер в изолированном электронном состоянии: адиабатическое приближение	16
§1.2 Глобальные вариационные методы решения колебательно- вращательного уравнения Шрёдингера	19
§1.3 КВ гамильтониан в нормальных координатах. Последовательные приближения	22
§1.4 Эффективные модели для колебательно-вращательных гамильтонианов	25
§1.5 Контактные преобразования	28
§1.6 Эффективный вращательный гамильтониан. Редукция. Уотсоновское представление	35
§1.7 Резонансные модели: Кориолисовы и ангармонические взаимодействия. Смешивание базисных волновых функций	38
§1.8 Нежесткие молекулы. Трудности, связанные с использованием традиционной модели гамильтониана для описания их энергетических состояний	45
§1.9 Эффективный вращательный гамильтониан в виде производящих функций	48
§1.10 Симметрия колебательно-вращательных состояний и правила отбора	54
§1.11 Интенсивности спектральных линий и моменты дипольных переходов	68
§1.12 Прямая и обратная спектроскопические задачи	73
Глава 2 Исследование колебательно-вращательной структуры	78

спектров излучения молекулы $D_2^{16}O$

§2.1 Введение	79
§2.2 Общие сведения о молекуле воды	81
§2.3 Колебательно-вращательные спектры молекулы D ₂ O	84
§2.4 Высокотемпературные эмиссионные спектры D ₂ ¹⁶ O. Программы, используемые для работы с ними	91
§2.5 Анализ эмиссионного изотополога воды спектра D ₂ ¹⁶ O в диапазоне 320-860 см ⁻¹ . Вращательная структура колебательных состояний (000) и (010)	102
§2.6 Вращательная структура первой триады колебательных состояний (100), (020) и (001) молекулы D ₂ O	112
§2.7 Анализ второй триады колебательных состояний (110), (030) и (011) молекулы $D_2^{16}O$	128
§2.8 КВ спектры D ₂ O: подтверждение идентификации уровней энергии, определенных по спектрам поглощения, при помощи горячих эмиссионных переходов	132
Глава 3 Исследование CW-CRDS спектра озона ¹⁸ O ₃ в диапазоне 5930-7000 см ⁻¹	142
§3.1 Введение	143
§3.2 Общие сведения о молекуле озона	146
3.3 CW-CRDS спектр озона ¹⁸ O ₃ в диапазоне 5930-7000 см ⁻¹	149
§3.4 "Глобальные" (вариационные) и "локальные" (эффективные) расчеты в спектроскопии озона: метод идентификации нормальных мод из потенциала	151
§3.5 Анализ CW-CRDS спектра озона в диапазоне 5930-6100 см ⁻¹	160
§3.6 Анализ CW-CRDS спектра озона в диапазоне 6200-6400 см ⁻¹	171
§3.7 Анализ CRDS-спектра озона в диапазоне 6490-6700 см ⁻¹	182
§3.8 Анализ CRDS-спектра озона в диапазоне 6700-6900 см ⁻¹	192

§3.9 Изотопический эффект для центров полос при переходе ¹⁶ O ₃ → ¹⁸ O ₃ и изменение их спектроскопической идентификации	198
Заключение	204
Литература	207
Приложение 2.1	226
Приложение 2.2	234
Приложение 2.3	248
Приложение 2.4	250
Приложение 2.5	264
Приложение 2.6	266
Приложение 2.7	268
Приложение 2.8	271
Приложение 3.1	273
Приложение 3.2	279
Приложение 3.3	281
Приложение 3.4	384
Приложение 3.5	286
Приложение 3.6	288
Приложение 3.7	294
Приложение 3.8	296
Приложение 3.9	298

Введение

Колебательно-вращательные спектры представляют собой уникальный информации об по полноте источник энергетических уровнях, внутримолекулярной потенциальной функции, параметрах дипольного момента, поляризуемости и взаимодействии молекул с окружающими частицами. В связи с этим, исследование колебательно-вращательных (КВ) спектров молекул имеет важное значение для успешного решения различных задач физики, астрофизики, атмосферной оптики, лазерной техники, метеорологии.

Необходимо заметить, что в последние годы, в связи с быстрым развитием и широким внедрением в научно-исследовательскую практику лазерной и Фурье-спектроскопии, значительно возросли возможности получения высокоточной информации различных 0 молекулярных характеристиках, включая характеристики высоковозбужденных КВ состояний. Существенно возросли объемы получаемой экспериментальной информации. Повышение точности и чувствительности спектральной аппаратуры, продвижение в новые спектральные диапазоны привело к тому, что интерпретация спектров становится все более трудоёмкой и требует намного больше времени, чем их экспериментальная регистрация. Анализ спектров высокого разрешения нежестких молекул в настоящее время невозможен основе ранее используемых, достаточно простых на теоретических моделей (например, модели гармонического осциллятора и жесткого волчка в КВ спектроскопии). Необходимо привлекать более сложные в физическом и математическом плане методы и модели: неполиномиальные модели эффективных операторов гамильтонианов и нелинейные дипольного момента, методы решения обратных спектроскопических задач, *ab initio* расчеты высокого уровня и глобальные

вычисления полного колебательно-вращательного спектра из потенциальных и дипольных поверхностей молекулы.

Первым объектом данной диссертации является молекула $D_2^{16}O$. В работе представлены результаты теоретического исследования вращательной структуры спектров излучения паров воды (изотополог $D_2^{16}O$) в дальней и средней инфракрасной (ИК) области спектра. Актуальность такого рода исследования обусловлена в первую очередь тем, что детальное знание КВ структуры спектров молекул необходимо для решения широкого круга научных и практических задач, в таких областях науки, как молекулярная физика, химия, атмосферная оптика, лазерная техника, газоанализ, экология и ряд других.

Представляемая работа является одной из первых по исследованию эмиссионных спектров молекулы D₂¹⁶О при высоких температурах. До этого в литературе большая часть работ была посвящена исследованию спектров поглощения молекулы, зарегистрированных при комнатной температуре. Спектральные диапазоны, исследовавшиеся в данной работе, обусловлены переходами между колебательными состояниями в молекуле D₂¹⁶O, которые весьма далеки от энергии диссоциации. Однако высокотемпературные эмиссионные спектры являются более богатым источником информации о высоковозбужденных КВ уровнях энергии по сравнению со спектрами поглощения. Это даёт возможность значительно расширить набор вращательных уровней энергии и улучшить точность информации об уже известных линиях и уровнях. Вторым моментом, определяющим новизну данной работы, является использование метода производящих функций для моделирования вращательной структуры энергетических уровней молекулы D₂¹⁶O. В ранее проведенных исследованиях спектра этой молекулы применялся гамильтониан Уотсона в виде стандартного, полиномиального (по степеням оператора углового момента) разложения. Отметим, что параллельно с нашей работой, группа спектроскопистов из Нижнего

Новгорода (Н. Зобов, С. Ширин, и др.) проводили анализ Фурье-спектра излучения $D_2^{16}O$ области 380 - 1725 см⁻¹, зарегистрированного при температуре 1500° С. В диссертации проводится сравнение полученных нами результатов с результатами этих авторов.

Вторым объектом представляемой работы является изотопическая модификация молекулы озона $^{18}O_3$. Озон является одним из важнейших компонентов земной атмосферы и в значительной степени определяет характер поглощения солнечной радиации в ней. Исследования спектров озона и его изотопических модификаций в особенности в области высоких энергий играют важную роль для решения ряда фундаментальных задач динамики высоковозбужденных квантовых состояний и для приложений, связанных с химической кинетикой и реакциями изотопического обмена, в том числе и в атмосферных условиях [1-3].

Понимание процессов, связанных с разрушением озонного слоя в атмосфере требует точного моделирования формирования и диссоциации молекулы. Несмотря на большое число исследований в этой области, многие проблемы сегодняшнего дня остаются ЛО еше не решенными. эффект Экспериментально открытый аномалий В формировании И распределении изотопических модификаций озона, обнаруженный как в лабораторных условиях, так и в атмосфере, ставит под вопрос существующие модели динамики разрушения и рекомбинации молекулы, не объясняющие качественные количественные аспекты. Остаются многие его И не выясненными амплитуда диссоционного барьера молекулы озона, форма потенциальной поверхности на пути реакции фрагментации в области переходных состояний, роль метастабильных и Ван-дер-Ваальсовских состояний, неадиабатических изотопически зависящих эффектов, вызванных взаимодействиями с возбужденными электронными состояниями. Расчеты, использующие лучшие теоретические *ab initio* потенциальные поверхности, завышают в 3-5 раз коэффициенты реакций изотопических обменов при

формировании озона, что делает необходимым существенное улучшение потенциальной функции молекулы вблизи диссоционного предела. Ключевую роль для прогресса исследований в этой области должны сыграть достоверные данные о высоковозбужденных КВ состояниях изотопических модификаций озона, через которые проходит процесс формирования озона и которые в настоящее время недостаточно изучены. В диссертационной работе исследовались спектры 18-го изотополога озона, зарегистрированные 5930 – 7000 см⁻¹. Спектры были диапазоне зарегистрированы в на высокочувствительном лазерном спектрометре CRDS (Cavity Ring Down Spectroscopy). Верхняя часть этого диапазона соответствуют 82% от энергии диссоциации молекулы, в нём локализованы полосы с колебательным возбуждением до $\Delta v = 8$. За счет изотопического сдвига в 340 см⁻¹ при $^{16}O_3 \rightarrow ^{18}O_3$ переходе впервые удалось зарегистрировать И проидентифицировать две полосы, соответствующие колебательным состояниям (125) и (431), экспериментально не исследованным для основной изотопической модификации молекулы. Анализ спектра в этом диапазоне связан со значительными трудностями. В первую очередь, это обусловлено слабой интенсивностью КВ полос. Во-вторых, с наличием большого числа резонансных взаимодействий между колебательными состояниями, большая часть из которых является "тёмными состояниями" (экспериментально не наблюдаемыми). Анализ спектра в этой области позволил наблюдать интересный эффект нерегулярностей изотопических сдвигов уровней, несмотря на то, что замещение атомов кислорода является однородным.

Как уже говорилось выше, данная диссертация посвящена анализу высоковозбужденных КВ состояний молекул воды и озона. В экспериментальном плане исследование таких состояний стало возможно совсем недавно. В случае $D_2^{16}O$ возбуждение вращательной энергии достигается за счёт высокой температуры газа. С другой стороны, высокочувствительные лазерные спектрометры типа CRDS позволили в

последнее время регистрировать слабые полосы, соответствующие переходам в высокие колебательные состояния, близкие к пределу диссоциации озона.

Среди теоретических методов, в настоящее время существующих в литературе и используемых для изучения КВ спектров молекул, можно выделить два основных подхода. Это метод эффективных операторов и глобальные вариационные расчёты.

Метолы. теории возмущений эффективных основанные на И операторах для полиад взаимодействующих состояний, исторически являются более развитыми в силу простоты их применения [4]. Такие методы называют "локальными", поскольку они ориентированы на определенные спектральные интервалы или серии полос. Основное преимущество этих возможности их использования для методов состоит в некоторого ограниченного набора колебательных состояний в интересующем нас спектральном диапазоне. Это позволяет значительно уменьшить размерность задачи и упростить её численную реализацию, а так же достигнуть точности описания данных близкой к экспериментальной для каждой полиады в отдельности. Для молекул типа асимметричного волчка наиболее известным примером является модель Уотсона [5], дополненная резонансными членами, широко используемая в работах в Фло, Ками-Пере и др. [6-9] для расчетов параметров линий и пополнения банков данных. Кроме того, такой подход дает естественным образом спектроскопическую идентификацию. Однако локальные методы имеют свои недостатки. Они дают хорошую точность описания низких КВ уровней энергии, которая падает с возрастанием как колебательного, так и вращательного возбуждения. Наибольшие трудности возникают при использование эффективных методов для описания высоковозбужденных КВ состояний нежестких молекул. В традиционном варианте они обладают низкой предсказательной способностью на область высоких квантовых чисел, соответствующих нежёстким степеням свободы.

Относительно недавно, начиная с работ Партриджа и Швенке [10, 11], метод вариационных расчетов активно применяется для высокоточных глобальных расчётов КВ спектров трёхатомных молекул. Впервые это было продемонстрировано упомянутыми авторами в [10] для молекулы воды. Преимущество этого метода состоит в том, что он даёт обширную информацию обо всех возможных КВ уровнях энергии молекулы и интенсивностях линий. Однако для этого нужны очень точные функции потенциальной энергии и дипольного момента молекулы. В связи с тем, что техническая реализация и параметризация таких методов очень сложна, а необходимостью также С учитывать высшие степени электронной корреляции в *ab initio* расчетах, адиабатические и неадиабатические поправки и т.д., глобальные вычисления еще не достигают метрологической точности, однако дают преимущество качественной картины предсказания всей совокупности КВ состояний и переходов в молекуле.

Таким образом, глобальные и эффективные (локальные) модели можно рассматривать как взаимодополнительные. Специфика нашей работы в КВ молекул исследовании спектров заключается В совместном использовании как результатов глобальных вариационных расчетов, так и моделирования с помощью эффективных гамильтонианов и операторов моментов переходов. В случае молекулы $D_2^{16}O$, для предварительной идентификации спектров использовались известные ИЗ литературы экспериментальные уровни энергии и результаты вариационных расчетов (С. А. Ташкун) на основе потенциальной поверхности Партриджа и Швенке [10, 11]. Эти данные обрабатывались с помощью модели эффективного гамильтониана в виде производящих функций. Полученные параметры брались в дальнейшем за основу при обработке экспериментальных уровней энергии. Это даёт гарантию того, что рассчитанные с помощью полученной модели уровни энергии в области экспериментально недоступных значений вращательных чисел Ј будут иметь физически качественно правильное

поведение (асимптотику). В случае молекулы озона, использовались как глобальные вариационные расчеты уровней энергии [12, 13], так и неэмпирические расчеты по методу контактных преобразовании [14], позволяющие определить идентификацию КВ состояний в нормальных модах и зависимость вращательных констант от колебательного квантового числа v. Расчетные уровни энергии и вращательные константы брались также за основу в параметрах "тёмных" состояний. Дальнейшая обработка уровней энергии осуществлялась в рамках метода эффективных гамильтонианов с включением резонансных членов для сильно взаимодействующих состояний. *Структура диссертации:* диссертация состоит из введения, трёх глав, заключения, списка литературы и 17 приложений.

Первая глава диссертации является обзорной И посвяшена теоретическим основам молекулярной спектроскопии высокого разрешения в инфракрасном диапазоне. В первых трёх параграфах затрагиваются вопросы уравнения Шрёдингера для молекулы в изолированном построения электронном состоянии, а так же способы его решения глобальными методами. Четвёртый параграф посвящен вариационными принципу построения эффективных гамильтонианов и изложены преимущества использования этого метода для описания КВ уровней энергии молекул. Схема метода контактных преобразований, который широко используются для построения эффективных гамильтонианов, изложена в пятом параграфе. Шестой параграф посвящен построению эффективных вращательных гамильтонианов для изолированных колебательных состояний, к ИХ приведению к редуцированному виду. В седьмом параграфе обсуждается эффективный вращательный гамильтониан для группы взаимодействующих колебательных состояний, приведены общие формулы операторов, отвечающих за ангармонические резонансы и резонанс Кориолиса. Проблемы, возникающие при использовании традиционной модели гамильтониана в виде полиномиального разложения по степеням углового

момента для описания уровней энергии нежестких молекул типа Х₂Ү, обсуждаются восьмом параграфе. В девятом излагается В метод производящих функций, который в исследуемом диапазоне квантовых чисел позволяет получить наиболее высокую точность моделирования спектров трёхатомных нежёстких молекул. В десятом параграфе речь идёт о свойствах симметрии изучаемых в работе молекул и правилах отбора для КВ переходов. Одиннадцатый параграф посвящён вопросу вычисления интенсивностей спектральных линий. В последнем параграфе обсуждаются особенности решения прямой и обратной спектроскопических задач.

Вторая диссертации посвящена глава изложению результатов обработки вращательных уровней энергии молекулы $D_2^{16}O$ и исследованию её эмиссионных спектров в диапазоне 320 – 860 и 1800 – 5600 см⁻¹. Первый параграф является вводным, в нем говорится об актуальности исследования изотопических модификаций молекулы воды. Во втором параграфе представлены основные сведения о молекуле воды, формы её нормальных колебаний, приближенные соотношения для частот колебаний, по которым колебательные уровни объединяются в полиады. Третий параграф представляет собой обзор работ, посвященных анализу спектров D₂¹⁶O, который ранее проводился в литературе. Кратко изложены основные результаты этого анализа для различных спектральных диапазонов. В четвертом параграфе приведены основные характеристики эмиссионных спектров, исследовавшихся в этой работе. Пятый параграф посвящен анализу вращательной структуры нижних колебательных состояний (000) и (010) молекулы D₂¹⁶O. В шестом и седьмом параграфах изложены результаты исследования первой колебательных состояний И второй триад соответственно. Приведены сравнения полученных результатов, как с результатами других авторов, так и с глобальными расчетами. Последний параграф главы посвящён совместному анализу эмиссионного спектра D₂¹⁶O

в диапазоне $4600 - 5600 \text{ см}^{-1}$ и спектра поглощения смеси газов HDO/D₂O, зарегистрированного в диапазоне $5600 - 8800 \text{ см}^{-1}$.

Третья глава диссертации содержит результаты анализа CRDS спектров молекулы озона ${}^{18}O_3$ в диапазоне 5930 – 7000 см $^{-1}$. Как и во второй главе, первые два параграфа являются вводными и посвящены общим сведениям о молекуле и ранее проводимых исследованиях её спектров. В третьем параграфе кратко излагается способ получения 18-го изотополога озона и условия регистрации его спектров на CW-CRDS спектрометре. Четвёртый параграф посвящен глобальным предсказаниям центров полос в исследуемом диапазоне на основе поверхности потенциальной энергии, полученной ранее для основного изотополога молекулы озона. В параграфах 5 и 6 изложены результаты анализа диапазонов 5690 – 6100 и 6200 – 6400 см⁻¹ соответственно. Наиболее интересным и самым сложным оказался анализ диапазона 6500 – 6700 см⁻¹ (параграф 7). Для описания вращательных уровней энергии, попадающих в этот диапазон колебательных состояний, оказалось необходимым объединить в одну полиаду восемь состояний, 4 из которых являются тёмными. В восьмом параграфе приводятся результаты анализа двух полос, соответствующих самым высоким колебательным состояниям (125) и (431), когда-либо наблюдавшимся для молекулы озона. В последнем параграфе обсуждается наблюдаемый изотопический сдвиг vровней при переходе ${}^{16}O_3 \rightarrow {}^{18}O_3$.

Достоверность результатов, полученных в работе, подтверждается (1) согласием полученных экспериментальных данных с данными других авторов, (2) хорошим согласием результатов теоретического моделирования с экспериментальными данными, (3) сравнением теоретических результатов с расчётными данными, выполненными на основе иных теоретических моделей.

Апробация результатов: результаты работы по исследованию спектров $D_2^{16}O$ опубликованы в виде двух статей в одном из ведущих журналов по

молекулярной спектроскопии Journal of Molecular Spectroscopy и виде одной статьи в сборнике трудов конференции в серии SPIE Proceedings. Результаты исследования спектров озона $^{18}O_3$ опубликованы в журнале *Chemical Physics* Letters (одна статья) и три статьи в журнале Journal of Molecular Spectroscopy. 18 Результаты представлены В виде докладов на российских И международных конференциях: Международная школа молодых ученых и специалистов «Физика окружающей среды» (Томск 2004 и 2006гг.), Десятая всероссийская научная конференция студентов – физиков и молодых учёных «ВНКСФ-10» (Москва 2004), XXIII Съезд по спектроскопии (Звенигород 2005), Colloquium on High Resolution Molecular Spectroscopy (Дижон, Франция 2003 и 2007гг.; Саламанка, Испания 2005г.), Симпозиум по спектроскопии высокого разрешения (Красноярск 2003г., Нижний Новгород 2006г.), Оптика атмосферы и океана (Улан-Удэ 2007г., Красноярск 2008г.), 10 HITRAN Database Conference (Кембридж, США 2008г.), International Conference on High Resolution Molecular Spectroscopy (Прага, Чехия 2004 и 2008гг.), Symposium on Molecular Spectroscopy (Коламбус, США 2008г.), Atmospheric Spectroscopy Applications (Реймс, Франция 2008г.), и некоторых других.

В первую очередь хочу выразить особую благодарность своим научным руководителям С.Н. Михайленко и Мари-Рене Де Баккер (Marie-Renée De Backer) за помощь и поддержку, оказанную за все время выполнения работы. Отдельно выражаю благодарность профессору Алану Барбу (Alain Barbe) за активное участие и помощь при работе по исследованию спектров озона и д.ф.-м.н. Вл.Г. Тютереву за предоставленный глобальный расчет уровней энергии молекулы озона, а так же научные беседы, которые оказали мне помощь в понимании многих теоретических вопросов.

Вся работа по исследованию спектров $D_2^{16}O$ проводилась в сотрудничестве с Физико-химическим институтом Университета Юстус - Либих г. Гиссен (Германия). Выражаю свою благодарность Георгу Меллау (Georg Mellau) за проведение экспериментальной части исследований молекулы $D_2^{16}O$ и предоставленные программы для работы со спектрами. Также выражаю свою благодарность Людовику Домон (Ludovic Daumont) и Алану Женувриеру (Alain Jenouvrier) из GSMA (г. Реймс, Франция), совместно с которыми ведется работа по исследованию спектра поглощения воды в диапазоне 5600 – 8800 см⁻¹.

Работа по исследованию спектров озона выполнялась в GSMA (Groupe de Spectrométrie Moléculaire et Atmosphérique) Университета г. Реймса. Отдельно хочу поблагодарить Алана Кампарга (Alain Campargue) с коллегами из Университета г. Гренобля (Франция) за предоставленные CRDS спектры озона и активное участие в работе по их исследованию. Выражаю благодарность сотруднику лаборатории теоретической спектроскопии Института оптики атмосферы СО РАН д.ф.-м.н. С.А. Ташкуну за предоставленные для работы программы GIP и RITZ и выполненные для нас вариационные расчёты по высокотемпературному спектру молекулы D_2^{16} О. Особую благодарность выражаю сотрудникам лаборатории теоретической спектроскопи GSMA в целом – за предоставленную возможность проведения научных исследований.

Глава 1

Теоретические основы колебательно-вращательной спектроскопии

\$1.1 Уравнение Шрёдингера для движения ядер в изолированном электронном состоянии: адиабатическое приближение

Из квантовой механики хорошо известно [15], что возможные стационарные состояния квантово-механического объекта, каковым является любая молекула, определяется решением стационарного уравнения Шрёдингера:

$$\mathbf{H}\Psi_a = E_a \Psi_a , \qquad (1.1.1)$$

где **H** – гамильтониан молекулы, E_a и Ψ_a – собственные значения и собственные функции этого гамильтониана соответственно. При этом собственные значения E_a являются возможными значениями энергии, которой может обладать молекула. Волновые функции позволяют вычислять средние значения физических величин и расчитывать вероятности переходов молекулы из одного стационарного состояния в другое. Решения уравнения (1.1.1) позволяют находить центры и интенсивности спектральных линий, а также используются при вычислении полуширин и сдвигов линий поглощения в зависимости от внешних условий.

Полный гамильтониан молекулы зависит от координат электронов, ядер, соответствующих моментов и спиновых переменных. Схематически его можно записать следующим образом:

$$\mathbf{H} = \mathbf{T}_{\mathfrak{H}} + \mathbf{T}_{\mathfrak{H}} + \mathbf{V}_{\mathfrak{H}} + \mathbf{V}_{\mathfrak{H}} + \mathbf{V}_{\mathfrak{H}}, \qquad (1.1.2)$$

где T_{3} и T_{3} - операторы кинетической энергии ядер и электронов. Последние три члена в (1.1.2) - потенциалы электрон-электронного, электрон-ядерного и ядерно-ядерного взаимодействий. Точное решение уравнения Шрёдингера известно только для очень простых систем (атом водорода) [15], а для

полного молекулярного гамильтониана многоатомной молекулы точное решение уравнения (1.1.1) в аналитическом виде получить невозможно. Поэтому на практике используют различные приближения, позволяющие определять собственные значения **H** в энергетических диапазонах, соответствующим экспериментальным спектрам.

Диссертационная работа посвящена анализу спектров поглощения и излучения молекул в инфракрасном диапазоне. Эти спектры образуются переходами между стационарными состояниями, обусловленными колебательно-вращательными возбуждениями ядерных движений.

Ключевую роль в упрощении полного уравнения Шрёдингера в применении к инфракрасной спектроскопии играет приближение Борна-Оппенгеймера (БО) [15, 16], позволяющее перейти от полного гамильтониана молекулы к колебательно-вращательному (КВ) гамильтониану для изолированного электронного состояния. Приближение БО основано на малости отношения масс электронов (m_e) к массам ядер (М):

$$(m_e/M) \sim 10^{-4} \div 10^{-5}.$$
 (1.1.3)

В классических терминах это означает, что лёгкие электроны образуют быструю подсистему, а тяжелые ядра – медленную подсистему в молекулах. квадратично, Поскольку кинетическая энергия зависит OT скорости характерные энергии движения электронов на 2-3 порядка выше, чем характерные энергии движения ядер. Это позволяет применить адиабатическую процедуру разделения быстрых (электронных) и медленных (ядерных) переменных. В упрощенных обозначениях и в пренебрежении спиновыми эффектами, которые не проявляются явным образом в КВ спектрах синглетных электронных состояний, схему разделения переменных можно представить следующим образом. Полная электронно-ядерная волновая функция $\Psi_{en}(\mathbf{r},\mathbf{R})$ записывается в факторизованном виде:

$$\Psi_{\rm en}(\mathbf{r},\mathbf{R}) = \varphi_{\rm e}(\mathbf{r},\mathbf{R})\cdot\Psi_{\rm n}(\mathbf{R}). \tag{1.1.4}$$

Здесь r = { \vec{r}_i } и R = { \vec{R}_j } - совокупности электронных и ядерных координат, е и n - наборы электронных и ядерных квантовых чисел соответственно. В рассматриваемом приближении энергии КВ состояний не зависят от спиновых компонент, которые влияют только на ядерные статистические веса g_n, входящие в интенсивности спектральных линий (§1.11).

Решение электронно-ядерной задачи осуществляется в два этапа. Вначале решается электронное уравнение Шрёдингера для фиксированного положения ядер { \vec{R}_i }:

$$\left\{\mathbf{T}_{\mathfrak{H}} + \mathbf{V}_{\mathfrak{H}}(\mathbf{r}) + \mathbf{V}_{\mathfrak{H}}(\mathbf{r}, \mathbf{R}) + \mathbf{V}_{\mathfrak{H}}(\mathbf{R})\right\} \phi_{e}(\mathbf{r}, \mathbf{R}) = \mathcal{E}_{e}^{\mathsf{BO}}(\mathbf{R})\phi_{e}(\mathbf{r}, \mathbf{R}). \quad (1.1.5)$$

В этом уравнении ядерные координаты R играют роль параметров, поскольку производные $\partial/\partial R_j$ входят только в оператор кинетической энергии ядер T_g , исключенный из первого этапа (1.1.5). Затем положения ядер смещаются и фиксируются к значениям { $\vec{R}_j + \Delta \vec{R}_j$ } и решение уравнения (1.1.5) повторяется заново. Таким образом, получаются функции электронной энергии $\mathcal{E}_e^{50}(R)$, заданные на сетке геометрических конфигураций ядер.

Для двухатомных молекул $\mathcal{E}_{e}^{50}(R)$ образуют кривые в зависимости от межъядерных расстояний R, называемые адиабатическими электронными термами для каждого электронного состояния (е). Для многоатомных молекул функции $\mathcal{E}_{e}^{50}(R)$ образуют поверхности в конфигурационном пространстве ядерных координат. На втором этапе эти функции $\mathcal{E}_{e}^{50}(R)$ рассматриваются как функции потенциальной энергии (ФПЭ) для движения ядер в электронном состоянии (е):

$$\left\{\mathbf{T}_{\mathfrak{A}} + \mathcal{E}_{e}^{\mathrm{BO}}(\mathbf{R})\right\} \Psi_{n}(\mathbf{R}) = E_{n} \Psi_{n}(\mathbf{R}), \qquad (1.1.6)$$

где E_n – квантовые энергии стационарных состояний движения ядер в молекуле.

§1.2 Глобальные вариационные методы решения колебательновращательного уравнения Шрёдингера

После отделения трансляционного движения ядер путем выбора молекулярно-фиксированной системы координат (МСК) выражение в фигурных скобках в левой части уравнения (1.1.6) преобразуется к колебательно-вращательному гамильтониану

$$\mathbf{H}^{\mathrm{KB}} = \mathbf{T}_{\mathrm{g}} + \mathbf{U}(\mathbf{R}) \,. \tag{1.2.1}$$

Оператор кинетической энергии $\mathbf{T}_{g} = f(\mathbf{R}_{k},\partial/\partial \mathbf{R}_{k},\mathbf{J}_{\alpha})$ зависит от внутренних колебательных координат \mathbf{R}_{k} и их производных, а также от компонент \mathbf{J}_{α} полного углового момента на оси МСК. Для трёхатомных молекул используются валентные координаты «связь-связь-угол» {R} = {R_1,R_2,0}, либо координаты Радо [17], Якоби [18], гиперсферические координаты [19] и т.д. В качестве МСК наиболее часто используется система Эккарта [20, 21], либо бисекторная [22] система, либо система главных мгновенных осей [23]. В рамках приближения БО известны точные выражения для кинетической энергии \mathbf{T}_{g} трёхатомных молекул [24-26], которые являются весьма громоздкими, но несколько упрощаются при использовании ортогональных координат.

Функция потенциальной энергии (ФПЭ) включает вклады от последовательных приближений по малому параметру Борна-Оппенгеймера $\alpha = (m_e/\bar{M})^{\frac{1}{4}}$:

$$\mathbf{U}(\mathbf{R}) = \mathcal{E}_{e}^{50}(\mathbf{R}) + \mathbf{a}^{\mathrm{A}} \Delta \mathbf{U}_{1}^{\mathrm{A}\mathbf{D}}(\mathbf{R}, \mathbf{M}) + \dots \qquad (1.2.2)$$

Здесь первый член представляет собой изотопически независимый вклад в ФПЭ в приближении БО.

Для решения электронного уравнения (1.1.5) и определения $\Phi\Pi \exists U(R)$ в литературе по квантовой химии развиты многочисленные методы расчета электронной структуры из первых принципов (ab initio), реализованные в пакетах программ типа GAUSSIAN, MOLPRO, COLUMBUS и т.д. [27]. Для достижения точности, приближающейся к спектроскопической, необходим учёт электронных корреляций высоких порядков И скалярных релятивистских вкладов в $\mathcal{E}_{e}^{50}(\mathbf{R})$, которые даже для легких молекул могут давать вклады в КВ энергии порядка 10 см⁻¹. Аb initio расчеты для широкой сетки ядерных конфигураций являются очень трудоёмкими и требуют больших компьютерных ресурсов.

Следующие поправки первого порядка по æ в (1.2.1), которые называют адиабатическими поправками (или диагональными поправками к приближению БО), вносят в потенциальную функцию зависимость от масс ядер М. Поправки $\Delta U_1^{AD}(R,M)$ учитывались, например, в работах Партриджа и Швенке [10, 11] для расчета спектров изотопических модификаций молекулы воды, в частности, для спектров D_2^{16} О, анализируемых в главе 2 диссертации. В работах Швенке [28] была также показана важность учета дальнейших неадиабатических поправок $\Delta U_2^{NON-AD}(R,M)$ в (1.2.1), связанных с взаимодействием электронных состояний.

Потенциальные функции U(R) определяются также из экспериментальных данных методом решения обратной спектроскопической задачи. Одним из примеров является определение ФПЭ озона из данных по $^{16}O_3$ в совместных работах GSMA (Реймс) и ЛТС (Томск) [12, 13]. Эта функция использовалась для расчета колебательных состояний изотопически замещенного озона $^{18}O_3$, исследованию спектров которого посвящена глава 3

диссертации. Родственные методы применяются также для расчета функции дипольного момента (ФДМ) молекулы [11, 22, 28, 29].

Расчет КВ спектров из ФПЭ и ФДМ осуществляются, как правило, вариационными методами [10-13, 28-30] использующими весьма трудоёмкую интегро-дифференциальную технику вычислений, требующую исследования сходимости вариационного базиса. В последние годы активно используется техника DVR (Discrete Variable Representation), разработанная Лайтом и др. [30] и применяемая, в частности, в работах Теннисона с соавторами [31, 32] для расчета спектров водяного пара. Вариационные расчеты обычно глобальными, поскольку называют ОНИ позволяют, В принципе, предсказывать всю совокупность КВ состояний и спектров молекул для различных изотопических модификаций молекул вплоть до диссоционного предела (при наличии достаточно точных ФПЭ и ФДМ, и при условии реализации сходимости по базису, что является сложной задачей). Глобальный расчет оперирует с квантовыми числами, следующими из симметрии, и строго позволяет приписать КВ состояниям только глобальную идентификацию $\left| J \Gamma n \right\rangle$ (см. §1.10 для более детального обсуждения).

Спектроскопическая идентификация глобального расчета КВ состояний (включающая колебательные $v_1v_2v_3$ и вращательные *J*, K_a , K_c квантовые числа) опирается либо на исследование нодальных линий волновых функций, либо на анализ коэффициентов их разложений по нормальному базису. Для возбужденных состояний и то и другое представляет собой нетривиальную задачу, требующую специальных исследований для каждой молекулы и каждой изотопической модификации. Пример такой идентификации для ¹⁸О₃ рассмотрен в главе 3.

§1.3 КВ гамильтониан в нормальных координатах. Последовательные приближения

Одним из наиболее широко используемых в молекулярной спектроскопии является представление нормальных мод колебаний [20]. Основное преимущество использования нормальных координат $\{q_1,q_2,q_3...\}$ состоит в том, в гармоническом приближении моды колебаний являются независимыми, что позволяет естественным образом ввести интуитивно ясную идентификацию, основанную на соответствующих колебательных квантовых числах $\{v_1,v_2,v_3...\}$.

Полный КВ гамильтониан многоатомной нелинейной молекулы в нормальных координатах получен Вильсоном и Говардом [33]. Ельяшевич [34], применив иной способ, получил эквивалентный КВ гамильтониан. Дарлинг и Деннисон [35] записали гамильтониан в несколько другой, более удобной форме, чем гамильтониан Вильсона-Говарда. Уотсон [36], используя свойства обратного тензора инерции, привел КВ гамильтониан Вильсона-Говарда-Дарлинга-Деннисона к наиболее простому широко виду, используемому в колебательнонастоящее время ДЛЯ нахождения вращательных энергий молекулы *Е*^{VR}:

$$\mathbf{H}^{\text{VIB-ROT}}/hc = \frac{1}{2} \sum_{\alpha\beta} (\mathbf{J}_{\alpha} - \pi_{\alpha}) \mu_{\alpha\beta} (\mathbf{J}_{\beta} - \pi_{\beta}) + \frac{1}{2} \sum_{\mathbf{k}} \omega_{\mathbf{k}} \mathbf{p}_{\mathbf{k}}^{2} - \frac{1}{8} \sum_{\alpha} \mu_{\alpha\alpha} + \mathbf{U} \quad (1.3.1)$$

Гамильтониан (1.3.1) записан в Эккартовой МСК и применим в рамках адиабатического приближения (1.1.6)-(1.2.1). Использование МСК Эккарта позволяет в определенной мере минимизировать взаимодействие между колебанием и вращением, хотя не устраняет его полностью.

В формуле (1.3.1):

 J_{α} - безразмерные операторы проекций полного углового момента на оси молекулярно-фиксированной системы координат ($\alpha = x, y, z$),

полученные заменой $\mathbf{J}_{\alpha} \rightarrow \mathbf{J}_{\alpha} / \hbar$ и удовлетворяющие коммутационным соотношениям:

 $\mathbf{J}_{\alpha}\mathbf{J}_{\beta} - \mathbf{J}_{\beta}\mathbf{J}_{\alpha} = -i \mathbf{e}_{\alpha\beta\gamma} \mathbf{J}_{\gamma},$

- $\mathbf{e}_{\alpha\beta\gamma}$ единичный антисимметричный тензор третьего ранга $\mathbf{e}_{\alpha\beta\gamma} = ([\vec{\mathbf{e}}_{\alpha} \times \vec{\mathbf{e}}_{\beta}], \vec{\mathbf{e}}_{\gamma}),$ где $\vec{\mathbf{e}}_{\alpha}, \vec{\mathbf{e}}_{\beta}$ и $\vec{\mathbf{e}}_{\gamma}$ – орты молекулярной системы координат;
- π_α безразмерные операторы проекций колебательного углового момента на оси молекулярно-фиксированной системы координат:

$$\boldsymbol{\pi}_{\alpha} = \sum_{ij} \boldsymbol{\xi}_{ij}^{(\alpha)} (\boldsymbol{\omega}_{j} / \boldsymbol{\omega}_{i})^{1/2} \mathbf{q}_{i} \mathbf{p}_{j};$$

- \mathbf{q}_k безразмерные операторы нормальных координат (k = 0, 1, ..., 3N-6; N число атомов в молекуле);
- $\mathbf{p}_{k} = -i \frac{\partial}{\partial \mathbf{q}_{k}}$ безразмерные операторы соответствующих импульсов; $\xi_{ij}^{(\alpha)}$ – постоянные кориолисова взаимодействия (безразмерны); ω_{k} – гармонические частоты нормальных колебаний (в см⁻¹); $\mu_{\alpha\beta}$ – элементы обратного тензора инерции (в см⁻¹): $\mu_{\alpha\beta} = \mu_{\alpha\alpha}^{0} \delta_{\alpha\beta} + \sum_{i} \mu_{\alpha\beta}^{i} \mathbf{q}_{i} + \sum_{i} \mu_{\alpha\beta}^{ij} \mathbf{q}_{i} \mathbf{q}_{j} + ...;$

 $\mu_{\alpha\beta}^{ij\dots m}$ – постоянные колебательно-вращательного взаимодействия (в см⁻¹); В_{*α*} = $\frac{1}{2} \mu_{\alpha\alpha}^{0}$ – вращательные постоянные (в см⁻¹);

 ${f U}$ – оператор потенциальной энергии в адиабатическом приближении (в см⁻¹)

$$\mathbf{U} = \frac{1}{2} \sum_{i} \omega_{i} \mathbf{q}_{i}^{2} + \sum_{ijk} \mathbf{K}_{ijk} \mathbf{q}_{i} \mathbf{q}_{j} \mathbf{q}_{k} + \dots ; \qquad (1.3.3)$$

(1.3.2)

 $K_{ij,.,k}$ – коэффициенты ангармоничности (в см⁻¹).

В дальнейшем будем выражать гамильтониан **H**, энергию и спектроскопические константы в общепринятых в спектроскопии единицах – волновых числах (см⁻¹). Фактически это сводится к делению всех величин,

имеющих размерность энергии, на (*hc*), т.е. к замене $\mathbf{H} \rightarrow \mathbf{H}/hc$, $E \rightarrow E/hc$ и т.д.

Чтобы распределить колебательно-вращательный гамильтониан по порядкам малости λ, необходимо знать соотношения между коэффициентами в (1.3.2) и (1.3.3). Такие соотношения были установлены в ранних работах по теории ИК - спектров молекул [37, 38]. В приведенных здесь обозначениях эти соотношения записываются следующим образом:

$$\overline{\mu}_{\alpha\beta}^{i_{1}i_{2}...i_{n}} \sim \lambda^{n+2}\overline{\varpi}_{k} \qquad \overline{K}_{i_{1}i_{2}...i_{n}} \sim \lambda^{n-2}\overline{\varpi}_{k}, \qquad (1.3.4)$$

где параметр малости $\lambda \sim (2\overline{B}/\overline{\omega})^{1/2}$ имеет тот же порядок (Nielsen [37]), что и параметр æ Борна-Оппенгеймера, \overline{B} - среднее значение вращательных постоянных, среднее колебаний $\overline{\omega}$ значение частот молекулы. Соотношения (1.3.4) выполняются в среднем и пригодны для нормальных полужестких молекул. Однако их недостаточно для разбиения гамильтониана (1.3.1) по порядкам, так как порядок вклада в энергию сильно зависит от квантовых чисел v и J. В работах [37, 38] предложено использовать для определения порядков вкладов средние значения квантовых чисел, следующие из Больцмоновской заселенности уровней при нормальной температуре около 300К: J~1/ λ , \overline{V} ~1, т.е. формально вращательным и колебательным операторам можно приписать порядки $\mathbf{J}_{\alpha} \sim \lambda^{-1}$, \mathbf{q}_{i} , $\mathbf{p}_{i} \sim \lambda$, Тогда разложение колебательно-вращательного гамильтониана по порядкам малости λ принимает вид:

$$\mathbf{H} = \mathbf{H}_0 + \mathbf{H}_1 + \mathbf{H}_2 + \ldots + \mathbf{H}_n,$$
 где $\mathbf{H}_n \sim \lambda^n \mathbf{H}_0,$

$$\mathbf{H}_{0}^{\text{VIB}} = \frac{1}{2} \sum_{k} \omega_{k} (\mathbf{p}_{k}^{2} + \mathbf{q}_{k}^{2}),$$
$$\mathbf{H}_{0}^{\text{ROT}} = \frac{1}{2} \sum_{\alpha} \mu_{\alpha\alpha}^{0} \mathbf{J}_{\alpha}^{2}, \qquad (1.3.5)$$

$$\begin{split} \mathbf{H}_{1} &= \sum_{ijl} \mathbf{K}_{ijl} \mathbf{q}_{i} \mathbf{q}_{j} \mathbf{q}_{1} + \frac{1}{2} \sum_{i} \sum_{\alpha\beta} \mu_{\alpha\beta}^{i} \mathbf{q}_{i} \mathbf{J}_{\alpha} \mathbf{J}_{\beta} - \sum_{\alpha} \mu_{\alpha\alpha}^{0} \boldsymbol{\pi}_{\alpha} \mathbf{J}_{\alpha} ,\\ \mathbf{H}_{2} &= \sum_{ijlm} \mathbf{K}_{ijlm} \mathbf{q}_{i} \mathbf{q}_{j} \mathbf{q}_{1} \mathbf{q}_{m} + \frac{1}{2} \sum_{\alpha} \mu_{\alpha\alpha}^{0} \boldsymbol{\pi}_{\alpha}^{2} + \frac{1}{2} \sum_{ij} \sum_{\alpha\beta} \mu_{\alpha\beta}^{ij} \mathbf{q}_{i} \mathbf{q}_{j} \mathbf{J}_{\alpha} \mathbf{J}_{\beta} \\ &- \frac{1}{2} \sum_{i} \sum_{\alpha\beta} \mu_{\alpha\beta}^{i} (\boldsymbol{\pi}_{\alpha} \mathbf{q}_{i} + \mathbf{q}_{i} \boldsymbol{\pi}_{\alpha}) \mathbf{J}_{\beta} . \end{split}$$

Детальное исследование разложения колебательно-вращательного гамильтониана проводилось в работах [37-39].

§1.4 Эффективные модели для колебательно-вращательных гамильтонианов

В спектроскопии широко используется [20, 37-81] метод эффективных гамильтонианов. Цель метода - построение относительно простых математических моделей для описания групп близко лежащих резонансно взаимодействующих состояний. Изложение в этом параграфе следует работам [4, 50], в которых можно найти более полный обзор литературы. Основная идея метода сводится к преобразованию полного гамильтониана Η. внутримолекулярных молекулы содержащего вклады ОТ всех взаимодействий, к более простому оператору **H**^{eff}, определенному на конечном подпространстве собственных функций Φ_k точно решаемой физической модели, таким образом, чтобы спектр собственных значений в соответствующем интервале сохранялся. В большинстве формулировок получение эффективных гамильтонианов можно свести к специальным выбранным преобразованиям подобия образом Т, с последующим проектированием (Р) на подпространство известных функций Ф, простой модельной задачи

$$\mathbf{H}^{eff} = \mathbf{P}\tilde{\mathbf{H}}\mathbf{P},\tag{1.4.1}$$

где

$$\tilde{\mathbf{H}} = \mathbf{T}^{-1} \mathbf{H} \mathbf{T} \,. \tag{1.4.2}$$

Во многих приложениях такое преобразование позволяет:

 Отделить часть внутримолекулярных переменных, для того, чтобы
 H^{eff} зависел только от тех операторов, которые дают главный вклад для данного диапазона энергий.

2) Благодаря уменьшению размерности задачи и числа переменных, существенно упрощается программная реализация задачи и скорость вычислений. Например, для молекул с большим числом атомов или электронов, практически нереализуемую на практике задачу можно свести к задаче, решаемой с точностью, приемлемой для приложений в спектроскопии высокого разрешения. При диагонализации конечных матриц гамильтониана \mathbf{H}^{eff} не возникает технических проблем сходимости и оптимизации бесконечных базисов, характерных для глобальных расчетов спектров из

потенциальных функций.

3) Сформулировать локальные модели для решения обратных спектроскопических задач для отдельных колебательных состояний или групп (полиад) взаимодействующих состояний. Таким образом, это дает возможность сконцентрировать анализ на определенном интервале частот, соответствующем конкретным экспериментальным спектрам. При этом в ряде случаев можно достичь экспериментальной точности описания данных.

4) Использование спектроскопических параметров колебательных состояний (или их полиад) для последовательных приближений теории колебательновращательных взаимодействий дает возможность редукции больших массивов разнородных и разноточных экспериментальных данных (при условии адекватности модели).

5) В условиях сходимости теории возмущений проводить вращательную экстраполяцию и (в более ограниченной степени) колебательную экстраполяцию для идентификации новых спектральных переходов.

Н^{eff} удобно применять в задачах, где есть возможность приближенного «разделения» движений, и в случаях, как уже говорилось выше, когда можно выделить некоторое внутреннее движение, ответственное за спектр системы в рассматриваемом спектральном диапазоне. Математически это можно представить следующим образом [4]. Рассмотрим два физически различных типа движения в молекуле, описываемые двумя наборами переменных, например: $\vec{x} = \{x', x'', x''', ...\}$, которые отвечают за колебания молекулы, и $\vec{\alpha} = \{\alpha_1, \alpha_2, \alpha_3\}$ - за её вращение. В наиболее широко используемом варианте \vec{x} - нормальные координаты $\{q_1, q_2, q_3, ...\}$ и $\{\alpha\}$ - углы Эйлера $\{\alpha_1, \alpha_2, \alpha_3\}$, связывающие НСК (неподвидная система координат) и МСК (молекулярная система координат). Полный КВ гамильтониан содержит колебательные операторы X, действующие на \vec{x} переменные, и вращательные операторы J_{ζ} , действующие на $\{\alpha\}$ переменные. Полное уравнение Шредингера

$$\mathbf{H}(\mathbf{X}, \mathbf{J}_{\varsigma}) \Psi_{\mathrm{VR}}(\vec{x}, \alpha) = E_{\mathrm{VR}} \Psi_{\mathrm{VR}}(\vec{x}, \alpha)$$
(1.4.3)

на пространстве всех переменных не представляется возможным без какихлибо дополнительных упрощений. Здесь V и R – колебательные и вращательные квантовые числа соответственно. Группа вращательных уровней $\{E_{VR'}, E_{VR''}, ...\}$, принадлежащих к одному колебательному состоянию V, в основном определяется $\{\alpha\}$ движениями в молекуле. Математически можно показать [4], что существует такой эффективный гамильтониан, действующий только на угловые переменные $\{\alpha\}$, собственные значения которого точно совпадают с энергиями этой группы уровней:

$${}^{[\mathrm{V}]}\mathbf{H}^{eff}(\mathbf{J}_{\varsigma})\boldsymbol{\varphi}_{\mathrm{R}}(\alpha) = {}^{[\mathrm{V}]}E_{\mathrm{R}}\boldsymbol{\varphi}_{\mathrm{R}}(\alpha). \qquad (1.4.4)$$

В самом простом случае, при отсутствии резонансов и колебательного вырождения, процедура разделения переменных \vec{x} и { α } приводит к эффективному вращательному оператору для изолированного колебательного состояния [V]. Для случая, когда колебательные состояния взаимодействуют, эффективный вращательный гамильтониан записывается для полиады резонансно взаимодействующих колебательных состояний. Как и в адиабатическом приближении (§1.1) разделение переменных \vec{x} и { α } основано на том, что для полужестких молекул колебания являются более быстрыми, чем вращение, и следовательно, средние расстояния между колебательными уровнями $\Delta E_{ROT} \sim \lambda^2 \Delta E_{VIB}$.

Основой для вывода эффективных гамильтонианов **H**^{eff} и соотношений, которые связывают их параметры с потенциальной функцией молекулы, являются операторные методы теории возмущений (ТВ) [4, 47]. Одним из наиболее широко используемых в спектроскопии является метод контактных преобразований (КП) [38-51], о котором речь пойдет в следующем параграфе.

§1.5 Контактные преобразования

Суть этого метода заключается в том, чтобы, совершая над исходным гамильтонианом **H** унитарное преобразование **T** и пользуясь разложением Хаусдорфа

$$\tilde{\mathbf{H}} = \mathbf{T}^+ \mathbf{H} \mathbf{T} = \exp(i\mathbf{S}) \mathbf{H} \exp(-i\mathbf{S}) = \mathbf{H} + [i\mathbf{S},\mathbf{H}] + \frac{1}{2}[i\mathbf{S},[i\mathbf{S},\mathbf{H}]]$$

+
$$\frac{1}{6}[i\mathbf{S}, [i\mathbf{S}, [i\mathbf{S}, \mathbf{H}]]]$$
 + ... + $\frac{1}{n!}[i\mathbf{S}, ..., [i\mathbf{S}, \mathbf{H}]...]$ + ..., (1.5.1)

диагонализовать гамильтониан по каким-то известным функциям или привести его к более удобному виду. Оператор **S** называют генератором преобразования **T**.

В теории возмущений гамильтониан **H** квантовомеханической системы разбивается на две части: оператор нулевого приближения \mathbf{H}_0 и оператор возмущения **V**, который тоже может быть представлен в виде разложения $\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3 + \ldots + \mathbf{V}_n + \ldots$, тогда

$$\mathbf{H} = \mathbf{H}_0 + \mathbf{V} = \mathbf{H}_0 + (\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3 + \dots + \mathbf{V}_n + \dots).$$
(1.5.2)

В спектроскопии принято проводить разложения оператора возмущения по порядкам малости λ. С учетом этого, выражение (1.5.2) принимает вид:

$$\mathbf{H} = \mathbf{H}_0 + \lambda \mathbf{v} = \mathbf{H}_0 + (\lambda \mathbf{v}_1 + \lambda^2 \mathbf{v}_2 + \lambda^3 \mathbf{v}_3 + \dots + \lambda^n \mathbf{v}_n + \dots).$$
(1.5.3)

Контактные преобразования организуют как последовательность все более малых преобразований $\exp(i\lambda s_1)$, $\exp(i\lambda^2 s_2)$,... $\exp(i\lambda^n s_n)$. Тогда преобразованный гамильтониан тоже может быть разложен по степеням параметра λ :

$$\begin{split} \widetilde{\mathbf{H}} &= \dots \exp(i\lambda^2 \mathbf{s}_2) \exp(i\lambda \mathbf{s}_1) \left(\mathbf{H}_0 + \lambda \mathbf{v}_1 + \lambda^2 \mathbf{v}_2 + \dots\right) \exp(-i\lambda \mathbf{s}_1) \exp(-i\lambda^2 \mathbf{s}_2) \dots = \\ & \mathbf{H}_0 + \lambda \{\mathbf{v}_1 + [i\mathbf{s}_1, \mathbf{H}_0]\} + \lambda^2 \{\mathbf{v}_2 + [i\mathbf{s}_1, \mathbf{v}_1] + (1/2)[i\mathbf{s}_1, [i\mathbf{s}_1, \mathbf{H}_0]] + [i\mathbf{s}_2, \mathbf{H}_0]\} + \\ & \lambda^3 \{\mathbf{v}_3 + [i\mathbf{s}_1, \mathbf{v}_2] + (1/2)[i\mathbf{s}_1, [i\mathbf{s}_1, \mathbf{v}_1]] + (1/3!)[i\mathbf{s}_1, [i\mathbf{s}_1, [i\mathbf{s}_1, \mathbf{H}_0]]] + [i\mathbf{s}_2, [i\mathbf{s}_1, \mathbf{H}_0]] + \\ & [i\mathbf{s}_2, \mathbf{v}_1] + [i\mathbf{s}_3, \mathbf{H}_0]\} + \lambda^4 \{\mathbf{v}_4 + [i\mathbf{s}_1, \mathbf{v}_3] + (1/2)[i\mathbf{s}_1, [i\mathbf{s}_1, \mathbf{v}_2]] + (1/3!)[i\mathbf{s}_1, [i\mathbf{s}_1, [i\mathbf{s}_1, [i\mathbf{s}_1, \mathbf{v}_1]]] + \\ & (1/4!) [i\mathbf{s}_1, [i\mathbf{s}_1, [i\mathbf{s}_1, [i\mathbf{s}_1, \mathbf{H}_0]]]] + [i\mathbf{s}_2, \mathbf{v}_2] + (1/2) [i\mathbf{s}_2, [i\mathbf{s}_2, \mathbf{H}_0]] + [i\mathbf{s}_2, [i\mathbf{s}_1, \mathbf{v}_1]] + \\ \end{split}$$

$$(1/2)[i\mathbf{s}_2, [i\mathbf{s}_1, [i\mathbf{s}_1, \mathbf{H}_0]]] + [i\mathbf{s}_3, \mathbf{v}_1] + [i\mathbf{s}_3, [i\mathbf{s}_2, \mathbf{H}_0]] + [i\mathbf{s}_4, \mathbf{H}_0] + \dots$$
(1.5.4)

.....

Из разложения (1.5.4) вытекает структуры следующая схема преобразований [4]. Первое преобразование $exp(i\lambda s_1)$ контактных используется для упрощения гамильтониана В первом порядке, следовательно, генератор первого преобразования $S_1 = \lambda s_1$ находится из уравнения:

$$\widetilde{\mathbf{H}}_1 = \mathbf{V}_1 + [i\mathbf{S}_1, \mathbf{H}_0], \qquad (1.5.5)$$

где на вид преобразованной поправки первого приближения $\tilde{\mathbf{H}}_1$ наложено некоторое упрощающее условие. Предположим, что оператор \mathbf{V}_1 состоит из слагаемых двух типов:

$$\mathbf{V}_{1} = \mathbf{V}_{1}^{(0)} + \mathbf{V}_{1}^{(\perp)}, \qquad (1.5.6)$$

где V_1^0 включает «удобные» слагаемые, которые не приводят К существенным осложнениям процедуры нахождения собственных значений гамильтониана (например, диагональные в базисе невозмущенных функций), а $\mathbf{V}_1^{(\perp)}$ содержит «неудобные» слагаемые (например, перекрестные члены, смешивающие волновые функции, зависящие от переменных разных типов и т.д.), Тогда потребуем, чтобы которые желательно устранить. преобразованный гамильтониан в первом порядке содержал только «удобные» слагаемые, т.е. $\tilde{\mathbf{H}}_1 = \mathbf{V}_1^0$. Тогда уравнение (1.5.5) принимает вид:

$$[i\mathbf{S}_1,\mathbf{H}_0] = -\mathbf{V}_1^{(\perp)} \tag{1.5.7}$$

Из (1.5.7) находят S_1 , вычисляют вклады первого преобразования во второе и более высокие приближения в (1.5.4). Затем аналогичным образом находят генератор S_2 и поправки второго порядка и т.д.

Контактные преобразования являются унитарными, поэтому после серии подобных преобразований гамильтониан $\tilde{\mathbf{H}}$ сохраняет те же собственные значения, что и исходный гамильтониан (если в разложении (1.5.4) учитываются все члены), но является более удобным в применении.

Первая работа (1929г.), посвященная применению метода КП в молекулярной спектроскопии, принадлежит Ван - Флеку [44]. Дальнейшему развитию метода КП в области молекулярной спектроскопии были посвящены серии работ Нильсена, Амата и др. [37-42], Алиева и Уотсона [45] и других авторов [4, 46-51]. Применение КП к нежестким молекулам с инверсией или колебаниями большой амплитуды можно найти в [71]. проблему в методе контактных преобразований Основную можно сформулировать следующим образом: каковы допустимые требования на преобразованный гамильтониан **Ĥ**? До какого вида можно упростить гамильтониан преобразованиями (1.5.4) в случае, если уравнение (1.5.7) имеет решение; и как это решение найти применительно к конкретной физической задаче?

Подробно этот вопрос обсуждается в монографии [4], в которой контактные преобразования молекулярного гамильтониана сформулированы в общем виде с использованием моделирующего оператора. В область применения данного метода входят многие проблемы физики молекул: приближенное отделение электронных переменных из полного оператора энергии молекулы [51], отделение малых колебаний из гамильтониана нежёстких молекул [4, 71], теория интенсивностей колебательно вращательных спектров и спектров комбинационного рассеяния [45, 50, 67, 68] и т.д.

Применительно к задачам в нашей области метод КП позволяет преобразовать полный КВ гамильтониан (1.3.1) к блочно диагональному виду:

$$\tilde{\mathbf{H}} = \begin{pmatrix} \begin{bmatrix} 0 \\ \mathbf{H} \end{bmatrix} & 0 \\ & \begin{bmatrix} P_1 \\ \mathbf{H} \end{bmatrix} \\ 0 & \begin{bmatrix} P_2 \\ \mathbf{H} \end{bmatrix} \\ & \dots \end{pmatrix}$$
(1.5.8)

в колебательном базисе нулевого приближения $\mathbf{H}_{0}^{\text{VIB}}$. Каждый блок в (1.5.8) можно рассматривать как эффективный гамильтониан для полиады $P = \{V, V', V'', ...\}$ сильно взаимодействующих колебательных состояний $V = (v_1, v_2, v_3), V' = (v'_1, v'_2, v'_3),...$ который можно записать в смешанной матрично-операторной форме [54]:

$$[^{\mathbf{P}]}\mathbf{H}^{eff} = \begin{pmatrix} \mathbf{H}_{\mathbf{V}\mathbf{V}}(\mathbf{J}_{\zeta}) & \mathbf{H}_{\mathbf{V}\mathbf{V}'}(\mathbf{J}_{\zeta}) & \dots \\ \mathbf{H}_{\mathbf{V}'\mathbf{V}}(\mathbf{J}_{\zeta}) & \mathbf{H}_{\mathbf{V}'\mathbf{V}'}(\mathbf{J}_{\zeta}) & \dots \\ \dots & \dots & \dots \end{pmatrix}.$$
 (1.5.9)

Здесь $\mathbf{H}_{vv'}(\mathbf{J}_{\zeta}) = \left(v_1 v_2 v_3 \middle| \mathbf{\tilde{H}} \middle| v_1' v_2' v_3' \right)^0$ - матричные элементы преобразованного гамильтониана в базисе функций гармонического осциллятора, которые зависят от проекций углового момента \mathbf{J}_{ζ} на оси МСК.

Если условия сходимости КП для унитарных преобразований (1.5.4) выполнены, то эффективный гамильтониан (1.5.9) имеет те же собственные значения, что и полный КВ гамильтониан (1.3.1). Но решение уравнения Шрёдингера существенно упрощается вследствие перехода от матриц бесконечной размерности к конечным матрицам (1.5.9) для ограниченной полиады Р.

В совместных работах лабораторий GSMA Реймского Университета и ЛТС Института оптики атмосферы (Тютерев, Ташкун, Сегхир [14]) развиты

алгоритмы построения эффективных гамильтонианов типа (1.5.9) в высоких порядках КП, реализованные в пакете программ MOL_CT [14]. Применение техники моделирующего оператора [4, 46] дает возможность учитывать парные и многократные резонансы любых типов.

Результаты расчета колебательных энергий озона, вращательных постоянных, коэффициентов смешивания волновых функций по программам MOL_CT использовались в диссертационной работе для идентификации высоких колебательных состояний ¹⁸О₃ и параметризации «темных» полос. Пакет MOL_CT включает преобразование программ координат В потенциальной и кинетической части гамильтониана (от внутренних к нормальным), осей МСК (от бисекторной к Эккартовой), полную алгебру КВ операторов и, таким образом, позволяет строить эффективные модели (1.5.9) исходя из потенциальной функции, а также исследовать сходимость разложений КП к численно точным энергиям, полученным вариационным или DVR методом.

Таким образом, метод эффективных гамильтонианов, использующий алгебраическую технику вычислений, и глобальный вариационный подход (§1.2), использующий интегро-дифференциальную технику вычислений, схематически изображенные на рисунке 1.1., являются независимыми взаимно дополнительными «инструментами» анализа КВ спектров. Их сравнительные преимущества и недостатки рассмотрены в обзоре [81] и в кратком виде приведены в Таблице 1.1. Как отмечено во Введении, в данной диссертационной работе используются результаты обоих типов расчетов для подтверждения идентификации и улучшения моделирования спектров.

Параметры сравнения	Локальные методы	Глобальные расчеты
Точность обработки данных для низких <i>J</i> и V	Сравнима с экспериментальной	Не конкурентоспособны
Размерность матриц в пространстве квантовых состояний	Конечная, достаточно низкая размерность, высокая скорость расчетов, нет проблемы сходимости базисов	«Бесконечная» размерность, проблемы сходимости базисов; Сложности на границе связанных состояний
Алгоритмы и программирование	Стандартные средства	Необходимы оптимизированные численные методы высокого уровня
Высокие значения V, J	Проблемы сходимости теорий возмущений, особенно для нежестких молекул	Численно «точные» (в определенной разрядности) результаты расчетов
Состояния с высокой плотностью энергий вблизи диссоциации	Перекрывание полиад	Полный учет всех взаимодействий
Предсказания с нижних на более высокие полиады	Ограничены	Сильная сторона метода

Таблица 1.1. Сравнительные преимущества локальных и глобальных методов
\$1.6 Эффективный вращательный гамильтониан. Редукция. Уотсоновское представление

Рассмотрим случай изолированного невырожденного колебательного состояния. Как следует из §1.4, эффективный вращательный гамильтониан для него является функцией компонент углового момента, который в стандартных методах теории возмущений представляется в виде степенного разложения:

^[V]
$$\mathbf{H}^{\text{ROT}} = \sum_{n} \sum_{p+q+r=n} h^{\text{V}}_{pqr} (\mathbf{J}^{p}_{x} \mathbf{J}^{q}_{y} \mathbf{J}^{r}_{z} + \mathbf{J}^{r}_{z} \mathbf{J}^{q}_{y} \mathbf{J}^{p}_{x}).$$
 (1.6.1)

В операторе (1.6.1) присутствуют только слагаемые с чётными значениями суммарной степени операторов J_{α} , т.е. n = 2, 4, 6,... Постоянные h_{pqr}^{V} называют спектроскопическими параметрами. Постоянные h_2 (при p+g+r = 2) называют вращательными постоянными, h_4 – квартичными, h_6 – секстичными постоянными центробежного искажения и т.д. Индекс V означает совокупность всех колебательных квантовых чисел. Для нежестких молекул V включает и квантовые числа, связанные с колебанием большой амплитуды.

Из общих свойств эффективного гамильтониана, о которых говорилось выше, следует, что параметризация вращательного гамильтониана зависит от метода его построения. Применение различных формулировок операторной теории возмущений приводит к различной зависимости центробежных постоянных h_{pqr}^{v} от колебательных квантовых чисел v_i и молекулярных параметров. В работе [4] на примере применения метода контактных преобразований и матричной теории возмущений показано, что численные значения параметров h_{pqr}^{v} не имеют абсолютного характера и отражают специфику используемого метода. Эти различия не приводят к каким-либо физическим последствиям при одинаковом выборе нулевого приближения H_0 и возмущения и не влияют на собственные значения гамильтониана. Неоднозначность связана с некоторым произволом в выборе **S** генераторов КП и, следовательно, с определением собственного базиса \mathbf{H}^{eff} . Существуют чисто вращательные унитарные преобразования $\mathbf{T}_{ROT} = \exp(-i\mathbf{S}_{ROT})$, которые, не меняя операторного вида разложения (1.6.1), могут существенно менять параметры h_{par}^{v}

Наличие неоднозначности не позволяет корректно решить обратную спектроскопическую задачу получения параметров h_{pqr}^{V} из экспериментальных энергий, так как спектроскопические параметры при этом не являются независимыми. Оказывается возможным экспериментально определить только их некоторые комбинации. Ситуация становится еще более сложной при вырождении колебательных состояний, а так же при наличии случайных резонансов.

Чтобы устранить неоднозначности в центробежных постоянных, выполняют редукцию гамильтониана к эмпирически восстанавливаемому виду [5, 52, 82, 83]. По форме эта процедура похожа на контактные преобразования, однако отличается от них требованиями, наложенными на преобразованный гамильтониан. Цель контактных преобразований – упростить нахождение собственных значений посредством разделения переменных или блочной диагонализации (при наличии вырождения), понижения размерности матрицы и т.д. Преобразования редукции не упрощают задачу вычисления энергии. Они необходимы для регуляризации обратной спектроскопической задачи с целью устранения «лишних» параметров, т.е. преобразования редукции задают ограничения на вид эффективного гамильтониана, однозначно фиксирующие его собственные функции.

Конкретный вид преобразований редукции зависит от симметрии молекулы, кратности вырождения уровней, наличия случайных резонансов и т.д.

изолированных колебательных состояний Для молекул типа асимметричного волчка редукцию гамильтониана (1.6.1) впервые провёл Уотсон [5, 52]. Он же в спектроскопии ввёл впервые понятие Редуцированный Уотсоновский редуцированного гамильтониана. гамильтониан **H**^{Wats} в принятых в спектроскопии обозначениях имеет вид:

$$\begin{aligned} \mathbf{H}_{V}^{\text{Wats}} &= \mathbf{E}_{V} + \left[\mathbf{A}^{V} - \frac{1}{2} (\mathbf{B}^{V} + \mathbf{C}^{V}) \right] \mathbf{J}_{z}^{2} + \frac{1}{2} (\mathbf{B}^{V} + \mathbf{C}^{V}) \mathbf{J}^{2} + \frac{1}{2} (\mathbf{B}^{V} - \mathbf{C}^{V}) \mathbf{J}_{xy}^{2} \\ &- \Delta_{K}^{V} \mathbf{J}_{z}^{4} - \Delta_{JK}^{V} \mathbf{J}^{2} \mathbf{J}_{z}^{2} - \Delta_{J}^{V} \mathbf{J}^{4} - \delta_{K}^{V} \left\{ \mathbf{J}_{z}^{2}, \mathbf{J}_{xy}^{2} \right\} - 2\delta_{J}^{V} \mathbf{J}^{2} \mathbf{J}_{xy}^{2} \\ &+ H_{K}^{V} \mathbf{J}_{z}^{6} + H_{KJ}^{V} \mathbf{J}^{2} \mathbf{J}_{z}^{4} + H_{JK}^{V} \mathbf{J}^{4} \mathbf{J}_{z}^{2} + H_{J}^{V} \mathbf{J}^{6} \\ &+ h_{K}^{V} \left\{ \mathbf{J}_{z}^{4}, \mathbf{J}_{xy}^{2} \right\} + h_{JK}^{V} \mathbf{J}^{2} \left\{ \mathbf{J}_{z}^{2}, \mathbf{J}_{xy}^{2} \right\} + 2h_{J}^{V} \mathbf{J}^{4} \mathbf{J}_{xy}^{2} + \dots, \end{aligned}$$
(1.6.2)

здесь, $\mathbf{J}^2 = \mathbf{J}_x^2 + \mathbf{J}_y^2 + \mathbf{J}_z^2$, $\mathbf{J}_{xy}^2 = \mathbf{J}_x^2 - \mathbf{J}_y^2$ a {**A**,**B**} = **AB** + **BA**.

Операторы **J**_x, **J**_y, **J**_z являются компонентами углового момента в Эккартовой МСК, имеющие следующие правила действия на стандартный вращательный базис:

$$\mathbf{J}^{2} | \mathbf{J}, \mathbf{K} \rangle = \mathbf{J} (\mathbf{J} + 1) | \mathbf{J}, \mathbf{K} \rangle,$$

$$\mathbf{J}_{z} | \mathbf{J}, \mathbf{K} \rangle = \mathbf{K} | \mathbf{J}, \mathbf{K} \rangle,$$

$$(\mathbf{J}_{x} \mp i \mathbf{J}_{x}) | \mathbf{J}, \mathbf{K} \rangle = \sqrt{\{\mathbf{J} (\mathbf{J} + 1) - \mathbf{K} (\mathbf{K} \pm 1)\}} | \mathbf{J}, \mathbf{K} \pm 1 \rangle.$$

$$(1.6.3)$$

Параметры гамильтониана (колебательная энергия E_v , вращательные A^v , B^v , C^v , центробежные $\Delta_{\kappa}^v, \Delta_{J\kappa}^v, \dots$ постоянные) зависят от колебательных квантовых чисел. Спектроскопические постоянные определяются из уровней энергии или частот переходов, найденных в результате интерпретации спектра, по методу наименьших квадратов. Редуцированный гамильтониан

(1.6.2) в базисе вращательных волновых функций имеет матричные элементы только с $\Delta K = 0, \pm 2$. Это так называемый трехдиагональный вид эффективного вращательного гамильтониана (Уотсоновский вид).

Отметим, что разложение (1.6.2) является, так же как и гамильтониан (1.6.1), степенным рядом по вращательным операторам J_{α} .

§1.7 Резонансные модели: Кориолисовы и ангармонические взаимодействия. Смешивание базисных волновых функций

В приближении нормальных мод колебания молекулы считаются независимыми, это является следствием выбора соответствующих координат. При этом вращательная структура каждого колебательного состояния может быть рассмотрена независимо от наличия остальных колебательных состояний. Однако, при описании реального спектра большинства молекул, часто оказывается невозможным рассматривать колебательные состояния как изолированные. При этом говорят, что соответствующие колебательные состояния находятся в резонансном взаимодействии (либо в резонансе). В теории КВ спектров принято различать два типа резонансов: «регулярные» и «случайные».

Регулярные резонансы обусловлены наличием в молекуле химически эквивалентных связей. Такими связями являются ОН, NH и CH связи в 4-х, 5ти и более атомных молекулах. Заметим, что регулярные резонансы присутствуют лишь в молекулах, имеющих выражденные колебательные состояния. Учет таких резонансов происходит естественным образом при решении уравнения Шрёдингера. В данной работе мы имеем дело с 3-х атомными молекулами (вода, озон), в которых нет вырожденных колебательных состояний и, соответственно, регулярных резонансов.

Другой тип резонансов носит названия случайных. Причиной таких резонансных взаимодействий является близость или совпадение колебательных энергий ДВУХ или большего числа состояний, не обусловленные симметрией задачи (вырождением колебательных уровней). Помимо близости колебательных энергий для возникновения взаимодействия необходимо наличие членов гамильтониана, связывающих соответствующие состояния. В общем случае о наличии резонанса между КВ состояниями $|\mathbf{VR}\rangle$ и $|\mathbf{V'R'}\rangle$ можно судить по отношению $\langle \Psi^0_{\mathbf{VR}} |\mathbf{H}| \Psi^0_{\mathbf{V'R'}} \rangle / (E^0_{\mathbf{VR}} - E^0_{\mathbf{V'R'}})$, где $E^0_{\mathbf{VR}}$ и Ψ_{vR}^0 энергии и базисные волновые функции в приближении изолированных колебательных состояний. Резонанс, который проявляется в нерегулярности серий спектральных линий, возникает, если это соотношение не является достаточно малым и колебательные состояния нельзя полностью изолировать Из условия $\langle \Psi^0_{VR} | \mathbf{H} | \Psi^0_{V'R'} \rangle \neq 0$ следует, теории возмущений. по что резонирующие КВ состояния должны принадлежать к одному типу симметрии $\Gamma(|VR\rangle) = \Gamma(|V'R'\rangle)$ (см. далее §1.10). Высоковозбуждённые вращательные состояния, относящиеся к разным колебательным состояниям, могут резонировать и в том случае, когда разность чисто колебательных энергий достаточно велика и колебательного квазивырождения нет, но матричный элемент взаимодействия велик.

Одними из первых примеров учета случайных резонансов являются работы [8], при описании структуры полос v_1 и v_3 молекулы озона, и [9], для описания состояний (110) и (011) молекулы сероводорода. В этом случае, КВ гамильтониан представляет собой операторную матрицу размерностью 2×2, которая является частным случаем (1.5.9):

$$^{\text{dyade}}\mathbf{H} = \begin{vmatrix} \mathbf{H}_{\mathbf{V}\mathbf{V}} & \mathbf{H}_{\mathbf{V}\mathbf{V}'} \\ \mathbf{H}_{\mathbf{V}\mathbf{V}'}^{+} & \mathbf{H}_{\mathbf{V}'\mathbf{V}'} \end{vmatrix}.$$
 (1.7.1)

Как отмечено в предыдущем разделе, матричные элементы матрицы (1.7.1) являются вращательными операторами, зависящими от углового момента J_{α} . Для молекулы типа асимметричного волчка полагается, что диагональная часть, H_{vv} и $H_{v'v'}$, имеет Уотсоновский вид (1.6.2). Оператор, ответственный за взаимодействие колебательных состояний $H_{vv'}$, представляет собой полином по вращательным операторам J_{α} и входит в том виде, в котором он получается после отделения колебательных переменных. $H_{vv'}^+$ – оператор, эрмитово сопряжённый по отношению к $H_{vv'}$.

Явный вид операторов в (1.7.1) определяется симметрией молекулы и типом взаимодействующих состояний. В соответствии со свойствами симметрии молекул и разложением молекулярного гамильтониана, в литературе различают два типа резонансов.

1) Резонанс Кориолиса

Кориолисовым называют взаимодействие колебательно-вращательных уровней, относящихся к двум колебательным состояниям разной симметрии $\Gamma(|VR\rangle) \neq \Gamma(|V'R'\rangle)$, главные вклады которого обусловлены кориолисовой частью КВ гамильтониана $\sum_{ij\alpha} \xi_{ij}^{\alpha} \left(\frac{\omega_j}{\omega_i}\right)^{\frac{1}{2}} \mathbf{q}_i \mathbf{p}_j \mathbf{J}_{\alpha}$. Для фундаментальных полос трехатомных молекул, рассматриваемых в диссертации, резонанс Кориолиса возникает вследствие близости гармонических колебаний симметричного \mathbf{q}_1 (\mathbf{A}_1) и антисимметричного \mathbf{q}_3 (\mathbf{B}_1) типа:

$$\omega_1 \approx \omega_3. \tag{1.7.2}$$

Для молекул типа X₂Y это совпадение частот не является случайным и следует из наличия в молекуле одинаковых связей. Классическим примером является сильный резонанс Кориолиса, связывающий КВ уровни одного типа

симметрии колебательных состояний разной симметрии: $|v_1v_2v_3\rangle = |100\rangle$ ($\Gamma_{VIB} = A_1$) и $|v'_1v'_2v'_3\rangle = |001\rangle$ ($\Gamma_{VIB} = B_1$) в молекулах воды или озона [69, 70, 85]. Из (1.7.2) также следует, что состояния $|V\rangle$ и $|V'\rangle$ с одинаковой суммой «валентных» квантовых чисел $v_1 + v_3 = v'_1 + v'_3$ связаны резонансом Кориолиса, если v_3 четно, а v'_3 нечетно и наоборот. Таким образом, «регулярные» резонансы Кориолиса связывают состояния:

$$|\mathbf{V}\rangle = |\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\rangle \quad \langle = \text{Кориолис} = \rangle \quad |\mathbf{V}\rangle = |\mathbf{v}_1 \pm \mathbf{1}, \mathbf{v}_2, \mathbf{v}_3 \mp \mathbf{1}\rangle \quad (1.7.3)$$

Для высоковозбужденных состояний резонансы Кориолиса возникают также из-за случайного совпадения колебательных уровней разного типа симметрии.

Метод КП и учет симметрии приводят к следующим выражениям [54] для первых вкладов оператора Кориолисова взаимодействия в эффективном гамильтониане (1.7.1) для молекул типа асимметричного волчка:

$$\mathbf{H}_{\mathbf{V}\mathbf{V}'}^{\mathrm{Cor}} = C_{y}(\mathbf{J}_{y}) + C_{xz}(\mathbf{J}_{x}\mathbf{J}_{z} + \mathbf{J}_{z}\mathbf{J}_{x}) + \dots$$

В диссертационной работе мы применяем общие выражения [82] для операторов Кориолисова взаимодействия молекул симметрии C_{2V} в том виде, в котором они включены в программы GIP [86] и FMOD [87], используемые для решения прямой и обратной спектроскопических задач:

$$\mathbf{H}_{VV'}^{Cor} = \sum_{r \text{ (odd)}} \sum_{l,m} C_{Lmr} (\mathbf{J}^2)^l \left\{ \mathbf{J}_+^r (\mathbf{J}_z + r/2)^m - (-1)^m (\mathbf{J}_z + r/2)^m \mathbf{J}_-^r \right\}.$$
(1.7.4)

Для молекул группы C_{2V} разрешенные по симметрии степени r лестничных операторов $(\mathbf{J}_{\pm})^r$ нечетны: r = 1, 3, 5,... Следовательно, ненулевые матричные элементы в стандартном вращательном базисе существуют только для нечетных ΔK :

$$\left\langle JK \left| \mathbf{H}_{VV'}^{Cor} \right| J, K \pm \Delta K \right\rangle \neq 0$$
для $\Delta K = 1, 3, 5, ...$

Операторы \mathbf{J}_{\pm} называют «лестничными» операторами для углового момента: $\mathbf{J}_{\pm} = \mathbf{J}_{x} - i\mathbf{J}_{y}, \quad \mathbf{J}_{\pm} = \mathbf{J}_{x} + i\mathbf{J}_{y}.$ Они удовлетворяют коммутационным соотношениям $\mathbf{J}_{\pm}\mathbf{J}_{\pm} - \mathbf{J}_{\pm}\mathbf{J}_{\pm} = 2\mathbf{J}_{z}$ и $\mathbf{J}_{z}\mathbf{J}_{\pm} - \mathbf{J}_{\pm}\mathbf{J}_{z} = \pm \mathbf{J}_{\pm}.$ Правила действия оператора \mathbf{J}_{\pm} на собственные функции оператора жёсткого симметричного волчка:

$$\mathbf{J}_{\pm} | \mathbf{J}, \mathbf{K} \rangle = \sqrt{(\mathbf{J} \mp \mathbf{K})(\mathbf{J} \pm \mathbf{K} + 1)} | \mathbf{J}, \mathbf{K} \pm 1 \rangle$$

2) Ангармонические резонансы

Это резонансные взаимодействия колебательно-вращательных уровней, относящихся к двум колебательным состояниям одинакового типа симметрии. Главные вклады в матричный элемент взаимодействия для таких резонансов следуют из ангармонических членов разложения ФПЭ. Наиболее известными из ангармонических резонансов являются резонансы Ферми и Дарлинга-Деннисона.

<u>Резонанс Дарлинга-Деннисона</u> (ДД) также возникает вследствие соотношения между частотами (1.7.2), но связывает колебательные $|V\rangle$ и $|V'\rangle$ состояния одного типа симметрии с $v_1 + v_3 = v'_1 + v'_3$ при одинаковой четности v_3 и v'_3 . Например, в молекуле озона резонансом ДД связаны состояния (200)/(002), либо (201)/(103) и т.д.

Поскольку резонансы Кориолиса и ДД следуют из одного и того же соотношения между частотами $\omega_1 \approx \omega_3$, то они приводят к общей полиадной структуре, которую можно задать двумя значениями {P = v₁ + v₃, v₂}:

Полиады:	колебательные состояния (v ₁ , v ₂ ,v ₃)			
$P = 0, v_2 = 0$	{(000)}	=> основное состояние,		
$P = 1, v_2 = 0$	{(100), (001)}	=> первая диада,		
$P = 2, v_2 = 0$	{(200), (101), (002)}	=> первая триада,		
$P = 3, v_2 = 0$	{(300), (201), (102), (003)}	=> первая тетрада,		
$P = 0, v_2 = 1$	{(010)}	=> первое изгибное состояние		
$P = 1, v_2 = 1$	{(110), (011)}	=> вторая диада,		
$P = 2, v_2 = 1$	{(210), (111), (012)}	=> вторая триада,		

Такая упрощенная схема резонансов при одном резонансном условии (1.7.2) обычно называется классической схемой валентных полиад озона [69, 70, 84]. Ненулевые ДД колебательные матричные элементы связывают состояния:

.

$$|\mathbf{V}\rangle = |\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\rangle \quad \langle = \boldsymbol{\Pi}\boldsymbol{\Pi} = \rangle \quad |\mathbf{V}'\rangle = |\mathbf{v}_1 \pm 2, \mathbf{v}_2, \mathbf{v}_3 \mp 2\rangle$$
(1.7.5)

<u>Резонанс Ферми</u> возникает вследствие приближенного совпадения частоты одной гармонической моды с удвоенной частотой другой гармонической моды:

$$\omega_1 \approx 2\omega_2. \tag{1.7.6}$$

Главный вклад в матричный элемент взаимодействия следует из кубической ангармоничности $K_{122}q_1q_2q_2$. Таким образом, резонанс Ферми связывает состояния:

$$|\mathbf{V}\rangle = |\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\rangle \quad \langle = \Phi e p_{\mathbf{M}\mathbf{H}} = \rangle \quad |\mathbf{V}\rangle = |\mathbf{v}_1 \pm \mathbf{1}, \mathbf{v}_2 \mp \mathbf{2}, \mathbf{v}_3\rangle. \tag{1.7.7}$$

Для ангармонических резонансов существуют также вращательные вклады в **Н**^{Anh}_{VV'}. Для первых членов метод КП дает:

$$\mathbf{H}_{\mathbf{V}\mathbf{V}'}^{\mathrm{Anh}} = \mathbf{F} + \mathbf{F}_{\mathrm{J}} \mathbf{J}^{2} + \mathbf{F}_{z} \mathbf{J}_{z}^{2} + \mathbf{F}_{\mathrm{xy}} (\mathbf{J}_{\mathrm{x}}^{2} + \mathbf{J}_{\mathrm{y}}^{2}) + \dots$$

Общие выражения для ангармонических резонансов, включенные в программы GIP [86] и FMOD [87] имеют вид [82]:

$$\mathbf{H}_{VV'}^{Anh} = \sum_{r,l,m} F_{LmR} (\mathbf{J}^2)^l \left\{ \mathbf{J}_{+}^{2r} (\mathbf{J}_{z} + r)^m + (-1)^m (\mathbf{J}_{z} + r)^m \mathbf{J}_{-}^{2r} \right\}$$
(1.7.8)

Для молекул, имеющих симметрию C_{2V}, параметры F_{LmR} вещественны и L = 21 и R = 2r. Как следует из вида оператора (1.7.8), в базисе собственных функций жёсткого симметричного волчка отличными от нуля являются матричные элементы с $\Delta K = 0, \pm 2, \pm 4, \pm 6$ и т.д.

Форма параметризации резонансов (1.7.4), (1.7.8) используется в информационной системе по озону S&MPO [85]. Редукция \mathbf{H}^{eff} в случае резонансов рассматривалась в [82, 83].

Многократные резонансы

Эффективный гамильтониан для группы большего числа взаимодействующих колебательных состояний строится подобным образом, что и (1.7.1). Подобные полиады образуются в любой многоатомной

молекуле, в которой между частотами основных колебаний или их комбинаций существуют определенные соотношения. Для молекулы воды эти соотношения приведены в §2.2., для озона - в §3.2. Однако с некоторого момента разделение колебаний по полиадам является приближенным, так как в области высоких энергии плотность колебательных состояний высока, что приводит к перекрыванию полиад.

§1.8 Нежесткие молекулы. Трудности, связанные с использованием традиционной модели гамильтониана для описания их энергетических состояний

В нулевом приближении для представления движения ядер, их как систему связанных гармонических осцилляторов, рассматривают совершающих малые колебания вблизи положения равновесия. Вся молекула к тому же вращается как единое целое (жесткий ротатор). Если эта модель приемлема для описания молекулы и все отклонения от неё при переходе к точному описанию могут быть учтены как малые поправки (малые возмущения), молекула называется «полужесткой». Для то такой «полужесткой» модели характерна равновесная ядерная конфигурация, которой отвечает четко выраженный минимум потенциальной энергии, и малые (по сравнению с межъядерными расстояниями) амплитуды колебаний ядер.

К нежёстким относятся молекулы, для которых описанная выше модель не работает. Это, например, легкие молекулы (к ним относятся такие молекулы как H_2O , CH_2 , NH_2 ,...), колебания ядер которых происходят с большой амплитудой, а основная частота нежёсткой моды колебаний обычно гораздо меньше частот «жестких» валентных и деформационных колебаний и иногда сравнима с энергией вращения молекулы; молекулы с инверсией (NH₃, H_3O^+ ,...) и с внутренним вращением (C_6H_6 , C_8H_{10} ,...). Потенциальная

поверхность таких молекул сильно отличается от поверхности многомерного гармонического осциллятора и может иметь несколько минимумов, разделённых достаточно низкими барьерами.

Такого рода молекулы представляют большой интерес, как с практической точки зрения, так и фундаментальной. По теории нежестких молекул существует обширная литература, изложение в диссертации по этой теме следует монографии [71].

Как уже говорилось выше, для обработки КВ переходов для невырожденных колебательных состояний традиционно используют гамильтониан в виде разложения по степеням компонент углового момента (1.6.1). Многочисленные работы по применению гамильтониана (1.6.1) к стандартным полужестким молекулам показывают, что вращательные и центробежные параметры h_{per}^{v} медленно меняются от состояния к состоянию:

$$\mathbf{h}_{pqr}^{V} = {}^{0}\mathbf{h}_{pqr} + \sum_{i} {}^{(i)}\mathbf{h}_{pqr} \left(\upsilon_{i} + \frac{1}{2}\right) + \sum_{ij} {}^{(ij)}\mathbf{h}_{pqr} \left(\upsilon_{i} + \frac{1}{2}\right) \left(\upsilon_{j} + \frac{1}{2}\right) + \dots$$
(1.8.1)

Физическая обоснованность теории возмущений для полужестких молекул приводит к тому, что как разложения эффективного вращательного гамильтониана по степеням J^{n}_{α} (1.6.1), так и разложение параметров по колебательным квантовым числам (1.8.1) достаточно хорошо сходятся в области энергий, характерных для наблюдаемых спектров в стандартных условиях. Это позволяет в практических вычислениях обрывать разложения, используя полиномиальную экстраполяцию в эффективных гамильтонианах.

Для нежёстких молекул ситуация оказывается существенно более сложной. Часть спектроскопических параметров h_{pqr}^{v} обнаруживает аномально сильную зависимость от квантовых чисел, соответствующих колебаниям большой амплитуды. В [71] приведены примеры зависимости параметров h_{pqr}^{v} для молекул CH₂ и H₂O от квантового числа v₂, а так же

аммиака (NH₃) зависимости вращательных постоянных молекул И метиленциклобутана ($CH_2C(CH_2)_3$) от инверсионного квантового числа. В работе [88] показано, что для молекулы воды постоянная L_к, полученная из обработки состоянии $(0, v_2, 0)$, возрастает в 300 раз при переходе от основного состояния (000) к состоянию (030). Однако, по теории возмущения, чтобы разложение типа (1.8.1) было сходящимся, колебательная зависимость не должна превышать нескольких процентов. Основная сложность заключается в том, что параметры, полученные из обработки слабо возбуждённых состояний, колебательных нельзя экстраполировать на высокие колебательные состояния, используя разложение типа (1.8.1).

Еще одной особенностью нежестких молекул является расходимость рядов эффективных вращательных гамильтонианов, используемых для обработки их колебательно-вращательных спектров. Для таких молекул вклады в энергию от последующих членов разложения (1.6.1) уменьшаются очень медленно, а иногда и возрастают с ростом вращательных квантовых чисел J и K_a . При обработке экспериментальных данных со средними значениями K_a разложение (1.6.1) приходится удлинять до очень высоких степеней вращательного оператора J_z^2 . Для описания уровней молекулы воды с квантовым числом $K_a \leq 15$ в работе [88] в разложение эффективного гамильтониана включались члены с J_z^{12} , J_z^{14} , что соответствует 10 и 12 порядкам теории возмущения. Несмотря на включение высоких порядков, это не позволило достичь удовлетворительной точности расчетов.

Как показано в работах Тютерева и Старикова [89-92], обработка вращательного спектра молекулы воды оператором (1.6.2) теряет физический смысл уже при *J*, $K_a > 10$. Другими словами, предположение о малости вкладов в энергию от операторов **J**ⁿ c n > 2 перестает выполняться. Иначе, поправки в энергию, связанные с наличием нежёсткости, оказываются сравнимыми или даже большими, чем вклад от оператора жёсткого ротатора.

В [89-92] показано, что для молекулы $H_2^{16}O$ такая ситуация реализуется даже для основного колебательного состояния. Всё это приводит к плохому качеству обработки экспериментальных данных (уровней энергии или частот переходов), особенно при росте вращательного квантового числа K_a . Вследствие проблем сходимости стандартная Уотсоновская модель (1.6.2) не позволяет приблизиться к экспериментальной точности при описании высокотемпературных спектров водяного пара и не обладает сколько-нибудь надежными предсказательными способностями.

Из литературы известно, что наряду со степенным разложением эффективного вращательного гамильтониана по \mathbf{J}_{α}^{2} , имеются и другие, более сложные представления оператора ^[V] **Н**^{ROT}. Получение новых представлений вращательного гамильтониана может быть основано на методах расходящихся рядов. Одним суммирования методов улучшения ИЗ сходимости разложения (1.6.2) является метод Паде - аппроксимантов [95], замене какой-либо конечной суммы в основанный на разложении гамильтониана дробно-рациональными функциями углового момента. Применение метода Паде - аппроксимантов к расчету КВ спектров рассматривается в работах [4, 71, 96-98].

В следующем параграфе будет описано одно из неполиномиальных представлений эффективного вращательного гамильтониана, который используется для описания уровней энергии нежестких молекул.

§1.9 Эффективный вращательный гамильтониан в виде производящих функций

Как говорилось в предыдущем параграфе, вращательный гамильтониан молекулы в виде полиномиального разложения по степеням компонент углового момента J^2_{α} , построенный методами теории возмущения с чисто

колебательным нулевым приближением, плохо работает в случае нежёстких молекул. Область сходимости стандартного разложения (1.6.1), выраженная через максимально допустимые вращательные квантовые числа, при которых ряды можно обрывать, оказывается весьма малой. Эта область сходимости лимитируется, в основном, значением (K_a)_{мах} и уменьшается с возбуждением изгибного колебания v₂ [89-92]. Физической причиной плохой сходимости рядов является сильное изгибно-вращательное взаимодействие в молекулах типа H₂O, которые в стандартном варианте разделения колебательных и вращательных переменных методом КП (§1.5) рассматривается как часть возмущения. Для устранения этого недостатка необходимо учитывать изгибно-вращательное взаимодействие в как часть возмущения.

Одним из наиболее перспективных направлений в данной области является метод представления эффективного вращательного гамильтониана (ЭВГ) в виде производящих функций, предложенный в работах [89-92]. Основу метода производящих функций составляет положение о том, что эффективные гамильтонианы могут быть применимы для гораздо более широкой области квантовых чисел, чем их полиномиальные апроксиманты (1.6.1), (1.8.1).

Для молекул типа ассиметричного волчка можно сформулировать следующие утверждения [89, 92]:

1) Для нерезонирующих колебательных состояний существуют функции $\mathbf{F}(\mathbf{J}^2, \mathbf{J}_x)$ и $\chi(\mathbf{J}^2, \mathbf{J}_x)$ такие, что собственные значения операторов

^[V]
$$\mathbf{H}_{\text{ROT}} = {}^{V}\mathbf{F}(\mathbf{J}^{2}, \mathbf{J}_{z}) + \frac{1}{2}\{(\mathbf{J}^{2}_{+} + \mathbf{J}^{2}_{-}), {}^{V}\chi(\mathbf{J}^{2}, \mathbf{J}_{z}) + \chi(\mathbf{J}^{2}, \mathbf{J}_{z})(\mathbf{J}^{2}_{+} + \mathbf{J}^{2}_{-})\}$$
 (1.9.1)

точно совпадают с экспериментальными вращательными энергиями для выделенного колебательного состояния [V]. Функции F(x, y) и $\chi(x, y)$ обладают свойством четности относительно второго аргумента, т.е.

$$F(x,-y) = F(x,y)$$
 и $\chi(x,-y) = \chi(x,y)$

2) Гамильтониан (1.9.1) является редуцированным. Это означает, что не существует малых унитарных преобразований, которые сохраняют форму (1.9.1), но изменяют значения функций F(x,y) и $\chi(x,y)$ при целых аргументах x = J(J+1) и y = K.

3) Разложение функций $\mathbf{F}(\mathbf{J}^2, \mathbf{J}_z)$ и $\chi(\mathbf{J}^2, \mathbf{J}_z)$ в ряд Тейлора в области сходимости приводит к разложению оператора (1.9.1), по форме совпадающему с (1.6.2), и коэффициенты этого разложения воспроизводят значения констант гамильтониана $\mathbf{H}_v^{\text{Wats}}$. Функции $\mathbf{F}(\mathbf{J}^2, \mathbf{J}_z)$ и $\chi(\mathbf{J}^2, \mathbf{J}_z)$ называются точными производящими функциями Уотсоновского гамильтониана $\mathbf{H}_v^{\text{Wats}}$.

Если степенные разложения функций $\mathbf{F}(\mathbf{J}^2, \mathbf{J}_z)$ и $\chi(\mathbf{J}^2, \mathbf{J}_z)$ расходятся, то расходится и стандартный гамильтониан Уотсона. Это не означает, что при отсутствии случайных резонансов сам принцип разделения колебательных и вращательных переменных не применим, но лишь указывает на то, что метод аппроксимации этих функций полиномами не оптимален.

Как уже отмечено выше, причиной плохой сходимости Уотсоновского гамильтониана является изгибно-вращательное взаимодействие, главный вклад которого в гамильтониан описывается членом [89-92]:

$$\mathbf{h}(\rho, \mathbf{J}) = \mathbf{B}_{z}(\rho)\mathbf{J}_{z}^{2} + \mathbf{B}_{J}(\rho)\mathbf{J}^{2}$$
(1.9.2)

Здесь ρ π θ угол, дополнительный к углу θ между связями. При $\rho \rightarrow 0$ молекула приближается к линейной конфигурации и $B_{r}(\rho) \rightarrow \infty$, т.е. первый член в изгибно-вращательном взаимодействии становится сингулярным. В молекуле воды барьер к линейности весьма низок (он составляет ~ 11000 см-1), в то время как в КВ спектрах наблюдаются линии, соответствующие верхним уровням энергии до 25000 – 30000 см⁻¹ и выше. При энергиях, приближающихся барьеру, вклад изгибно-вращательного к ОТ взаимодействия становится аномально большим, чем и объясняются проявления эффектов нежёсткости. Включение члена (1.9.2) в возмущение стандартном варианте разложения приводит при К вкладам OT последовательных порядков теории возмущения типа

$$\left\{\frac{\left|\left\langle \Psi_{V} \left| B_{z}(\rho) \right| \Psi_{V'} \right\rangle^{0} \left\langle \Psi_{V'} \left| B_{z}(\rho) \right| \Psi_{V''} \right\rangle^{0} \dots}{(E_{V}^{0} - E_{V'}^{0})(E_{V'}^{0} - E_{V''}^{0}) \dots}\right\} \mathbf{J}_{z}^{2n}, \qquad (1.9.3)$$

которым соответствуют расходящиеся последовательности в Уотсоновском гамильтониане [92]:

$$B_{z} J_{z}^{2} - \Delta_{K} J_{z}^{4} + H_{K} J_{z}^{4} + P_{K} J_{z}^{6} + ... + C_{K} J_{z}^{2n} + ..., \qquad (1.9.4)$$

где $B_z = \overline{B_z(\rho)}$ - среднее значение по колебательному состоянию. Включение изгибно-вращательного взаимодействия в нулевое приближение H_0 позволило получить более реалистические приближения к точному вращательному гамильтониану (1.9.1), чем традиционная модель жесткого волчка. В работах [71, 89-92] получены различные приближённые формы для производящих функций.

В диссертационной работе мы используем модель производящей функции, введенную в работах [89, 92, 94]. Главное приближение к

диагональной части ЭВГ в этой модели записывается следующим образом [89, 92]:

$$^{\text{diag}}\mathbf{H}_{\text{ROT}}^{[\text{J}]} = \mathcal{E}^{\text{J}} + \mathbf{B}^{\text{J}}\mathbf{G}, \qquad (1.9.5)$$

где

$$\mathbf{G} = \frac{2}{\boldsymbol{\alpha}^{(J)}} (\sqrt{1 + \boldsymbol{\alpha}^{(J)} \mathbf{J}_{z}^{2}} - 1)$$
(1.9.6)

наиболее простое приближение для производящей функции, которое можно назвать «базовой производящей функцией». Операторы \mathcal{E}^{J} и B^{J} в (1.9.5) зависят только от полного углового момента \mathbf{J}^2 , но не зависят от его компонент. Можно показать [92], что оператор G, являющийся нелинейной функцией от углового момента, формирует новое приближение для ЭВГ, учитывающее существенную часть центробежного искажения. Нелинейный параметр $\alpha^{(J)}$ может быть определен из экспериментальных данных путём решения обратной спектроскопической задачи. В простейшем варианте он может быть также оценен из прямого расчёта через значения вращательных и постоянных: $\alpha^{(J)} \cong 4\Delta_{\kappa}/B_{\tau}$. центробежных Разлагая квартичных однопараметрическую функцию G (1.9.6) в ряд Тейлора, можно предсказать значения всех центробежных постоянных высоких порядков в разложении (1.9.4), исходя из значений только двух первых членов. Такой расчёт даёт отличное согласие с эмпирическими значениями констант H_K, P_K, L_K, ... для всех изгибных состояний молекулы воды. Это означает, что производящая функция G (1.9.6) может рассматриваться как полная сумма расходящейся (1.9.4)последовательности ЛО бесконечности. Преимущество eë использования перед стандартным разложением Уотсона состоит в том, что ряд (1.9.4) учитывается полностью без его обрыва, который и приводит к большим ошибкам в расчёте и экстраполяции. Еще одним из преимуществ G функции перед традиционным гамильтонианом является правильное

асимптотическое поведение рассчитанных на её основе вращательных энергий при больших значениях квантового числа *K*_a.

В области малых значений квантовых чисел J и K матричные элементы от **G**функции ведут себя подобным образом, что и матричные элементы от традиционного оператора жесткого волчка (1.6.2):

$$\langle J, K | \mathbf{G} | J, K \rangle \sim K^2$$
 при $J, K \rightarrow 0$.

В отличие от стандартной модели, при росте квановых чисел новая модель в виде производящих функций дает линейную зависимость матричных элеметнов от квантового числа К:

$$<$$
J,K $|$ G $|$ J,K $> \sim (2 / \alpha^{(J)}) K$ при $J, K \rightarrow \infty$

что хорошо согласуется с асимптотическим поведением экспериментальных энергий молекулы H₂O [92].

Выражение (1.9.5)-(1.9.6) является новым нулевым приближением ЭВГ, которое в случае H₂O гораздо более реалистично, чем модель жесткого волчка. Для того, чтобы учесть поправки, оставшиеся за рамками этого приближения в работе [94] предложено проводить разложение точного вращательного гамильтониана (1.9.1), используя элементарную производящую функцию как базисный элемент.

Эффективный вращательный гамильтониан, построенный на основе производящей функции G удобнее записывать в виде суммы его диагональной и недиагональной частей:

$$\mathbf{H}_{\mathrm{G}} = {}^{\mathrm{diag}}\mathbf{H}_{\mathrm{G}} + {}^{\mathrm{n.diag}}\mathbf{H}_{\mathrm{G}},$$

где $^{\text{diag}}\mathbf{H}_{G} = \sum_{ij} g_{ji} \mathbf{J}^{2j} \mathbf{G}^{i}(\boldsymbol{\alpha}^{(J)})$ и $^{n.\text{diag}}\mathbf{H}_{G} = \sum_{ij} u_{ji} \mathbf{J}^{2j} \{ \mathbf{G}^{i}(\boldsymbol{\beta}^{(J)}), \mathbf{J}^{2}_{xy} \}.$ (1.9.7)

Функция $\boldsymbol{\alpha}^{^{(J)}}$ также может быть разложена по степеням \mathbf{J}^2 :

$$\boldsymbol{\alpha}^{(J)} = a_0 + a_1 \mathbf{J}^2 + a_2 \mathbf{J}^4 + \dots + a_n \mathbf{J}^{2n} + \dots$$
(1.9.8)

Соотношения между коэффициентами g_{ij} , u_{ij} a_i и параметрами Уотсоновского гамильтониана (1.6.2) можно найти в [92, 94]. В выражении для недиагональной части гамильтониана функция $\beta^{(J)}$ может быть разложена в ряд, аналогичный (1.9.8). Разложения типа (1.9.8) являются хорошо сходящимися. Использование G функции позволило впервые описать все экспериментальные вращательные уровни энергии ($J \leq 35$, $K_a \leq 20$) для основного состояния H₂O с точностью, близкой к экспериментальной. Тестовые расчеты показывают [92, 94], что в ряде случаев качество предсказаний вращательных уровней энергий с производящими функциями лучше, чем качество подгонки тех же уровней с помощью стандартного представления эффективного вращательного гамильтониана \mathbf{H}_{v}^{Wats} .

§1.10 Симметрия колебательно-вращательных состояний и правила отбора

а. Общие свойства симметрии и глобальная идентификация КВ состояний

Приведенные в третьем параграфе общие соотношения (1.3.1) и (1.3.3) уже дают возможность решать как прямую, так и обратную спектроскопическую задачи. Однако при их решении необходимо знать в явном виде зависимости энергий от параметров оператора (1.3.1). В общем случае определить такую зависимость очень сложно.

Однако знание свойств симметрии молекулы позволяет установить определенные соотношения между отдельными совокупностями параметров в гамильтониане еще до численного решения уравнения Шредингера. Это значительно упрощает задачу, так как приводит к уменьшению общего числа независимых параметров в гамильтониане, а также позволяет существенно уменьшить размерность задачи, СВОДЯ диагонализацию матрицы $\mathbf{H} = \left\lceil \left\langle \phi_{n} \left| \mathbf{H} \right| \phi_{m} \right\rangle \right\rceil$ гамильтониана К диагонализации отдельных блоков $\phi^{J\Gamma}$ $\mathbf{H}^{\mathbf{J}\Gamma} = \left[\left\langle \boldsymbol{\varphi}_{i}^{\mathbf{J}\Gamma} \middle| \mathbf{H} \middle| \boldsymbol{\varphi}_{j}^{\mathbf{J}\Gamma} \right\rangle \right], \quad сформированных$ на базисных функциях определенного типа симметрии.

Классификация квантовых стационарных состояний по типам симметрии позволяет установить правила отбора для электро-дипольных переходов и, таким образом, систематизировать анализ наблюдаемых спектров.

Группа симметрии молекулы определяется как совокупность преобразований, оставляющих гамильтониан Η инвариантным И обладающим определенными алгебраическими свойствами [15, 64, 99-107]. Для полной классификации молекулярных состояний по типам симметрии необходимо учитывать свойства симметрии пространства и времени, в которых существует молекула, и симметрии, связанные с наличием в молекуле тождественных электронов и ядер.

Изотропность пространства и инвариантность по отношению к операциям группы вращений приводят к сохранению полного углового момента **J** изолированной молекулы. Как функции следствие, волновые $\Psi^{\scriptscriptstyle J}$ стационарных состояний молекулы преобразуются по неприводимым $D^{\left(J\right) }$ представлениям [99] группы вращений И характеризуются J. Отсюда соответствующим квантовым числом следует также диагональность матрицы гамильтониана по J.

Эта работа посвящена анализу колебательно-вращательных спектров в основном электронном состоянии молекул, что дает возможность исключить из рассмотрения операции симметрии, связанные с электронными переменными и их спинами, и редуцировать группу симметрии до прямого произведения группы вращений SO(3) и группы G, связанной с наличием в молекуле одинаковых ядер [64, 99-107]. Для классификации колебательновращательных состояний молекул в литературе используют различные

эквивалентные подходы. Один из них основан на работах Лонге - Хиггинса [104-107], в которых в группу молекулярной симметрии G включаются перестановки координат и спинов одинаковых ядер, а также перестановки с инверсией, отвечающие реально возможным движениям в молекуле. В другом, более традиционном подходе [15], за группу симметрии G принимается точечная группа преобразований, оставляющих равновесную конфигурацию молекулы (рисунок 1.2.) неизменной. Для трехатомных молекул, которые рассматриваются в этой работе, эти группы изоморфны [20, 64, 105].

Вращение трехмерного тела может быть весьма сложным и его удобно разложить на составляющие по трем взаимно перпендикулярным направлениям (a, b, c), проходящим через цент тяжести O, - главным осям вращения. Соответственно этому тело обладает тремя главными моментами инерции, по одному относительно каждой оси, обозначаемые обычно I_A, I_B, I_C. Для молекул, принадлежащих к типу асимметричных волчков (I_A \neq I_B \neq I_C), в молекулярной спектроскопии традиционно оси a, b, c выбраны таким образом, чтобы выполнялось условие: I_A \leq I_B \leq I_C.

Рисунок 1.2. Равновесная конфигурация молекулы X₂Y симметрии C_{2V} и выбор осей молекулярно-фиксированной системы координат

Т.е. ось а соответствует наименьшему моменту инерции и, следовательно, наибольшей вращательной постоянной, которая определяется по формуле: $A = \hbar^2/2I_A$. Таким образом, $A \ge B \ge C$.

Оси молекулярно-фиксированной системы координат (x, y, z) могут быть выбраны шестью различными способами [20, 108] по отношению к осям a, b, c. Выбор осей, представленный на рисунке 1.2., соответствует представлению I^r.

Молекула воды и озона, анализу спектров которых посвящена данная диссертация, принадлежат к точечной группе симметрии C_{2V}.

Эта группа состоит из четырех элементов:

- единичный элемент Е,
- ось поворота C_2 на угол π вокруг оси Ox,
- отражение в плоскости σ_{xz} ,
- отражение в плоскости σ_{xy}.

Принадлежность молекулы к определенной группе симметрии приводит к тому, что операторы (колебательные и вращательные) и волновые функции должны классифицироваться по неприводимым представлениям этой группы [15, 20, 99-106], которые приведены в Таблице 1.2. В Таблице 1.3. приведены прямые произведения неприводимых представлений данной группы [15, 20, 69, 106].

Таблица 1.2. Неприводимые представления Γ группы C_{2V} и типы симметрии операторов KB гамильтониана и операторов проекций дипольного момента в молекулярнофиксированной системе координат

Г	Е	C ₂	σ_{xz}	σ_{xy}	полярный вектор*	аксиальный вектор	нормальные координаты
A_1	1	1	1	1	μ^{x}		q_1, q_2
A ₂	1	1	-1	-1		\mathbf{J}_{x}	
B_1	1	-1	1	-1	μ^{z}	\mathbf{J}_{y}	q_3
B ₂	1	-1	-1	1	μ^{y}	\mathbf{J}_{z}	

* компоненты диполя в МСК

Г	A ₁	A_2	B ₁	B_2
A_1	A_1	A_2	B_1	B_2
A_2	A_2	A_1	B_2	B_1
B_1	B ₁	B_2	A_1	A_2
B ₂	B ₂	B_1	A_2	A ₁

Таблица 1.3. Произведения неприводимых представлений группы С2V

Молекула озона имеет сложную электронную структуру, и применение теории групп к симметрийной классификации требует дополнительных пояснений. Вследствие того, что озон ${}^{16}O_3$ или ${}^{18}O_3$ имеют три идентичных ядра, полная молекулярная группа изоморфна D_{3h} . Потенциальная функция озона в основном электронном состоянии является многоминимумной [109-115]. Экспериментальные данные по ИК спектрам молекулы соответствуют наиболее энергетически низкому минимуму («открытая» электронная конфигурация), в окрестности которого потенциальная функция имеет локальную симметрию C_{2V} . Поэтому классификация КВ состояний озона для анализа экспериментальных данных по Таблице 1.2. является оправданной.

Классификация колебательно-вращательных состояний молекул, которая основывается только на наиболее общих свойствах симметрии относительно группы [64, 106]

$$SO(3) \otimes G$$
 (1.10.1)

и не опирается на приближенные модели для движения ядер, обычно называется «глобальной» классификацией. Теорема Вигнера [99] теории групп устанавливает, что волновые функции классифицируются по неприводимым представлениям группы симметрии. Полный набор симметрийных индексов включает J - номер неприводимого представления группы вращений SO(3) и Г - неприводимое представление молекулярной группы G. Таким образом, глобальная идентификация для трехатомных

нелинейных молекул для волновых функций и векторов состояний записывается в виде:

$$\Psi^{J\Gamma n} _{\boldsymbol{W} \boldsymbol{J} \boldsymbol{W}} | J \Gamma n \rangle, \qquad (1.10.2)$$

где J =0,1,2...квантовое число полного углового момента и $\Gamma = \{A_1, A_2, B_1, B_2\}$ для G = C_{2v}, $\Gamma = \{A', A''\}$ для G = C_s. Индекс n в (1.10.2) не является симметрийным индексом, он определяет порядковый номер колебательновращательных энергий (т.е. собственных значений блока $\mathbf{H}^{J\Gamma}$) для фиксированных J и Г. Глобальная идентификация обычно используется при вариационных расчетах энергий из потенциальной функции [10-13, 28-32].

<u>b. Спектроскопическая идентификация КВ состояний</u>

Исторически, для КВ состояний молекул использовались простые модели, основанные на гармонических колебаниях нормальных мод и вращении жесткого волчка [20]. Эти модели затем уточнялись, используя теорию возмущений (в форме метода контактных преобразований (КП), §1.5) с включением ангармоничности КВ взаимодействий и случайных резонансов. Такой подход позволяет ввести более детальную классификацию КВ состояний, основанную на колебательных (v_i) и вращательных (*K_a*, *K_c*) квантовых числах, которая обычно называется «спектроскопической» идентификацией. Спектроскопическая идентификация является более интуитивной и имеет преимущества для предсказывания серий полос и линий методом экстраполяции, однако не является абсолютно строгой в области высоких энергий из-за возможного смешивания базисных функций нулевого приближения.

Формы нормальных колебаний, соответствующие нормальным координатам q₁, q₂ и q₃ приведены на рисунке 1.3.

Колебательно-вращательные операторы или их симметризованные комбинации также классифицируются по неприводимым представлениям

Рисунок 1.3. Форма нормальных колебаний нелинейных трехатомных молекул. В случае C_{2V} скорости колебания q₃ атомов 2,3 направлены по связям

точечной группы симметрии молекулы. Потенциальная функция (1.2.2), (1.3.3), как и любой член разложения гамильтониана (1.3.5), должна оставаться инвариантной при операциях из группы симметрии молекулы. Поскольку как у молекулы воды, так и у молекулы озона координаты q_1 и q_2 полносимметричны (A₁), а q_3 антисимметрична (B₁), то в сумме $\sum_{\lambda \dots \mu} K_{\lambda \dots \mu} q_{\lambda} \dots q_{\mu}$ могут присутствовать только такие слагаемые, в которые координата q_3 входит в четной степени. Координаты q_1 и q_2 могут входить в них как в четных, так и в нечетных степенях.

Рассмотрим главные вклады в колебательную и чисто вращательную части колебательно-вращательного гамильтониана (1.1.2):

$$\mathbf{H}_{0}^{\text{VIB}} + \mathbf{H}_{0}^{\text{ROT}} = \frac{1}{2} \sum_{k} \omega_{k} (\mathbf{p}_{k}^{2} + \mathbf{q}_{k}^{2}) + \frac{1}{2} \sum_{\alpha} \mu_{\alpha\alpha}^{0} \mathbf{J}_{\alpha}^{2} \qquad (1.10.3)$$

Собственные функции оператора (1.10.3) образуют базис, адаптированный для группы симметрии молекулы, и поэтому их можно использовать для классификации реальных состояний молекулы.

Поскольку (1.10.3) является суммой двух коммутирующих операторов $\left[\mathbf{H}_{0}^{\text{VIB}}, \mathbf{H}_{0}^{\text{ROT}}\right] = 0$, его собственные функции записываются как произведения собственных функции $|v_{1}v_{2}v_{3}\rangle$ и $|R\rangle$ операторов $\mathbf{H}_{0}^{\text{VIB}}$ и $\mathbf{H}_{0}^{\text{ROT}}$. В свою очередь, оператор $\mathbf{H}_{0}^{\text{VIB}}$ является суммой операторов независимых гармонических осцилляторов для каждой нормальной моды колебаний. Поэтому собственные функции оператора (1.10.3) можно представить в виде:

$$|\mathbf{v}_1\mathbf{v}_2\mathbf{v}_3\rangle|\mathbf{R}\rangle = |\mathbf{v}_1\rangle|\mathbf{v}_2\rangle|\mathbf{v}_3\rangle|\mathbf{R}\rangle,$$
 (1.10.4)

где $|v_n\rangle$ - собственные функции одномерных гармонических осцилляторов, которые в координатном представлении для каждой моды имеют вид [15, 20, 116]:

$$\Psi_{v}(q) = \langle q | v \rangle = (\pi 2^{v} v!)^{-1/2} \exp(-q^{2}/2) H_{v}(q). \qquad (1.10.5)$$

Здесь H_v(q) полиномы Эрмита степени v:

$$H_{v}(q) = (-1)^{v} \exp(q^{2}) \frac{\partial^{v} \exp(-q^{2})}{\partial q^{v}}, \qquad (1.10.6)$$

т.е. при v четных во всех слагаемых в (1.10.6) координата q входит в четной степени, при v нечетных - в нечетной.

Как говорилось выше, из трех колебательных координат в молекуле типа X₂Y две координаты q₁ и q₂ полносимметричны, следовательно, и функции $|v_1\rangle$ и $|v_2\rangle$ являются полносимметричными, т.е. преобразуются по неприводимому представлению A₁ группы C_{2V}. Координата q₃ является антисимметричной, тогда в соответствии с (1.10.5) и (1.10.6) функции $|v_3\rangle$

при нечетных v_3 преобразуются по типу симметрии B_1 , а при четных v_3 – по типу симметрии A₁. Т.е. квантовое число v₃ однозначно определяет тип симметрии соответствующей функции [20, 69]:

$$\Gamma(\Psi_{v_1 v_2 v_3}) = \begin{cases} A_1, & v_3 - \text{четное} \\ B_1, & v_3 - \text{нечетное} \end{cases}$$
(1.10.7)

Рассмотрим вращательную часть оператора (1.10.3). Поскольку для нелинейных молекул типа Х₂Ү все три вращательные постоянные различны, то уравнение Шредингера для оператора $\mathbf{H}_{0}^{\text{ROT}}$ не допускает аналитического решения. Поэтому его ищут в виде разложения по стандартному собственному базису $|JK\rangle$ коммутирующих вращательных операторов $\left\{ {{f J}^2},{f J}_z \right\}$ с последующей численной диагонализации полученной матрицы. Для каждого значения J существуют (2J+1) различные базисные функции $|JK\rangle$, и как следствие, (2*J*+1) функции $|R\rangle$.

Более функций удобным является разложение вращательных асимметричного волчка по симметризованным комбинациям функций симметричного волчка | Ј,К, ү , которые образуют базис Ванга [20, 106, 117]:

$$\left|\mathbf{J},\mathbf{K}_{a},\mathbf{K}_{c}\right\rangle = \sum_{\mathbf{K}\gamma} {}^{J} \mathbf{C}_{k\gamma}^{\mathbf{K}_{a}\mathbf{K}_{c}} \left|\mathbf{J},\mathbf{K},\gamma\right\rangle,$$

(1.10.8)

 $|\mathbf{J},\mathbf{K},\boldsymbol{\gamma}\rangle = \frac{1}{\sqrt{2}} \left\{ |\mathbf{J},\mathbf{K}\rangle + (-1)^{\boldsymbol{\gamma}} |\mathbf{J},\mathbf{K}\rangle \right\}, \quad \mathbf{K}\neq \mathbf{0}$ где $|J,0,0\rangle = |J,K=0\rangle$.

И

В (1.10.8) у = 0 или 1. В этом базисе матрица вращательного гамильтониана асимметричного волчка распадается на четыре подматрицы, каждая из которых соответствуют одному из четырёх неприводимых представлений Г группы C_{2v} . Эти подматрицы обозначаются как E^+ , E^- , O^+ и O^- . Соответствие между типом подматрицы и представлением Г можно найти в [20, 109]. В результате диагонализации подматрицы для данного числа *J* и симметрии Г получаются энергии и соответствующие им функции той же самой симметрии Г, являющиеся линейными комбинациями симметризованных функций (1.10.8). Из всего сказанного следует, что наряду с квантовым числом J для классификации вращательных функций можно использовать квантовое число Г, характеризующее симметрию функции.

Тип симметрии вращательных функций по группе C_{2V} определяется четностью квантовых чисел K_a и K_c [20, 106, 109]:

$$\Gamma(|\mathbf{J}, \mathbf{K}_{a}, \mathbf{K}_{c}\rangle) = \begin{cases} \mathbf{A}_{1} & ee \\ \mathbf{A}_{2} & oe & e(even) - \text{четное} \\ \mathbf{B}_{1} & eo & o(odd) - \text{нечетное} \\ \mathbf{B}_{2} & oe \end{cases}$$
(1.10.9)

Полная симметрия колебательно-вращательной функции соответствующего состояния определяется как произведение колебательной (Γ_{VIB}) и вращательной (Γ_{ROT}) симметрий и приведена в Таблице 1.4.

Г	вращательная	четность	четность
1	матрица	K _a K _c	V ₃
A_1	E^+	ee	e
	O ⁻	oe	0
B_1	0-	oe	e
	E^+	ee	0
A_2	O^+	00	e
	E	eo	0
B ₂	Ē	eo	e
	O+	00	0

Таблица 1.4. Типы симметрии колебательно-вращательных состояний молекулы $X_2 Y$ группы $C_{2\nu}$ в представлении I^r

Таким образом, в рамках спектроскопической идентификации, полные колебательно-вращательные функции (1.10.4) нелинейной трехатомной молекулы X_2Y можно описать тремя колебательными квантовыми числами v_1 $v_2 v_3$ и вращательными квантовыми числами *J*, *K_a*, *K_c*:

$$|\mathbf{v}_1\mathbf{v}_2\mathbf{v}_3\mathbf{J}\mathbf{K}_a\mathbf{K}_c\rangle$$
.

Установление точного соответствия между глобальной и спектроскопической идентификацией в области высоких энергий является нетривиальной задачей.

с. Типы полос и правила отбора для электро-дипольных переходов

с.1. Правила отбора по глобальной идентификации

Взаимодействие молекулы с полем излучения в электро-дипольном приближении определяется оператором [116] $\mathbf{H}^{\text{int}} = -\vec{\mu} \cdot \vec{\mathcal{E}}$, где $\vec{\mu}$ - вектор дипольного момента молекулы, $\vec{\mathcal{E}}$ - вектор электрического поля. Известные соотношения временной теории возмущений [116] выражают вероятность перехода W между связанными состояниями молекулы $|\Psi_{vR}\rangle$ и $|\Psi_{v'R'}\rangle$ как величину, пропорциональную квадрату матричного элемента дипольного момента [20, 106]:

$$\mathbf{W}_{\mathbf{v}\mathbf{R}\to\mathbf{v}'\mathbf{R}'} \sim \left| \left\langle \Psi_{\mathbf{v}\mathbf{R}} \left| \boldsymbol{\mu}_{Z} \right| \Psi_{\mathbf{v}'\mathbf{R}'} \right\rangle \right|^{2}.$$
(1.10.10)

Поскольку поле излучения не вращается вместе с молекулой, то в этом выражении следует использовать пространственно-фиксированную компоненту диполя µ_Z.

Вероятность перехода входит в выражение для интенсивности спектральных линий и является фактически экспериментально определяемой величиной, которая, следовательно, преобразуется по полносимметричному

представлению группы. Отсюда вытекает хорошо известное общее правило отбора для электронно-дипольных переходов:

$$\Gamma(\Psi_{vR}) \otimes \Gamma(\Psi_{v'R'}) \supset \Gamma(\mu_z), \qquad (1.10.11)$$

которое необходимо для того, чтобы $W_{vR \rightarrow v'R'} \neq 0$.

Правила отбора по квантовому числу J следуют из свойств симметрии по группе вращений SO(3), относительно которой вектор дипольного момента является тензором первого ранга: $\Gamma(\vec{\mu}) = D^{(J=1)}$. Волновые функции Ψ^J , характеризуемые квантовым числом J, образуют базис неприводимого представления $D^{(J)}$ группы SO(3), следовательно, общее условие для разрешенных дипольных переходов принимает вид:

$$\Gamma(\Psi^{J}) \otimes \Gamma(\Psi^{J'}) = \mathbf{D}^{(J)} \otimes \mathbf{D}^{(J')} \supset \mathbf{D}^{(J=1)}.$$
(1.10.12)

Условие треугольника для коэффициентов Клебша-Гордана группы вращений [20, 99, 106] приводит к следующим хорошо известным правилам отбора, задающим три ветви в полосах КВ спектров молекул:

$$\Delta J = -1$$
 (Р - ветвь),
 $\Delta J = 0$ (Q - ветвь),
 $\Delta J = +1$ (R - ветвь),
где $\Delta J = J' - J$.
(1.10.13)

Остальные правила отбора определяются группой молекулярной симметрии G и соотношением (1.10.11). Поскольку для $G = C_{2V}$ тип симметрии пространственно-фиксированной компоненты диполя $\mu_Z \sim A_2$, то из таблицы прямых произведений неприводимых представлений следуют правила отбора для КВ переходов

$$A_1 < --> A_2$$
 u $B_1 < --> B_2$. (1.10.14)

Правила отбора (1.10.13) и (1.10.14) в дипольном приближении являются строгими, так как не зависят от физической модели для $\vec{\mu}$ и \mathbf{H}^{VR} . Для порядкового числа n в глобальной идентификации $|J\Gamma n\rangle$ в (1.10.2) не существует правил отбора.

с.2. Правила отбора для спектроскопической идентификации

Точные волновые функции для КВ состояний $|vR\rangle = |v_1v_2v_3JK_aK_c\rangle$ раскладываются по симметрийно - адаптированному базису нулевого приближения, составленного из прямого произведения функций гармонического осциллятора $|v\rangle^0 = |v_1\rangle^0 |v_2\rangle^0 |v_3\rangle^0$ и жесткого волчка $|R\rangle^0 = |JK_aK_c\rangle$ (см. пункт b). По этой причине для симметрийной классификации переходов достаточно рассматривать матричные элементы диполя в базисе нулевого приближения.

Приближенное разделение колебаний и вращения молекулы достигается путем введения подвижной молекулярно-фиксированной системы координат (МСК). Переход от неподвижной системы координат (НСК) к МСК осуществляется при помощи матрицы направляющих косинусов $\phi_{\gamma\alpha}$ ($\gamma = X$, Y, Z и $\alpha = x$, y, z). В спектроскопии, как правило, используется Эккартова МСК [20, 106]. Направляющие косинусы связывают компоненты диполя в НСК (μ_z) и МСК (μ^{α}):

$$\mu_Z = \sum_{\alpha = x, y, z} \varphi_{z\alpha} \mu^{\alpha} . \qquad (1.10.15)$$

Поскольку $\phi_{z\alpha}$ зависят только от углов Эйлера, связывающих НСК и МСК, а молекулярно-фиксированные компоненты диполя μ^{α} зависят только от колебательных координат, то матричные элементы для вероятностей переходов (1.10.10) в базисе нулевого приближения можно записать в факторизованном виде:

$${}^{0}\left\langle \Psi_{\mathbf{v}\mathbf{R}}\left|\boldsymbol{\mu}_{z}\right|\Psi_{\mathbf{v}'\mathbf{R}'}\right\rangle^{0} = {}^{0}\left\langle \mathbf{v}\right|\boldsymbol{\mu}^{\alpha}\left|\mathbf{v}'\right\rangle^{0} \cdot {}^{0}\left\langle \mathbf{R}\right|\boldsymbol{\varphi}_{z\alpha}\left|\mathbf{R}'\right\rangle^{0}.$$
(1.10.16)

Это выражение традиционно используется для классификации полос по типу колебательного матричного элемента:

$${}^{0}\left\langle \mathbf{v} | \mu^{\alpha} | \mathbf{v}^{\prime} \right\rangle^{0} = {}^{0}\left\langle \mathbf{v}_{1} \, \mathbf{v}_{2} \, \mathbf{v}_{3} | \mu^{\alpha} | \mathbf{v}_{1}^{\prime} \, \mathbf{v}_{2}^{\prime} \, \mathbf{v}_{3}^{\prime} \right\rangle^{0}, \quad (\alpha = \mathbf{x}, \mathbf{y}, \mathbf{z}). \quad (1.10.17)$$

Для трёхатомных молекул группы C_{2V} различают два типа полос [118]:

- полосы A – типа, соответствующие матричному элементу (1.10.17) между колебательными состояниями различных типов симметрии. Из таблицы 1.4. и рисунка 1.3. следует, что они соответствуют нечетным значениям Δv_3 и вызваны антисимметричной молекулярной компонентой дипольного момента μ^z , направленной по а-оси молекулы (с наименьшим моментом инерции I_A и с наибольшей вращательной постоянной A).

- полосы B – типа, соответствующие матричному элементу (1.10.17) между колебательными состояниями одинаковых типов симметрии при четных значениях Δv_3 и вызванные симметричной молекулярной компонентой дипольного момента μ^x , направленной по b-оси молекулы (со средним моментом инерции I_B и со средней вращательной постоянной B).

Используя глобальные правила отбора (1.10.14) и таблицу 1.4 соответствий между представлениями группы C_{2V} и четностью вращательных квантовых чисел K_a и K_c , легко установить спектроскопические правила отбора для КВ полос:

 Δv_3 нечетное, $\Delta K_a = 0, \pm 2, \pm 4, \dots \pm 21$, полосы А – типа, Δv_3 четное, $\Delta K_a = \pm 1, \pm 3, \pm 5 \dots \pm (21+1)$, полосы В - типа. Правило отбора по *J* определяется (1.10.13). По колебательным квантовым числам $v_1v_2v_3$ не существует строгих правил отбора, но вероятности переходов в среднем быстро уменьшаются с возрастанием $\Delta v = \sum_i |\Delta v_i|$.

<u>d. Ядерные статистические веса</u>

В выражение для интенсивности спектральной линии входят ядерные статистические веса верхнего и нижнего уровней g_n. Их появление связано с вырожденностью КВ энергий для синглетных электронных состояний по спиновым компонентам. Ядерные стат. веса зависят от спинов идентичных ядер в молекуле и неприводимых представлений группы [15, 69].

Таблица 1.5. Ядерные	статистические веса g	g _n для молекулы	D ₂ O и озона
----------------------	-----------------------	-----------------------------	--------------------------

	тип симметрии			
молекула	A_1	A_2	B_1	B ₂
D ₂ O	2	2	1	1
$^{16}O_3, ^{18}O_3$	1	1	0	0

Из таблицы следует, что для молекул озона ${}^{16}O_3$ и ${}^{18}O_3$ реализуются только КВ состояния типа A_1 и A_2 и наблюдаются только переходы $A_1 \leftarrow \rightarrow A_2$.

§1.11 Интенсивности спектральных линий и моменты дипольных переходов

Общее выражение для интенсивностей S_{ij} колебательно-вращательных переходов молекулы из состояния і в состояние ј в отсутствие внешнего поля хорошо известно [20, 105] и записывается в виде:

$$\mathbf{S}_{ij} = \frac{8\pi^{3}\nu_{ij}}{3\mathrm{hc}4\pi\varepsilon_{0}}\exp\left(-\frac{\mathbf{E}_{i}}{\mathrm{kT}}\right)\mathbf{N}\frac{\mathbf{g}_{i}}{\mathbf{Z}(\mathrm{T})}\left(1-\exp\left(-\frac{\mathrm{hc}\,\nu_{ij}}{\mathrm{kT}}\right)\right)\left|\left\langle\Psi_{i}\left|\boldsymbol{\mu}_{Z}\right|\Psi_{j}\right\rangle\right|^{2},\qquad(1.11.1)$$

где: h – постоянная Планка, с – скорость света, k – постоянная Больцмана, T – температура в градусах Кельвина, Е_i и Е_i – энергии нижнего и верхнего состояний, v_{ij}=(E_j-E_i)/hc – волновое число перехода из состояния і в состояние j, N – число частиц поглощающего газа в единице объёма, g_i – статистический вес нижнего состояния, Z(T) – полная статистическая сумма молекулы, является функцией только ОТ температуры T: $Z(T)=\sum d_m \exp(-E_m/kT)$, где d_m степень вырождения уровня E_m ; Ψ_i и Ψ_j – полные волновые функции молекулы состояний і и j; µ_Z – оператор Zпроекции дипольного момента в пространственно-фиксированной системе координат:

$$\boldsymbol{\mu}_{Z} = \sum_{\alpha} \varphi_{Z\alpha} \boldsymbol{\mu}^{\alpha} , \qquad (1.11.2)$$

где μ^{α} – проекции дипольного момента на оси молекулярно-фиксированной системы координат и $\varphi_{Z\alpha}$ – матрица направляющих косинусов, связывающих оси молекулярной системы координат и ось Z пространственно-фиксированной системы координат.

Размерность интенсивности линии, рассчитанной по формуле (1.11.1), см⁻². В спектроскопической литературе используются различные единицы для интенсивностей спектральных линий. Напрмер, М. Смит с соавторами [120] приводят пять наиболее часто используемых единиц измерения интенсивностей. В нашей работе мы придерживаемся единиц, принятых в базе данных HITRAN – сm⁻¹ / (molecule×cm⁻²) при 296 К.

Основную трудность при расчетах интенсивностей представляет расчет матричного элемента $W_i^j = |\langle \Psi_i | \mu_Z | \Psi_j \rangle|^2$. В глобальных методах расчета волновые функции Ψ_i получаются вариационными методами на этапе решения стационарного уравнения Шрёдингера для движения ядер (1.1.6). Компоненты дипольного момента в МСК μ^{α} вычисляются с использованием

ab initio методов расчета электронной структуры молекул на сетке геометрических конфигураций ядер [10, 22, 29, 122]. В случае трёхатомных нелинейных молекул в результате получаются симметричные и антисимметричные *ab initio* поверхности дипольного момента $\mu^{x}(r_1, r_2, \theta)$ и $\mu^{z}(r_1, r_2, \theta)$, которые затем используются для численного расчета интегралов,

соответствующих матричным элементам $\left\langle \Psi_{\mathrm{VR}} \left| \sum_{\alpha} \varphi_{\mathrm{Z}\alpha} \mu^{\alpha} \right| \Psi_{\mathrm{V}'\mathrm{R}'} \right\rangle$, входящих в

выражение для вероятности переходов. Симметричную и антисимметричную поверхности можно объединить в одну, проектируя диполь на вектора, соответствующие валентным связям [10, 11]. Примеры и обсуждение техники глобальных расчетов интенсивностей можно найти в [10, 11, 29, 32, 121]. В настоящей диссертационной работе для идентификации спектров изотопических модификаций водяного пара использованы глобальные предсказания интенсивностей КВ переходов Партриджа и Швенке [10, 11]. Подробную информацию о соответствующих расчетах можно найти в информационной системе Spectra <u>http://spectra.iao.ru</u> [123, 124].

При использовании метода эффективных операторов для полужестких молекул вычисление W_i^j основано на представлении о малых колебаниях, позволяющем разложение молекулярно-фиксированных компонент дипольного момента μ^{α} в ряд по нормальным координатам. Волновые функции Ψ строятся методами теории возмущения, в качестве базисных используются функции гармонического осциллятора (1.10.5) и жесткого волчка (1.10.8).

В методе КП для описания спектров молекул используют гамильтониан, преобразованный к представлению $\tilde{\mathbf{H}}$ (см. §1.5.). Для того, чтобы иметь возможность использовать для вычисления интенсивностей собственные функции эффективных гамильтонианов Ψ_i^{eff} , следует привести к
этому же представлению и оператор дипольного момента $\mu_z \Rightarrow \tilde{\mu}_z$. Тогда вероятности переходов записываются в виде:

$$\mathbf{W}_{\mathrm{VR}}^{\mathrm{V}'\mathrm{R}'} = \left| \left\langle \Psi_{\mathrm{VR}}^{eff} \left| \tilde{\boldsymbol{\mu}}_{Z} \right| \Psi_{\mathrm{V}'\mathrm{R}'}^{eff} \right\rangle \right|^{2}.$$
(1.11.3)

Здесь эффективные волновые функции являются конечными комбинациями произведений функций гармонических осцилляторов нормальных мод колебаний и жесткого волчка (§1.10). $\tilde{\mu}_{z}$ - оператор эффективного дипольного момента, получаемый из оператора μ_{z} тем же унитарным преобразованием, что и для гамильтониана [45, 48, 67]:

$$\tilde{\boldsymbol{\mu}}_{Z} = \mathbf{U}\boldsymbol{\mu}_{Z}\mathbf{U}^{-1}, \qquad (1.11.4)$$

где $\mathbf{U} = \exp(i\lambda^{n}\mathbf{s}_{n})...\exp(i\lambda^{2}\mathbf{s}_{2})\exp(i\lambda\mathbf{s}_{1})$ - унитарный оператор, реализующий последовательные контактные преобразования. Таким образом, преобразованный оператор дипольного момента записывается в виде [45, 48, 67]:

$$\tilde{\boldsymbol{\mu}}_{\mathbf{Z}} = \tilde{\boldsymbol{\mu}}_0 + \lambda \tilde{\boldsymbol{\mu}}_1 + \lambda^2 \tilde{\boldsymbol{\mu}}_2 + \dots + \lambda^p \tilde{\boldsymbol{\mu}}_p, \qquad (1.11.5)$$

rge

$$\tilde{\mu}_{0} = \mu_{0},$$

 $\tilde{\mu}_{1} = \mu_{1} + [is_{1}, \mu_{0}],$
 $\tilde{\mu}_{2} = \mu_{2} + [is_{1}, \mu_{1}] + \frac{1}{2} [is_{1}, [is_{1}, \mu_{0}]] + [is_{2}, \mu_{0}],$
 $\tilde{\mu}_{3} = \mu_{3} + [is_{1}, \mu_{2}] + \frac{1}{3!} [is_{1}, [is_{1}, \mu_{0}]] + [is_{2}, [is_{1}, \mu_{0}]] + [is_{2}, \mu_{1}] + [is_{3}, \mu_{0}].$

Зная преобразованный дипольный момент $\tilde{\mu}_Z$, можно вычислить оператор момента перехода ${}^{VV'}\tilde{\mu}_Z$ для полосы (VR) \rightarrow (V'R'):

$$^{\mathbf{V}\mathbf{V}'}\tilde{\boldsymbol{\mu}}_{Z} = \left\langle \mathbf{V} \big| \tilde{\boldsymbol{\mu}}_{Z} \big| \mathbf{V}' \right\rangle.$$
(1.11.6)

Выражение для оператора дипольного момента перехода зависит от типа симметрии колебательных состояний, между которыми осуществляется данный переход. Для полос А – типа применяется следующее выражение [53]:

$$^{VV'}\tilde{\boldsymbol{\mu}}_{Z} = d_{1}\varphi_{z} + d_{2}\{\varphi_{z}, \mathbf{J}^{2}\} + d_{3}\{\varphi_{z}, J^{2}_{z}\} + d_{4}\frac{1}{2}\left[\{\varphi_{x}, iJ_{y}\} - \{i\varphi_{y}, J_{x}\}\right] + d_{5}\frac{1}{2}\left[\{\varphi_{x}, \{J_{x}, J_{z}\}\} - \{i\varphi_{y}, i\{J_{y}, J_{z}\}\}\right] + d_{6}\frac{1}{2}\left[\{\varphi_{x}, iJ_{y}\} + \{i\varphi_{y}, J_{x}\}\right] + d_{7}\left[\{\varphi_{x}, \{J_{x}, J_{z}\}\} + \{i\varphi_{y}, i\{J_{y}, J_{z}\}\}\right] + d_{8}\{\varphi_{z}, J^{2}_{xy}\}.$$
 (1.11.7.)

Для полос В – типа [53]:

$$\mathbf{\tilde{\mu}}_{Z} = d_{1}\varphi_{x} + d_{2}\left\{\varphi_{x}, \mathbf{J}^{2}\right\} + d_{3}\left\{\varphi_{x}, J^{2}_{z}\right\} + d_{4}\left\{i\varphi_{y}, J_{z}\right\} + d_{5}\left\{\varphi_{z}, iJ_{y}\right\} + d_{6}\left\{\varphi_{z}, \left\{J_{x}, J_{z}\right\}\right\}$$

$$+ d_{7}\frac{1}{2}\left[\left\{\varphi_{x}, J^{2}_{xy}\right\} - \left\{i\varphi_{y}, i\left\{J_{x}, J_{y}\right\}\right\}\right] + d_{8}\frac{1}{2}\left[\left\{\varphi_{x}, J^{2}_{xy}\right\} + \left\{i\varphi_{y}, i\left\{J_{x}, J_{z}\right\}\right\}\right], (1.11.8.)$$

где $\{A, B\} = AB + BA$, $\varphi_{\alpha} \equiv \varphi_{Z\alpha}$ направляющие косинусы и d_i параметры моментов переходов для каждой полосы. Коэффициенты d_i могут быть получены либо из решения обратной задачи (подгонка к экспериментальным интенсивностям) [53, 69, 125], либо вычислены из *ab initio* поверхностей дипольного момента [74].

Вероятности переходов вычисляются по формуле:

$$\mathbf{W}_{\mathbf{VR}}^{\mathbf{V}'\mathbf{R}'} = \left| \sum \mathbf{C}_{\mathbf{JK}\gamma}^{\mathbf{V}} \mathbf{C}_{\mathbf{J}'\mathbf{K}'\gamma'}^{\mathbf{V}'} \left\langle \mathbf{JK}\gamma \right|^{\mathbf{VV}'} \tilde{\boldsymbol{\mu}}_{\mathbf{Z}} \left| \mathbf{J}'\mathbf{K}'\gamma' \right\rangle \right|^{2}, \qquad (1.11.9)$$

где С^V_{JKγ} и С^{V'}_{J'K'γ'} коэффициенты смешивания для собственных функций эффективных гамильтонианов нижней и верхней полиады состояний. Теория интенсивностей для полужестких молекул развита в работах [45, 48, 57, 58, 67].

§1.12 Прямая и обратная спектроскопические задачи

Всё разнообразие задач колебательно-вращательной спектроскопии может быть, в принципе, разделено на два типа (класса), которые в литературе принято называть прямыми и обратными спектроскопическими задачами. Обычно прямой спектроскопической задачей называют задачу расчёта спектра молекулы по известным молекулярным или спектроскопическим параметрам. Обратной спектроскопической задачей, в общем называют задачу нахождения случае, операторного вида соответствующих гамильтониана и оператора дипольного момента и определения молекулярных или спектроскопических параметров. В нашей работе не стоит задача определения вида выше указанных операторов. Мы ограничиваемся решением задачи о нахождении оптимального набора спектроскопических параметров на основе обработки экспериментального Задача спектра. отыскания связи между спектроскопическими И молекулярными параметрами так же не входит в круг решаемых задач представляемой работы.

Прямую задачу, связанную с расчетом уровней энергии (частот переходов) молекулы по известным параметрам гамильтониана, называют механической. Прямой электрооптической задачей называют задачу расчета интенсивностей соответствующих спектральных линий.

Решение прямой спектроскопической (механической) задачи сводится к (I) расчету матричных элементов гамильтониана в некотором выбранном базисе волновых функций и (II) диагонализации построенной матрицы численными методами. Собственные значения и собственные функции, полученные в результате диагонализации, являются колебательновращательными энергиями и волновыми функциями, используемыми для расчёта частот и интенсивностей переходов, т.е. для решения прямой электрооптической задачи.

Как было сказано выше, обратная задача (в нашем случае) сводится к задаче об определении параметров некоторой теоретической модели из имеющегося набора экспериментальных данных. Эта задача относится к гораздо более сложному классу задач, чем прямая. Задачи подобного типа связаны, в общем случае, с минимизацией некоторого функционала и включают в себя, в качестве одного из этапов, решение прямой задачи.

Из всего выше сказанного понятно, что решение обратной задачи в нашей работе сводится к определению численных значений параметров используемой модели (оператора гамильтониана или дипольного момента перехода), которые наилучшим образом воспроизводят расчетные значения соответствующих наблюдаемым величинам (частот или интенсивностей переходов). Таким образом, в нашей работе решаются все 4 типа спектроскопических задач: прямая и обратная механические задачи в случае молекулы $D_2^{16}O$ и как механические, так и электрооптические задачи в случае молекулы озона ¹⁸O₃.

Воспроизведение «...расчетных значений, соответствующих наблюдаемым величинам ... наилучшим образом...» будем понимать в смысле метода наименьших квадратов [126]. Напомним, что в методе наименьших квадратов определение параметров осуществляется путём минимизации функционала невязок:

$$\chi = \sqrt{\frac{\sum_{i=1}^{NI} \left[(f_i^{obs} - f_i^{calc}) \gamma_i \right]^2}{NI - Np}} , \qquad (1.12.1)$$

который служит характеристикой качества воспроизведения наблюдаемых величин f_i^{obs} . Здесь f_i^{calc} – соответствующие расчетные величины; γ_i – величины, обратно пропорциональные индивидуальным погрешностям определения величин f_i^{obs} ; Nl и Np число участвующих в обработке

экспериментальных данных и число варьируемых параметров модели соответственно.

Таким образом, величины γ_i являются весовыми коэффициентами, с которыми экпереминтальные величины f_i^{obs} входят в обработку. В том случае, если γ_i определены выше упомянутым образом, функционал невязок χ является безразмерной величиной и служит критерием качества описания по отношению к экспериментальной точности данных. При этом, если значение χ близко к единице, то говорят, что величины f_i^{calc} воспроизводят значения f_i^{obs} с экспериментальной точностью. Заметим, что определение весов γ_i может быть иным и учитывать не только экспериментальную точность величин f_i^{obs} , но и возможности используемой теоретической модели.

Необходимо отметить несколько особенностей обратных спектроскопических задач, с которыми приходится иметь дело при анализе спектров высокого разрешения. Во-первых, достаточно большая размерность решаемых задач, во-вторых, нелинейность используемых моделей, в-третьих, корелляция параметров и их плохая определимость, в-четвертых, проблема зашумленности экспериментальных данных. Ниже рассмотрим подробнее каждую из этих особенностей.

Большая размерность задач. Чтобы определить параметры модели гамильтониана даже для изолированных состояний, необходимо обрабатывать большой набор экспериментальных данных. Ситуация становится более сложной, когда мы имеем дело с полиадами, особенно в области высоких энергий, где плотность колебательных состояний велика. Так, например, для молекулы D_2^{16} О число обрабатываемых уровней энергии составляло почти 1600 при более чем 140 определяемых параметров. В случае молекулы озона, нам пришлось обрабатывать более 1500 частот КВ

переходов, чтобы определить около 60 параметров эффективного гамильтониана для 8 резонирующих состояний, 4 из которых тёмные. Необходимо отметить, что в настоящие время, в связи с высокими возможностями компьютерной техники, большая размерность задачи не является большим препятствием для её решения. Например, на сегодняшний день время проведения одной итерации при решении обратной задачи составляет всего от 10 до 15 секунд. Однако еще насколько лет назад эта проблема была достаточно актуальной.

Нелинейность задач. Как обсуждалось выше, зачастую мы вынуждены использовать модели эффективных гамильтонианов, параметры которых входят в модель нелинейным образом (G-функции). Однако, даже в том случае, когда зависимость модели от входящих в неё параметров носит линейный характер (вращательный гамильтониан Уотсона), зависимость вычисленных значений уровней энергии от этих параметров является нелинейной. По этой причине для решения этих задач приходится привлекать нетривиальные методы решения задачи метода наименьших квадратов. Используемые нами программы решения обратной задачи GIP [86] и FMOD [87] основаны на методах, реализованных в библиотеках IMSL и NAG.

Плохая определимость корреляции параметров. Часто U ДЛЯ достижения приемлимого качества описания экспериментальных данных (уровней энергии, частот и интенсивностей КВ переходов) приходится использовать не полностью редуцированные модели. Как было описано выше, это означает, что в модели не все параметры являются независимыми. Это, в свою очередь, приводит к тому, что между частью варьируемых параметров существуют корелляции, что приводит к усложнению решения обратной задачи (значение минимизируемого функционала невязок меняется крайне медленно при существенном изменении отдельных параметров или групп параметров). К тому же, наличие корелляции между параметрами

приводит к тому, что часть из них становится плохо определенными – значения параметров оказываются сравнимыми или даже меньше величины доверительных интервалов.

Зашумлённость экспериментальных данных. При обработке даже небольших наборов данных практически всегда существует проблема их среди данных ошибок разного корректности (наличие рода, иначе Наряду с называемого шумом). ограниченными возможностями используемых теоретических моделей, причиной плохого описания данных могут являться ошибки, связанные с неверной идентификацией части переходов, неточности в определении положений перекрывающихся линий, калибровки погрешности И т.д. Такие погрешности не всегда диагностируются достаточно легко в процессе обработки, даже если в целом модель гамильтониана подобрана верно и достаточно хорошо описывает большую часть экспериментальных данных. Это связано с тем, что метод наименьших квадратов крайне неустойчив к различного рода «аутлайерам», ошибочным данным. В целом, наличие ошибочных или неточных данных может весьма серьезно влиять на решение обратной задачи.

Глава 2

Исследование колебательно-вращательной структуры спектров излучения молекулы **D**₂¹⁶**O**

§2.1 Введение

Вода - уникальное явление природы, она составляет большую часть живых организмов и определяет многие жизненные процессы на нашей планете. Знание физических характеристик воды в различных формах способствует пониманию её роли во многих природных процессах и явлениях. Это в значительной степени зависит от наличия количественных данных о свойствах изолированной молекулы. Несмотря на то, что содержание водяного пара составляет доли процента, играет OH определяющую роль в атмосферном поглощении излучения инфракрасного и оптического диапазонов, оказывает существенное влияние на радиационный баланс в атмосфере и, в конечном счете, на климатические процессы на Земле (см., например, [127] и ссылки в этой работе). В пределах солнечной системы присутствие воды обнаружено на многих планетах (Марс [128-132], Венера [130, 133, 134], Юпитере [135-137] и Сатурне [138] и их спутниках [139-141]). Сравнительно недавно, присутствие молекулы воды было обнаружено в области пятен на Солнце [142, 143]. Вне пределов Солнечной системы вода была обнаружена благодаря её спектрам поглощения и излучения [144, 145].

Интерес к спектроскопии водяного пара обусловлен, с одной стороны, практическими потребностями в количественной информации по спектрам поглощения молекулы, с другой стороны, молекула воды характеризуется чрезвычайно сложными внутримолекулярными взаимодействиями и является объектом, на котором проводятся апробации новейших теоретических моделей.

Наиболее распространенными модификациями молекулы воды в природе являются 9 устойчивых разновидностей, состоящих из атомов ¹⁶O, ¹⁸O, ¹⁷O, ¹H(D) и ²H(D). Основную массу природной воды – свыше 99% составляет $H_2^{16}O$, $H_2^{18}O$ – десятые доли процента, $H_2^{17}O$ и $HD^{16}O$ – сотые

доли процента. Только миллионные доли процента составляет $D_2^{16}O$. Несмотря на столь малое относительное содержание тяжелокислородных и дейтерированных изотопомеров в общей массе воды, в спектрах поглощения (излучения) водяного пара имеются интервалы, в которых поглощение (излучение) обусловлено именно этими разновидностями молекулы. Например, поглощение атмосферного воздуха в интервале 2500 – 2900 см⁻¹ (3.45 – 4 мкм) в основном обусловлено полосой v₁ молекулы HD¹⁶O [146].

Колебательно-вращательные спектры представляют собой прекрасный источник информации об энергетических уровнях, внутримолекулярной потенциальной функции, параметрах дипольного момента, поляризуемости и взаимодействии молекулы воды с внешним окружением. В связи с этим, исследование колебательно-вращательных спектров молекул имеет важное значение для успешного решения различных задач физики, астрофизики, метеорологии, атмосферной оптики, лазерной техники. Наиболее полно последние достижения в области исследований по спектроскопии высокого разрешения водяного пара изложены в ряде монографий и статей [65, 147, 148]. Совсем недавно, в работе [149], спектроскопическим методом была наиболее точно на сегодняшний день определена энергия диссоциации воды.

Колебательно-вращательные спектры основных модификаций молекулы воды: H₂¹⁶O, H₂¹⁸O, H₂¹⁷O, HD¹⁶O, D₂¹⁶O являются предметом интенсивных исследований, поскольку ЭТО даёт дополнительную информацию о параметрах и свойствах молекулы [150, 151]. Исследование спектров поглощения дейтерированной воды необходимо для решения некоторых задач физики межзвёздной среды [152], в частности, дейтерий является индикатором химических реакций, протекающих в газовых облаках. Знание спектроскопических характеристик D₂O и HDO необходимо в ряде технических приложений. Например, тяжелая вода может служить источником мощного лазерного излучения в далекой ИК-области, спектры

комбинационного рассеяния тритиевой воды могут использоваться для контроля температуры в схемах охлаждения ядерных реакторов.

§2.2 Общие сведения о молекуле воды

Молекула нелинейной трёхатомной молекулой, воды является состоящей из одного атома кислорода и двух атомов водорода, имеет три колебаний, соответствующих моды нормальных трём нормальным координатам. Равновесная конфигурация молекул H₂O и D₂O относится к точечной группе симметрии C_{2V}, а молекулы HDO – к точечной группе симметрии C_S. Чтобы отделить поступательное движение молекулы как целого (поскольку оно не влияет на её внутреннее состояние), переходят к молекулярно – фиксированной системе координат. Система осей Охуг жёстко связана с молекулой, начало координат находится в центре масс ядер, если движение электронов не учитывается. Оси системы совпадают с главными моментами инерции молекулы. Равновесная конфигурация ядер равнобедренный атомов. образующих треугольник относительно молекулярной системы осей, показана на рисунке 1.2. (§ 1.10).

Молекула воды имеет изогнутую симметричную форму, и поскольку все три равновесных момента инерции молекулы различны, её относят к классу асимметричных волчков. Вследствие большого различия между тремя главными моментами инерции, и, как следствие, между вращательными постоянными *A*, *B*, *C*, колебательно–вращательный спектр воды оказывается очень сложным с нерегулярно расположенными линиями. Присутствие в молекуле воды двух атомов водорода приводит к тому, что у неё велики вращательные постоянные и линии колебательно-вращательных переходов в спектре отстоят друг от друга достаточно далеко. Так как молекула имеет три колебательные степени свободы (рис.2.1.), её колебательные уровни энергии

валентное антисимметричное колебание

Рисунок 2.1. Форма нормальных колебаний и гармонические частоты молекулы $D_2^{16}O$ нумеруются набором чисел ($v_1v_2v_3$), соответствующих возбуждению трёх колебаний.

Необходимо отметить, что замещение атома водорода на дейтерий приводит к увеличению массы молекулы, её моментов инерции. Вследствие этого уменьшаются частоты колебаний, вращательные постоянные, расстояния между полосами и линиями. Вид гамильтониана при этом остаётся таким же, как и для основной модификации молекулы.

В приближении Борна-Оппенгеймера равновесная конфигурация и потенциальная энергия ядер общие для всех изотопологов и не зависят от масс атомов. Поэтому введение подходящих колебательных координат позволяет определить силовые и ангармонические коэффициенты, которые являются инвариантными при изотопозамещении. В качестве таких координат можно выбрать естественные координаты, т.е. изменения длин связей и угла между ними. Введение нормальных координат, зависящих от

атомных масс, приводит к тому, что параметры гамильтониана (1.3.1) и потенциальной функции (1.3.3) становятся зависящими от масс и могут Поэтому сильно меняться при изотопозамещении. главная задача заключается в том, чтобы найти формулы, связывающие молекулярные постоянные различных изотопных модификаций. Общий метод получения изотопических соотношений для молекул любого типа при произвольном изотопозамещении изложен в работе [153]. В [147] приводятся результаты применения этого метода к молекуле воды: представлены изотопические соотношения ангармонических, вращательных, центробежных для постоянных, постоянных ангармонических резонансов резонансов И Кориолиса, параметров дипольного момента. В рамках данной диссертации мы не будем подробно останавливаться на этом вопросе.

Для гармонических частот симметричных модификаций молекулы воды ($H_2^{16}O$, $H_2^{17}O$, $H_2^{18}O$, $D_2^{16}O$, $D_2^{17}O$, $D_2^{18}O$) справедливо приближённое соотношение:

$$\omega_1 \approx 2\omega_2 \approx \omega_3 \,. \tag{2.2.1}$$

В силу этого взаимодействующими оказываются группы колебательных состояний (v₁v₂v₃), для которых выполняется условие:

$$2v_1 + v_2 + 2v_3 = n$$
. $n = 0, 1, 2, ...$ (2.2.2)

Такие группы называют полиадами. Основное и первое возбужденное колебательные состояния, две нижних полиады (n = 0 и 1), при не очень высоких вращательных возбуждениях представляют собой изолированные состояния. Однако при очень большом вращательном возбуждении вращательная структура даже этих состояний начинает перекрываться и их, вообще говоря, нельзя считать изолированными. Две следующие полиады (n = 2 и 3), представляющие собой группы трех близко расположенных

состояний, называют триадами: {(020) (100) (001)} и {(030) (110) (011)}. В области более высоких энергий можно выделить две гексады (n = 4 и 5): {(040) (120) (200) (021) (002) (101)} и {(050) (130) (210) (031) (012) (111)}. В силу приближенности соотношения (2.2.1) колебательная структура полиад, начиная с гексад, начинает пересекаться: самое нижнее по энергии колебательное состояние $(0v_20)$ перекрывается более высокими по энергии нижележащей полиады. Реальное перекрывание полид состояниями начинается гораздо раньше при рассмотрении высоковозбужденных состояний. В работе [62] вращательных отмечено взаимодействие вращательных уровней с J = 19, 20 первой и второй триад (состояния (100) и (110)), а также первых триады и гексады (состояния (001) и (101) и состояния (001) и (120)).

§2.3 Колебательно-вращательные спектры молекулы D₂¹⁶O

Вращательные уровни основного (000) и первого возбужденного (010) колебательных состояний молекулы $D_2^{16}O$ определялись в большом числе микроволновых и инфракрасных ПО исследованию работ спектров поглощения. Подробно история исследования состояний (000) и (010) описана в работе [154]. В более ранних работах наиболее полный набор данных по уровням энергии этих состояний представлен в работе [155], в которой исследовался спектр, зарегистрированный в диапазоне 600 – 3100 см⁻¹. Максимальные значения вращательных квантовых чисел для уровней энергий, опубликованных в этой работе, составляют $J_{max} = 23$, $K_{a(max)} = 11$ $(E_{max} = 2945 \text{ см}^{-1})$ для основного и $J_{max} = 23$, $K_{a(max)} = 10$ $(E_{max} = 4140 \text{ см}^{-1})$ для первого возбужденного колебательных состояний. Следует отметить, что во всех работах, посвященных анализу указанных состояний молекулы, исследовались спектры поглощения, зарегистрированные при комнатной температуре. Обработка уровней энергий осуществлялась с помощью

традиционного гамильтониана Уотсона в виде полиномиального разложения по степеням вращательного оператора. На рисунке 2.2. представлен обзорный вид спектра поглощения D₂O в районе фундаментальной полосы v₂. Спектры, представленные на рисунках 2.2 - 2.4, были зарегистрированы Тосом (R.A. Toth) и взяты нами с сайта Национальной обсерватории Кит Пик (США).

Анализ вращательной структуры первой триады колебательных состояний молекулы D₂O по спектрам поглощения был проведен в работах [155-157]. В [156] измерения выполнялись на Фурье – спектрометре с разрешением 0.005 см⁻¹ в диапазоне 2170 – 3090 см⁻¹, в [157] изучалась вращательная структура колебательных полос v₁ и v₃ при анализе Фурье спектра D_2O в диапазоне 2400 - 3000 см⁻¹, зарегистрированного с разрешением 0.02 см⁻¹. Во всех трех работах проведен теоретический анализ спектров, определены КВ уровни энергии, вращательные, центробежные постоянные. Максимальные значения вращательных квантовых чисел $J_{max} =$ 16, $K_{a(max)} = 9$ ($E_{max} = 3854$ см⁻¹) для состояния (020), $J_{max} = 17$, $K_{a(max)} = 10$ $(E_{max}=4514 \text{ см}^{-1})$ для состояния (100) и $J_{max}=19, K_{a(max)}=10 \ (E_{max}=4757 \text{ см}^{-1})$ для состояния (001). На рисунке 2.3. представлен обзорный вид спектра поглощения D₂O в районе выше указанных полос. Лишь в работе [158] состояние (020) исследовалось на основе анализа Фурье-спектра излучения в области 380 – 1725 см⁻¹, зарегистрированного при температуре 1500 С и давлении 2.5 торр с разрешением 0.01 см⁻¹ ($J_{max} = 30, K_{a(max)} = 20$).

Спектры поглощения, сформированные переходами с основного колебательного состояния на состояния второй триады молекулы D_2O (полосы $3v_2$, v_1+v_2 и v_2+v_3), уже изучались в работах [159-161]. Линии полос поглощения v_1+v_2 , v_2+v_3 D_2O исследованы в [159]. Анализируемый спектр был регистрирован растровым спектрометром Жирара с разрешение около 0.07 см⁻¹ в диапазоне 3690 – 4110 см⁻¹. В работе [160] приводится наиболее полный набор вращательных уровней энергии для состояний (011) и (110),

имеющихся в наличии в литературе. Максимальные значения вращательных квантовых чисел $J_{max} = 19$, $K_{a(max)} = 10$ для состояния (011), число уровней 227; и $J_{max} = 15$, $K_{a(max)} = 9$ для состояния (110), число уровней 178. Исследуемый Фурье-спектр был зарегистрирован в диапазоне 3200 – 4200 см⁻¹ с разрешением 0.008 см⁻¹. Как в [159], так и в [160] обработка уровней энергии осуществлялась с помощью гамильтониана Уотсона, а описанные выше спектры были зарегистрированы при комнатной температуре.

В работе [161] отдельно проводилось исследование лишь полосы $3v_2$ на Фурье-спектрометре Bruker IFS 120 HR (г. Гиссен, Германия). Спектр был зарегистрирован в диапазоне $3100 - 3600 \text{ см}^{-1}$ с разрешением 0.0078 см⁻¹. В работе приведен набор экспериментально определённых уровней энергии состояния (030) с максимальными значениями $K_a = 7$ для $J \le 10$ и $K_a = 4$ для $10 < J \le 16$, $E_{max} = 4847$ см⁻¹ Обработка уровней энергии этого состояния проводилась с использованием вращательного гамильтониана для изолированного состояния в виде аппроксиманта Паде-Бореля. На рисунке 2.4. представлен обзорный вид поглощения D₂O в районе указанных полос.

Как уже упоминалось выше, в работе [158] исследовался спектр излучения молекулы D_2O в области 380 - 1725 см⁻¹ и определялись вращательные уровни колебательных состояний (0v₂0). Максимальные значения *J* и K_a для уровней состояния (030) представленных в [158], равны 25 и 13 соответственно. Общее число вращательных уровней состояния (030), опубликованных в [158-161] равно 348.

Спектр поглощения D_2O в диапазоне 4200 – 5700 см⁻¹, в котором локализованы полосы первой гексады колебательных состояний молекулы, исследовался в работе [162]. Спектр был зарегистрирован на Фурьеспектрометре Bruker IFS 120 HR (г. Хевей, Китай) при температуре 300 К с разрешением 0.01 см⁻¹. В спектре проидентифицировано 2670 переходов, принадлежащих данной полиаде колебательных состояний, число определенных уровней энергии равно 698. Максимальные значения

квантовых чисел $J_{max} = 20$, $K_{a(max)} = 9$. Обработка уровней энергии осуществлялась в рамках традиционной модели гамильтониана.

Более высокочастотные области спектра поглощения D_2O исследовались в работах [163-165] (диапазон 6000 – 7000 см⁻¹), [166, 167] (диапазон 7500 – 8300 см⁻¹), [168] (диапазон 8800 – 9520 см⁻¹), [169] (диапазон 9160 – 9390 см⁻¹), [170] (диапазон 10200 – 10440 см⁻¹), [171] (диапазон 11400 – 11900 см⁻¹), [172, 173] (диапазон 12450 – 12850 см⁻¹), [174] (диапазон 12850 – 13380 см⁻¹).

В последние два десятилетия, в связи с быстрым развитием лазерной и Фурье-спектроскопии, значительно возросли возможности получения высокоточной информации о различных молекулярных характеристиках, включая характеристики высоковозбужденных колебательно-вращательных состояний. Существенно возросли объемы получаемой экспериментальной информации. Повышение точности и чувствительности спектральной аппаратуры, продвижение в новые спектральные диапазоны привело к тому, что время регистрации спектров стало пренебрежимо малым по сравнению со временем, необходимым для их интерпретации. Анализ молекулярных спектров высокого разрешения в настоящее время невозможен на основе ранее используемых, достаточно простых теоретических моделей. Это связано с тем, что высоковозбуждённые состояния – это не просто большие энергии, но и большие деформации молекулы, а значит новые эффекты, связанные со структурной перестройкой энергетических уровней и резким изменением спектра молекулы.

Для исследования высоковозбужденных КВ состояний, мы использовали эмиссионные спектры, зарегистрированные при высоких температурах в дальней и средней ИК-областях. Это даёт возможность значительно расширить набор экспериментально определенных вращательных уровней энергии и улучшить точность информации об уже известных уровнях.

Рисунок 2.2. Спектр поглощения молекулы D₂¹⁶О в районе фундаментальной полосы v₂. Давление 1.2 торр, длина пути 21 см

Рисунок 2.3. Спектр поглощения молекулы с D_2^{16} О в районе полос v_3 , v_1 и $2v_2$. Давление 1.72 торр, длина пути 2,39 метра

Рисунок 2.4. Спектр поглощения молекулы D_2^{16} О в районе полос v_2+v_3 , v_1+v_2 и $3v_2$. Давление 1.72 торр, длина пути 2,39 метра

§2.4 Высокотемпературные эмиссионные спектры D₂¹⁶O. Программы, используемые для работы с ними

Общий вид эмиссионных спектров молекулы $D_2^{16}O$, исследовавшихся в нашей работе, представлен на рисунках 2.5.-2.8. и 2.10.-2.12. Спектры были зарегистрированы Георгом Меллау на спектрометре Bruker IFS 120 HR (г. Гиссен, Германия) при трех температурах: 1160, 1520 и 1950К и различных давлениях с разрешением от 0.015 см⁻¹ до 0.005 см⁻¹. Более детально условия регистрации спектров приведены в Таблице 2.1. Для регистрации спектров использовалась кювета длиной 1 метр с горячей областью 50 см и диаметром 4,6 см. Подробное описание кюветы и детали эксперимента изложены в работах [175, 176]. Спектры, показанные на рисунках 2.5-2.7 соответствуют вращательному диапазону излучения чистого $D_2^{16}O$. Спектр на рисунке 2.8 представляет собой излучение смеси $H_2O + HDO + D_2O$ при полном давлении 16 торр. На рисунке 2.9 в качестве примера показан участок спектров (рисунки 2.5-2.7) в диапазоне 507.0 – 508.2 см⁻¹.

Участки спектра, в которых локализованы полосы первой и второй триад колебательных состояний $D_2^{16}O$, показы на рисунках 2.10. и 2.11. соответственно. Спектр, сформированный переходами на первую гексаду колебательных состояний, представлен на рисунке 2.12.

Частоты переходов В спектре смеси газов $H_2O + HDO + D_2O$ SPECTRO. Эта определялись программы программа с помощью предназначена для визуализации спектра и составления списка линий. Она позволяет определять частоту (с точностью около 0.0005 см⁻¹) и величину пропускания в центре линии. Программа SPECTRO создана доктором Пером Енсеном (Университет г. Гиссена, Германия).

Рисунок 2.5. Спектр излучения молекулы D_2^{16} O в диапазоне 320-520 см⁻¹. Температура 1950 К, давление 1 мбар

Рисунок 2.6. Спектр излучения молекулы D_2^{16} О в диапазоне 320-520 см⁻¹. Температура 1520 К, давление 14 мбар

Рисунок 2.7. Спектр излучения молекулы D_2^{16} О в диапазоне 320-520 см⁻¹. Температура 1950 К, давление 16 мбар

Рисунок 2.8. Спектр излучения смеси H₂O + HDO + D₂O в диапазоне 380-860 см⁻¹. Температура 1160 К, полное давление 16 мбар

Рисунок 2.9. Спектр излучения молекулы D₂¹⁶O в диапазоне 507.0-508.2 см⁻¹ при различных температурах и давлениях

Рисунок 2.10. Спектр излучения молекулы D_2^{16} О в диапазоне 1800-3400 см⁻¹. Температура 1940 К, давление 10.6 мбар

Рисунок 2.11. Спектр излучения молекулы D_2^{16} О в диапазоне 3400-4300 см⁻¹. Температура 1940 К, давление 10.6 мбар

Рисунок 2.12. Спектр излучения молекулы D_2^{16} О в диапазоне 4600-5600 см⁻¹. Температура 1950 К, давление 16 мбар

Таблица 2.1. Условия регистрации спектров

Название спектра	MEH2OJ	MEH2OS	MEH2OT	MEH2OD
Дата регистрации	31.03.01	08.04.01	09.04.01	23.03.01
Температура газа /К	1520	1950	1950	1940
Полное давление газа /мбар	14.0	16.0	1.0	10.6
Разрешение 1/МОРD / см ⁻¹	0.0055	0.0055	0.0036	0.015
Число сканов	1300	300	60	2100
Спектральный диапазон	322-522 см ⁻¹			1800-7000 см $^{-1}$
Детектор	Ge:Си при 4К			InSb при 77 К
Окно детектора	CsJ			CaF ₂
Окно кюветы	CsJ			CaF_2
Апертура спектрометра	3.15 мм			2.0 мм
Оптический фильтр	0-550 см ⁻¹ при 4К			
Светоделитель	Mylar 3.5 µм			
Длина кюветы	1 м			
Диаметр кюветы	46 мм			
Длина горячей зоны	50 см			

Спектры, показанные на рисунках 2.5.-2.12. позволяют получить обширную информацию о высоковозбужденных вращательных уровнях энергии нижних колебательных состояний молекулы, вплоть до состояний первой декады {(060), (140), (041), (220), (121), (022), (300), (201), (102), (003)}. В исследованных эмиссионных спектрах наиболее интенсивными и информативными являются линии, соответствующие переходам с вращательных уровней энергии с большими и средними значениями квантовых чисел J и K_a . На рисунке 2.13. красным показаны линии излучения, синим – линии поглощения в узком спектральном диапазоне.

Для определения частот переходов в спектрах чистого D₂¹⁶O мы использовали программу Symath. Эта программа предназначена для

Рисунок 2.13. Сравнение эмиссионного горячего и холодного спектра поглощения в узком диапазоне 3698.7-3700.7 см⁻¹

Рисунок 2.14. Пример определения положения линий в спектре с помощью программы Symath. Иллюстрация поглощения в спектре излучения

определения положения линий, их полуширин и интенсивностей в результате совместного варьирования этих трёх параметров путем подгонки расчетного профиля линии к экспериментальному (рисунок 2.14.) и позволяет определить частоту с относительной точностью, не хуже чем 10⁻⁴ см⁻¹. Программа Symath создана в лаборатории молекулярной спектроскопии

Физико-Химического Института Университета г. Гиссена (Германия), доктором Георгом Меллау (<u>http://www.SyMath.com</u>).

Одной из особенностей исследуемых спектров является сложная форма контура ряда линий. Так как в кювете с нагреваемым газом существуют области с разными температурами (порядка 2000 К в центре кюветы и 330 К окон), наряду с эмиссией в спектрах проявляется эффект y eë самопоглощения, что хорошо видно на рисунках 2.10.-2.12. В такой ситуации возникает вопрос, какой контур образован двумя близкорасположенными линиями излучения, а какой соответствует одной линии с поглощением. Наглядно это можно увидеть на рисунке 2.14. Линии под номерами 7 и 8 близколежащими являются двумя линиями излучения И имеют перекрывающийся контур, похожий на контур 14-ой линии, которая, в свою очередь, является одной линией излучения с поглощением в центре.

§2.5 Анализ эмиссионного спектра изотополога воды D₂¹⁶O в диапазоне 320-860 см⁻¹. Вращательная структура колебательных состояний (000) и (010)

В результате анализа эмиссионных спектров, представленных на рисунках 2.5.-2.8., нами было проидентифицировано более 1000 линий излучения трех полос ((000) – (000), (010) – (010) и (010) – (000)) изотопомера воды D_2^{16} О. Только 13 чисто вращательных переходов из этого спектрального диапазона (320 – 860 см⁻¹) были опубликованы в работе [177].

Частоты найденных с помощью программы Symath линий излучения позволили определить ранее неизвестные вращательные уровни состояний (000) и (010). Для определения уровней энергии привлекались также частоты переходов, опубликованные в работах [177-186].

Предварительная идентификация частот переходов с $J, K_a \leq 20$ проводилась на основе расчёта высокотемпературного спектра D_2O ,

выполненного д.ф. – м.н. Ташкун С.А. на основе поверхности потенциальной энергии (PS) [10], и поверхности дипольного момента [11]. Одновременное применение результатов глобальных расчетов и многочисленных итераций с помощью неполиномиальной модели гамильтониана позволило шаг за шагом, постепенно продвигаясь в область высоких вращательных квантовых чисел, проидентифицировать переходы с *J*, $K_a > 20$. В Приложении 2.1. приведены положения новых линий D_2^{16} О для переходов, которые до этого не наблюдались в спектрах, зарегистрированных при комнатной температуре, вместе с их КВ идентификацией. Вторая колонка соответствует оценкам (в 10^{-4} см⁻¹) абсолютных неопределенностей положений экспериментальных линий.

Определение вращательных уровней энергии осуществлялось с помощью программы RITZ [73], написанной д.ф. – м.н. Ташкун С.А. Эта программа, основанная на принципе Ридберга-Ритца, позволяет определять уровни энергии с помощью одновременной обработки всех возможных частот переходов, имеющихся в литературе. Уровни энергии определяются из решения системы линейных уравнений:

$$hv_{jk}^{i} = E_{j} - E_{k}, \quad i = 1, M, \quad j, k = 1, N.$$
 (2.5.1)

Здесь v_{jk}^{i} – экспериментально наблюдаемые частоты переходов, М – общее число переходов, E_{j} – искомые уровни энергии, N – общее число уровней энергии. Для того, чтобы эта система имела решение, необходимо, чтобы N (число искомых уровней энергии) было не меньше, чем М (число частот переходов), а так же, чтобы система была невырожденной. На практике, при достаточной богатой информации по спектрам, это условие, как правило, соблюдается (M>>N). В этом случае система является переопределенной и решается по методу наименьших квадратов. В результате решения системы (2.5.1) получаем набор уровней энергии молекулы. Если один и тот же

уровень энергии определяется из нескольких переходов, в которых он может быть как верхним, так и нижним, программа усредняет его значение. Такой метод дает более надежную оценку значения экспериментального уровня энергия, чем классический метод комбинационных разностей.

Для получения новых вращательных уровней энергии колебательных состояний (000) и (010) молекулы $D_2^{16}O$ мы использовали набор из 5330 наблюдаемых переходов для этой молекулы, включая те, которые опубликованы в работах [178, 180-187]. Уровни энергии, полученные из этих переходов с помощью программы RITZ, представлены в Приложении 2.2. Кроме того, в нём приведён полный набор расчетных вращательных уровней энергии до J = 26 для (000) (колонка 6) и J = 25 для (010) (колонка 10), а также разница между расчетными и экспериментальными значениями уровней энергии (колонки 7 и 11). Следует отметить, что 17 уровней состояния (010) с квантовым числом $J = 22 \div 25$ были исключены из обработки. Эти уровни в Приложении 2.2. помечены звездочкой (*).

Статистический анализ полученных данных, выполненный с помощью программы RITZ, показывает, что информация, полученная из микроволновых [188] и особенно из высокоточных микроволновых и субмиллиметровых измерений [181, 182, 184 - 186] способствуют более точному определению уровней энергии с низкими значениями *J*, тогда как дополнительная информация, полученная из высокотемпературных спектров, позволяет определить высоковозбужденные вращательные уровни энергии.

Несмотря на то, что молекула D_2O тяжелее основного изотополога воды, эффекты нежесткости, связанные с высоким вращательным возбуждением, являются существенными. Обработка полученных в работе вращательных уровней энергии (до J = 25) с гамильтонианом Уотсона (1.6.2) показала, что качество обработки достаточно далеко от экспериментальной точности данных. При этом в гамильтониан включались все параметры оператора (1.6.2) вплоть до 12-й степени вращательных операторов

(параметры Δ, δ, H, h, L, l, P, p, Q, q). Полиномиальная модель гамильтониана показала свою неработоспособность для описания высоковозбужденных вращательных уровней энергии молекулы. Соответственно, такая модель обладает низкими экстраполяционными свойствами.

Для того чтобы повысить точность описания уровней энергии мы в своей работе использовали модель гамильтониана в виде производящих G-функции (1.9.6), описанных в параграфе 1.9. Сравнение результатов обработок уровней энергий состояний (000) и (010) с помощью двух этих моделей и максимальные отклонения вычисленных уровней энергии от наблюдаемых рисунке 2.15. Из рисунка видно, показаны на использование ЧТО неполиномиальной модели гамильтониана позволило описать весь набор экспериментальных данных с достаточно высокой точностью. Разницы между вычисленными И экспериментальными уровнями энергиями, приведенными в Приложении 2.2, показывают хорошее согласие для энергий во всем диапазоне квантовых чисел, вплоть до $J_{max} = 25$. Это дает уверенность в правильной идентификации новых линий D₂O, полученных из эмиссионных спектров.

Статистика обработки уровней энергии с помощью модели гамильтониана в виде G-функции: среднеквадратичное отклонение (RMS) расчетных уровней энергии от наблюдаемых составляет 0.0012 см⁻¹ для 692 вращательных уровней основного колебательного состояния (000) с квантовыми числами $J_{max} = 26$, $K_{amax} = 25$ и 0.0010 см⁻¹ для 639 вращательных уровней первого возбужденного колебательного состояния (010) с $J_{max} = 25$, $K_{amax} = 25$. 17 наблюдаемых переходов, принадлежащих (010), были из обработки исключены, так как часть из них (22₁₂₁, 22₂₂₁, 24₆₁₈, 24₇₁₈, 25₅₂₀, 25₆₁₉) соответствуют смешанным или слабым линиям, другие (24₁₃₁₁, 25₁₀₁₅,

Рисунок 2.15. Качество обработки энергий состояния (000) и (010) с помощью различных моделей гамильтониана. ▲ – гамильтониан Уотсона (W). ■ – производящая G-функция

25 11 14, 25 13 12, и уровни с $K_a = 16$ для J = 23, 24 и 25) соответствуют взаимодействию вращательных уровней состояния (010) с уровнями, принадлежащими более высоким колебательным состояниям.

Значения параметров гамильтониана, полученных в ходе обработки уровней энергии для состояний (000) и (010), вместе с их доверительными интервалами даны в Таблице 2.2. Статистика обработки уровней энергии приведена в Таблице 2.3.

Сравнение с наиболее полными наборами вращательных уровней энергии для состояний (000) и (010), опубликованных в работе Тоса [155], показано на рисунке 2.16. Все вращательные уровни вплоть до J = 19, полученные в нашей работе, очень близки к опубликованным данным. Только для двух вращательных уровней (21_{219} и 21_{318}) основного колебательного состояния и четырех уровней (22_{121} , 22_{221} , 22_{20} , и 22_{320})
первого возбужденного колебательного состояния отклонения составляют больше, чем 0.01 см⁻¹. На наш взгляд, эти 6 уровней должны быть откорректированы согласно идентификации, выполненной в нашей работе.

Сравнение с результатами глобального расчета, выполненного на основе поверхности потенциальной энергии молекулы [10], показано на рисунке 2.17. Видно, что точность таких расчетов падает с ростом вращательных квантовых чисел, отклонения имеют тот же характер, что наблюдалось и для $HD^{16}O$ [189] и для $H_2^{18}O$ [190].

Для того, чтобы проверить идентификацию уровней энергии для колебательных состояний (000) и (010), проведенную в нашей работе, мы заново провели анализ спектра поглощения, зарегистрированного Тосом [155] на Фурье-спектрометре в Национальной солнечной обсерватории Китт Пик (США).

В этом спектре мы проидентифицировали более 180 переходов полосы v_2 молекулы $D_2^{16}O$. Эти переходы соответствуют высоким вращательным квантовым числам *J* и K_a и не были опубликованы в более ранних работах по исследованию спектров данной молекулы. Все эти переходы вместе с их вращательной идентификацией представлены в Приложении 2.3.

Результаты нашей работы по исследованию вращательной структуры колебательных состояний (000) и (010) опубликованы в виде статьи в Journal of Molecular Spectroscopy [154]. Параллельно с нашей работой вышла работа нижегородской группы [158] по исследованию горячего эмиссионного спектра D_2O в диапазоне 380 - 1880 см⁻¹, результаты анализа которого приведены Таблице 2.4. Из таблицы видно, что они превосходят наши данные как по числу уровней энергии, так и по максимальным значениям вращательных квантовых чисел. Это обусловлено в первую очередь тем, что авторы работали со спектральным диапазоном, в котором локализована полоса v_2 . Мы же в своей работе были ограничены спектральным интервалом 320 - 860 см⁻¹.

Рисунок 2.16. Сравнение наблюдаемых вращательных уровней энергии состояний (000) и (010) молекулы D_2^{16} O с уровнями, опубликованными в работе Toca [155]

Рисунок 2.17. Сравнение наблюдаемых вращательных уровней энергии состояний (000) и (010) молекулы D₂¹⁶O с уровнями, полученными из глобального расчета

Параметр	(00)0)	(010)		
	Параметр	Значение	SE	Значение	SE
Evv				1178.37911	0.00033
α0	× 10 ²	1.7468644	0.023	2.9249818	0.075
α1	× 10 ⁵	0.95753072	0.049	2.2439814	0.067
α2	× 10 ⁹	-7.0771295	0.90	5.013448	0.43
α3	× 10 ¹²	5.1506882	0.71	2.7478	0.17
. 0			-	-	-
Q 10		6.059172847	0.000082	6.064190464	0.000015
Q 20	× 10 ⁴	-3.1064795	0.0010	-3.359938	0.0017
Q 30	× 10 ⁸	6.9303662	0.050	7.8912508	0.082
q ₄₀	× 10 ¹¹	-2.9633801	0.10	-2.8273516	0.16
Q 50	× 10 ¹⁴	1.1726468	0.078	0.79190907	0.12
		9.360738196	0.000063	10.5697761	0.000088
q ₁₁	× 10 ³	1.5242272	0.0010	1.9015806	0.0016
q ₂₁	× 10 ⁷	-2.2206153	0.046	1.7450925	0.11
Q 31	× 10 ¹⁰	1.169283	0.059	-0.31885433	0.038
Q ₄₁	× 10 ¹³			5.6595926	0.54
Q 51	× 10 ¹⁶			-3.0776576	0.22
Club Club	× 10 ²	3.1631549	0.054	6.3273908	0.20
Q12	× 10 ⁵	2.6543332	0.12	6.7508554	0.20
G22	× 10 ⁸	-1.9609786	0.20	0.89744474	0.12
0 0	× 10 ¹¹	1.0606224	0.16		••••
042	× 10 ¹⁶	5.5243984	1.3		
0102	$\times 10^4$	-0.62442266	0.011	-1.6372618	0.055
0112	× 10 ⁶	-0.045368422	0.0025	-0.19569395	0.0076
0123	× 10 ¹¹	4.4687106	0.46		
023 022	× 10 ¹⁴	-2.3019191	0.32	1.6221695	0.20
933 0104	× 10 ⁸	0.36180599	0.13	2.856459	0.76
904 G14	× 10 × 10 ¹¹	0.00100000	0.10	7,9297	0.56
O ₂₄	× 10 × 10 ¹³	-0.22211274	0.015	-3.0394149	0.13
924 005	× 10 × 10 ⁹	0 17519787	0.0079	1 0526821	0.11
905 015	× 10 × 10 ¹²	0.11742531	0.0057	1.3740659	0.075
Goe	× 10 × 10 ¹²	-0 46148172	0.018	-4 3599655	0.33
900	~ 10				
U00	× 10 ¹	6.0693445	0.00011	6.372253356	0.000055
u ₁₀	× 10 ⁴	-1.2333454	0.0020	-1.3593673	0.00052
u ₂₀	× 10 ⁸	3.4550294	0.12	3.7500286	0.015
U 30	× 10 ¹¹	-1.7486097	0.36	-0.9068694	0.014
u ₄₀	× 10 ¹⁴	1.3625477	0.50		
u ₅₀	× 10 ¹⁸	-6.6021168	2.6		
U 01	× 10 ⁴	-3.4810307	0.0050	-7.5513044	0.018
\mathbf{u}_{11}	× 10 ⁸	-7.879744	0.20	-8.4797569	1.7
u ₂₁	× 10 ¹⁰			-3.4511754	0.61
U 31	× 10 ¹⁴	-1.5615474	0.36E-14	8.539254	0.93
U 41	× 10 ¹⁷			7.362	5.3
u ₀₂	× 10 ⁶	2.5064233	0.024	4.978267	0.16
u ₁₂	× 10 ¹⁰	8.2847821	0.54		
u ₂₂	× 10 ¹¹			1.2575574	0.028
U 32	× 10 ¹⁵	1.2183586	0.084	-4.568198	0.27
U ₀₃	× 10 ⁸			3.120581	0.48
u ₁₃	× 10 ¹¹			-5.816825	0.58
U ₂₃	× 10 ¹⁴	-1.2287877	0.089	-2.442067	0.14
U 04	× 10 ¹⁰			-2.097886	0.16
\mathbf{u}_{14}	× 10 ¹³	-0.33982268	0.020	3.109214	0.18
U 24	× 10 ¹⁷	4.3073899	0.26		

Таблица 2.2. Параметры эффективного гамильтониана для состояний (000) и (010)

Примечание: Все линейные параметры g_{nm} , u_{nm} измеряются в см⁻¹, нелинейные параметры α_n являются безразмерными. SE-стандартное отклонение.

	(000)	(010)
Е _{max} [см ⁻¹]	8470	9590
$J_{max}, K_{a max}$	26, 25	25, 25
N _{уровней}	692	639
N параметров	42	45
R.M.S. (экспвыч.) [см ⁻¹]	0.0012	0.0010

Таблица 2.3. Результаты и статистика обработки уровней энергии состояний (000) и (010)

Статистика обработки

$0 < dE \le 1$	1081 уровней	81.2%
$1 < dE \le 3$	219 уровня	16.5%
$3 < dE \le 5$	24 уровня	1.8%
5 < dE < 8	7 уровней	0.5%

 $dE = | E_{
m экс} - E_{
m выч} | \times 10^3 \, {
m cm}^{-1}$

Таблица 2.4. Сравнение результатов анализа, проведенного в нашей работе по исследованию вращательной структуры первых двух колебательных состояний $D_2^{16}O$ с данными, опубликованными в работах [155] и [158]

P.A. Toc [155]				Наша работа С.В. Ширин и др [154] [158]			др.		
Состояние	Число уровней	J	K _a	Число уровней	J	K _a	Число уровней	J	K _a
(000)	279	23	11	692	26	25	951	30	30
(010)	274	23	11	639	25	25	861	30	27

Однако, как показано в последней работе по микроволновым измерениям D_2O [191], результаты нашей работы являются более точными и были включены авторами статьи в свой анализ, тогда как результаты нижегородской группы, наоборот, в обработку не включались в силу того, что измерения положения в их работе значительно отличаются от положения этих же линий, измеренных другими авторами, например в работе [179].

Основные выводы, вытекающие из этого параграфа:

Анализ эмиссионного высокотемпературного спектра по первым двум колебательным состояниям молекулы $D_2^{16}O$ позволил значительно расширить информацию о вращательной структуре этих состояний, по сравнению с той, которая ранее имелась в литературе.

Модель G-функции гамильтониана В виде показала свою работоспособность для описания высоких вращательных энергий молекулы D₂¹⁶O, как для основного состояния, так и для первого возбужденного, и обладает хорошими предсказательными способностями. Поэтому для уровней энергии вышележащих триад взаимодействующих описания состояний использовали неполиномиальную ΜЫ также ЭТУ модель гамильтониана.

§2.6 Вращательная структура первой триады колебательных состояний (100), (020) и (001) молекулы D₂¹⁶O

Для исследования вращательной структуры первой триады колебательных состояний молекулы $D_2^{16}O$ проводился анализ эмиссионных спектров, зарегистрированных в диапазонах 320 - 860 и 1750 - 3400 см⁻¹. В эти спектральные диапазоны также попадают переходы вращательных полос $2v_2-2v_2$, v_1-v_1 и v_3-v_3 ; колебательно-вращательные переходы полос $2v_2-v_1$, $2v_2-v_3$, v_1-v_3 , v_1-2v_2 , v_3-v_1 и v_3-2v_2 (диапазон 322 - 661 см⁻¹), колебательно-

вращательные переходы полос $2\nu_2 \cdot \nu_2$ (диапазон $623 - 849 \text{ см}^{-1}$), $\nu_1 \cdot \nu_2$ и $\nu_3 \cdot \nu_2$ (диапазон $1750 - 2030 \text{ см}^{-1}$). В работе было проидентифицировано более 3500 линий, принадлежащих выше указанным полосам молекулы $D_2^{-16}O$.

Как и в случае основного (000) и первого возбужденного (010) колебательных состояний, для идентификации переходов с высокими вращательными квантовыми числами *J*, *K_a* мы использовали глобальные вариационные расчеты на основе молекулярной потенциальной функции и функции дипольной поверхности [10, 11] совместно с экстраполяционными расчетами, выполненными с помощью модели гамильтониана в виде G-функции.

Все вращательные уровни энергии первой триады колебательных состояний (020), (100) и (001) определялись с помощью программы RITZ, описанной в предыдущем параграфе. Для этого в программу были включены 10800 наблюдаемых переходов D₂O, включая те, которые были ранее опубликованы в литературе [154-156, 178, 180-186]. Полученный таким образом набор из 1987 уровней энергии для всех трех состояний первой триады представлен в Приложении 2.4.

Как уже говорилось в этом параграфе, описание энергетического спектра молекулы осуществлялось с помощью модели гамильтониана в виде производящих функций, которая при обработке основного (000) и первого возбужденного (010) колебательных состояний показала свою работоспособность для решения проблем, связанных с аномально сильным центробежным искажением. Уровни состояний (100) и (001) испытывают не менее сильное центробежное искажение, а для уровней изгибного состояния (020) эта проблема стоит ещё более остро. Нужно отметить, что в рассматриваемом случае эффекты, связанные с нежёсткостью, очень сильно осложняются наличием резонансного взаимодействия трёх состояний.

Поскольку состояния (020) и (100) первой триады являются состояниями одного типа симметрии, и выполняется соотношение для

гармонических частот $2\omega_2 \approx \omega_1$ (1.7.6), то между этими состояниями возникает ангармоническое взаимодействие, которое носит название резонанса Ферми. Взаимодействие между вращательными уровнями состояний (100) и (001), имеющими различную симметрию, является взаимодействием Кориолиса. Такое же взаимодействие связывает состояния (020) – (001).

Как говорилось в параграфе 1.7, учёт случайных резонансов приводит к необходимости построения эффективного гамильтониана для группы резонирующих состояний. Для триады взаимодействующих состояний эффективный гамильтониан представляется операторной матрицей третьего порядка:

$$\mathbf{H}_{G}^{TRI} = \begin{vmatrix} \mathbf{H}_{11}^{G} & \mathbf{H}_{21} & \mathbf{H}_{31} \\ \mathbf{H}_{12} & \mathbf{H}_{22}^{G} & \mathbf{H}_{32} \\ \mathbf{H}_{13} & \mathbf{H}_{23} & \mathbf{H}_{33}^{G} \end{vmatrix}.$$
(2.6.1)

Здесь введены обозначения для колебательных состояний: 1-(020), 2-(100), 3-(001). Операторы, стоящие на главной диагонали, представляют собой вращательные гамильтонианы трёх состояний:

$$\mathbf{H}_{VV}^{G} = E_{VV} + \sum_{j} g_{j0}^{V} \mathbf{J}^{2j} + \sum_{ij} g_{ji}^{V} \mathbf{J}^{2j} \mathbf{G}^{i} + \sum_{ij} u_{ji}^{V} \mathbf{J}^{2i} \{ \mathbf{G}^{j}, \mathbf{J}_{xy}^{2} \} , \qquad (2.6.2)$$

где E_{VV} – значение диагонального колебательного матричного элемента (при отсутствии ангармонического резонанса его значение совпадает с центров полосы), **G** – производящая функция, записанная в виде (1.9.6), g_{ji}^{V} , u_{ji}^{V} – линейные варьируемые параметры. Далее для кратности будем отпускать индекс *V* для этих параметров.

Оператор \mathbf{H}_{12} , описывающий Ферми взаимодействие между состояниями (020) и (100), был выбран в следующем виде:

$$\mathbf{H}_{12} = F_{000} + F_{020}\mathbf{J}_{z}^{2} + F_{022}(\mathbf{J}_{+}^{2}(\mathbf{J}_{z}+1)^{2} + (\mathbf{J}_{z}+1)^{2}\mathbf{J}_{-}^{2}) + F_{202}\mathbf{J}^{2}(\mathbf{J}_{+}^{2}+\mathbf{J}_{-}^{2})$$
(2.6.3)

Операторы Кориолисова взаимодействия \mathbf{H}_{13} и \mathbf{H}_{23} , выбирались в виде:

$$\mathbf{H}_{i3} = \mathbf{C}_{001}(\mathbf{J}_{+} - \mathbf{J}_{-}) + \mathbf{C}_{011}(\mathbf{J}_{+}(\mathbf{J}_{z} + 1/2) + (\mathbf{J}_{z} + 1/2)\mathbf{J}_{-}) + \mathbf{C}_{201}\mathbf{J}^{2}(\mathbf{J}_{+} - \mathbf{J}_{-}) + \mathbf{C}_{003}(\mathbf{J}_{+}^{3} - \mathbf{J}_{-}^{3}) + \mathbf{C}_{211}\mathbf{J}^{2}(\mathbf{J}_{+}(\mathbf{J}_{z} + 1/2) + (\mathbf{J}_{z} + 1/2)\mathbf{J}_{-}) + \mathbf{C}_{401}\mathbf{J}^{4}(\mathbf{J}_{+} - \mathbf{J}_{-}) + \mathbf{C}_{033}(\mathbf{J}_{+}^{3}(\mathbf{J}_{z} + 3/2)^{3} + (\mathbf{J}_{z} + 3/2)^{3}\mathbf{J}_{-}^{3}) + \mathbf{C}_{203}\mathbf{J}^{2}(\mathbf{J}_{+}^{3} - \mathbf{J}_{-}^{3}) + \mathbf{C}_{231}\mathbf{J}^{2}(\mathbf{J}_{+}(\mathbf{J}_{z} + 1/2)^{3} + (\mathbf{J}_{z} + 1/2)^{3}\mathbf{J}_{-}), \quad (2.6.4)$$

где i = 1 или 2, F_{nmr} и C_{nmr} являются варьируемыми параметрами. В оба оператора (2.6.4) включались слагаемые с $\Delta K = \pm 3$. Оператор, описывающий взаимодействие состояний (020) и (001), содержал три члена, а **H**₂₃, отвечающий за взаимодействие (100) и (001), восемь слагаемых.

При обработке уровней энергии очень сильна корреляция между колебательными энергиями состояний (020) и (100) и параметром F_{000} в операторе H_{12} , поэтому при решении обратной задачи этот параметр фиксировался значением 34.24 см⁻¹ из работы [156].

Результат обработки уровней энергии всех трех колебательных состояний первой триады показан в Приложении 2.4 и Таблице 2.5. В Приложении 2.4 приводятся отклонения вычисленных значений уровней энергии от экспериментальных для каждого колебательного состояния. В Таблице 2.5. приведена статистика обработки этих уровней. Среднеквадратичное отклонение вычисленных значений уровней энергии от наблюдаемых составляет 0.004 см⁻¹ для 1952 уровней. Остальные 35 уровней, с $dE = |E_{3KMN} - E_{6brv}|$ больше, чем 0.02 см⁻¹, не включались в обработку. Возможной причиной такого сильного отклонения являются резонансные

взаимодействия с уровнями более высоких колебательных состояний, которые в случае нашей модели не учитывались. Значения параметров гамильтониана для первой триады колебательных состояний вместе со стандартными отклонениями даны в Таблице 2.6. Некоторые параметры, для которых не приведены стандартные отклонения (SE), были фиксированы определенным образом для того, чтобы получить хорошее согласие с глобальными расчетами уровней энергии вне их экспериментально доступного диапазона. Набор параметров, приведённых в Таблице 2.6, как и параметры теоретической модели для состояний (000) и (010), позволяют добиться более точного описания имеющихся в наличии экспериментальных уровней энергии $D_2^{16}O$, полученных из исследования далеких и средних ИК спектров молекулы.

Таблица 2.5. Максимальные значения вращательных квантовых чисел и статистика обработки экспериментальных уровней энергии первой триады взаимодействующих состояний $D_2^{16}O$

	(020)	(100)	(001)					
Е _{max} [см ⁻¹]	9691	11112	9954					
$J_{max}, K_{a max}$	29, 22	29, 25	30, 23					
N _{уровней}	591	676	720					
	Статистика обработки							
	Ста	тистика обработ	ки					
	Ста 0 < d <i>E</i> ≤ 2	тистика обработ 1146 уровней	ки 58.7%					
	Ста $0 < dE \le 2$ $2 < dE \le 5$	тистика обработ 1146 уровней 527 уровней	ки 58.7% 27.0%					
	CTa $0 < dE \le 2$ $2 < dE \le 5$ $5 < dE \le 10$	тистика обработ 1146 уровней 527 уровней 222 уровня	ки 58.7% 27.0% 11.4%					

RMS = 0.004 см⁻¹ для 1952 уровней вплоть до J=30 и K_a =25

		(020)	(100)		(001))
116	араметр	Значение	SE	Значение	SE	Значение	SE
E _{vv}		2340.378		2668.1055		2787.7175	
α0	× 10 ²	1.44707	0.011	2.09952787	0.020	3.93040619	0.011
α 1	× 10 ⁵	4.26186	0.25	1.3936485	0.26	1.856181	0.16
α2	× 10 ⁸	6.434	0.41	1.748222	0.27	-0.10195	0.10
α3	× 10 ¹¹	-4.3259	0.55	-1.15758	0.22	0.468463	0.20
g 10		6.067632203	0.000049	5.983314754	0.000033	6.014695626	0.000026
g 20	× 10 ⁴	-3.6457894	0.0060	-3.06234968	0.0034	-3.18315623	0.0023
g 30	× 10 ⁸	9.933255	0.26	6.89267688	0.15	6.743507	0.074
g 40	× 10 ¹¹	-5.014663	0.48	-3.554983	0.29	-1.67751	0.096
g 50	× 10 ¹⁴	2.031549	0.36	2.34493	0.20	0.069611	0.050
g 01		12.078312	0.00035	9.194323352	0.00026	8.873761360	0.00026
g 11	× 10 ³	2.413683	0.0073	1.48357837	0.0052	1.5049805	0.0034
g 21	× 10 ⁷	4.520534	0.61	-4.1904274	0.37	-1.860535	0.17
g ₃₁	× 10 ⁹	2.198335	0.21	0.685426	0.097	0.019927	0.046
g 41	× 10 ¹³	-9.83792	3.3	-5.695	0.81	0.178	0.036
g 51	× 10 ¹⁵	-1.8625	0.25				
g 02	× 10 ²	2.1560315	0.33	3.931757438	0.47	7.871683798	0.24
g 12	× 10 ⁴	1.266443	0.067	0.37326544	0.060	0.5488528	0.038
g 22	× 10 ⁷	1.902512	0.14	0.4199523	0.070	-0.01451	0.021
g 32	× 10 ¹⁰	-1.908235	0.22	-0.285341	0.060	0.089206	0.053
g 42	× 10 ¹⁴	6.170624	0.47	0.321428	0.059	0.24102	0.046
g 03	× 10 ⁴	-0.56163246	0.11	-0.7640811	0.095	-1.5162254	0.048
g 13	× 10 ⁷	-4.37293	0.18	-0.697735	0.14	-1.41502	0.11
g 23	× 10 ¹⁰	-4.552165	0.39	-1.07421	0.17	-0.085811	
g 33	× 10 ¹³	2.116385	0.59	0.34919	0.12	-0.6958	0.13
g 04	× 10 ⁷	0.4287537	0.26	-0.291882	0.16	-3.6518	0.31
g 14	× 10 ⁹	1.1849136	0.074	-0.012129	0.010		
g 24	× 10 ¹³	3.0024	0.62	1.2949	0.26	4.00144	0.30
g 05	× 10 ⁹	0.2065998	0.058	0.375384	0.11	2.29673	0.18
g 15	× 10 ¹²	-3.25129	0.22	0.05		-0.842284	0.073
g 06	× 10 ¹²	-2.8		-0.69261	0.15	-2.62384	0.31
g 07	× 10 ¹⁴	1.128659	0.024				
U 00		0.666959083	0.000022	0.5979570793	0.000026	0.6147251	0.000016
U 10	× 10 ⁴	-1.5045791	0.0021	-1.227067356	0.0029	-1.2707004	0.0014
U 20	× 10 ⁸	4.627727	0.052	4.26463	0.11	3.359933	0.037
U 30	× 10 ¹¹	-0.658		-4.0349	0.20	-0.812673	0.029
U 40	× 10 ¹⁴	-1.060112	0.080	3.6603	0.12	0.005	

Таблица 2.6. Значения параметров эффективного гамильтониана для первой триады резонирующих состояний (020), (100) и (001) молекулы $D_2^{16}O$

U 50	× 10 ¹⁸			-7.7			
U 01	× 10 ³	-1.35325245	0.0078	-0.3298192	0.0038	-0.3250583	0.0023
U 11	× 10 ⁷	-1.951783	0.76	-1.87987	0.25	-0.693588	0.12
U 21	× 10 ¹⁰	-7.22779	2.9	2.38784	0.58	-0.34002	0.22
U 31	× 10 ¹²	-1.63612	0.47	-0.237137	0.045	-0.048957	0.016
U 41	× 10 ¹⁵	2.40638	0.28				
U 02	× 10 ⁵	1.51281	0.0032	0.17758	0.014	-0.00636	
U 12	× 10 ⁹	8.85366	1.8	0.93374	0.31	1.5947	0.17
U ₂₂	× 10 ¹¹	4.32599	0.41				
U 32	× 10 ¹⁴	-3.8911	0.34	0.18449	0.045	0.227628	0.018
U 03	× 10 ⁸	-5.64213	0.73	0.63058	0.30	4.76752	0.17
U 13	× 10 ¹⁰	-3.55695	0.22				
U 23	× 10 ¹⁴	4.02126	2.0	-0.0518		-2.45443	0.32
U 04	× 10 ¹¹	3.0					
u 14	× 10 ¹³	9.65956	0.45	-0.62625	0.070	-1.95142	0.18
U 24	× 10 ¹⁶			0.438		1.1866	0.23

Параметры резонансного взаимодействия

		Кор		ангармонического					
(001) – (100) (001) – (020)					- (020)	(100) – (020)			
Параметр		Значение	SE	Значение	SE	Параметр	Значение	SE	
C ₀₀₁	× 10 ¹	5.294				F 000	34.24		
C ₀₁₁	× 10 ²	-9.15936657	0.0034	1.301227	0.0077	$F_{020} \times 10^2$	-8.49197	0.060	
C ₀₂₁	× 10 ⁴			9.8394	0.052	$F_{002} \times 10^4$	4.42208	0.22	
C ₂₀₁	× 10 ⁵			4.244536	0.073	$F_{040} \times 10^5$	1.49124	0.30	
C ₀₃₁	× 10 ⁵	-3.233228	0.083			$F_{220} \times 10^5$	-1.280598	0.045	
C ₂₁₁	× 10 ⁵	1.497567	0.0059			$F_{400} \times 10^7$	1.48864	0.49	

Примечание: Все линейные параметры g_{nm} , u_{nm} даны в см⁻¹, нелинейные параметры α_n являются безразмерными. SE-стандартное отклонение.

В Приложении 2.5 приведен пример очень сильного перемешивания всех состояний первой триады для уровней с J = 16. Коэффициенты смешивания для каждого наблюдаемого колебательно-вращательного уровня указывают на очень сильное внутриполиадное перемешивание, обусловленное как ангармоническим взаимодействием, так и

взаимодействиями Кориолиса. Для такого взаимодействия не наблюдается регулярной зависимости ни от J, ни от K_a . Последние три колонки в Приложении 2.5 представляют собой коэффициенты смешивания %($v_1v_2v_3$) для каждого колебательно-вращательного уровня.

Коэффициенты смешивания определяются стандартным образом [6]:

$$\%(\mathbf{v}_{1}\mathbf{v}_{2}\mathbf{v}_{3}\mathbf{J}\mathbf{K}\mathbf{a}\mathbf{K}\mathbf{c}) = \sum_{\kappa} |\mathbf{C}_{\nu}^{\kappa}|^{2} , \qquad (2.6.5)$$

где С_v^к – коэффициенты в разложении волновой функции уровня (v₁v₂v₃JKaKc), получаемой в результате диагонализации матрицы гамильтониана (2.6.1):

$$|\mathbf{v}_1\mathbf{v}_2\mathbf{v}_3\mathbf{J}\mathbf{K}\mathbf{a}\mathbf{K}\mathbf{c}\rangle = \sum_{\mathbf{V}\in\mathbf{P}}\sum_{\mathbf{K}=0}^{\mathbf{J}} \mathbf{C}_{\mathbf{V}}^{\mathbf{K}} |\mathbf{J}\mathbf{K}\boldsymbol{\gamma}\rangle |\mathbf{V}\rangle ,$$
 (2.6.6)

где $|JK\gamma\rangle$ – симметризованная вращательная функция Ванга [20, 106, 117]. Суммирование по V означает суммирование по всем колебательным состояниям, входящим в группу P взаимодействующих состояний. В нашем случае P = {(020), (100), (001)}.

Ангармоническое резонансное взаимодействие между уровнями состояний (020) и (100) является очень сильным для серий уровней с $K_a = 12$, 13, и 14, особенно для серии с $K_a = 13$, где коэффициенты смешивания близки к значениям 50/50 для уровней с J = 14, 15, 16, 17. Коэффициенты смешивания для 16₁₀₇ и 16₁₀₆ (001) говорят о наличии тройного резонанса с уровнями 16₉₇, 16₉₈ (100) и 16₁₁₅, 16₁₁₆ (020).

На рисунке 2.18 приведено сравнение уровней энергии, полученных в нашей работе с наиболее полным их набором, опубликованным ранее Тосом в [155]. Так как набор уровней энергии, полученный из анализа высокотемпературных эмиссионных спектров, много больше (по значениям вращательных квантовых чисел *J*, *K_a*) того, что определялся ранее в

литературе из спектров поглощения при комнатной температуре, на рисунке представлено сравнение уровней энергии, представленных в обоих наборах данных. Уровни 9₉₁, 9₉₀, и 12₂₁₀ состояния (020) и 16₁₁₆ состояния (100), разницы значений которых больше 0.01см⁻¹, на рисунках не показаны. Максимальное отклонение экспериментальных уровней энергии от ранее опубликованных в [155] составляет +0.667 см⁻¹ (для уровней 9₉₁ и 9₉₀ состояния (020)). Статистика сравнения результатов, полученных в нашей работе, с литературными данными [155] представлена в Таблице 2.7.

Таблица 2.7. Статистика сравнения результатов, полученных в нашей работе, опубликованными ранее в литературе [155]

Состояние	Число уровней	J	Ka	E_{max} (cm ⁻¹)	Число уровней	J	Ka	E_{max} (cm ⁻¹)
		P.A. Too	: [155]		Наша работа			
(020)	162	16	9	3850	591	29	22	9691
(100)	184	17	10	4515	676	29	25	11112
(001)	223	19	10	4760	720	30	23	9954

На рисунке 2.19 приведено сравнение вращательных уровней энергии состояния (020) с уровнями, опубликованными Шириным С.В. с коллегами в работе [158]. Необходимо отметить, что, следуя нашему анализу взаимодействующих состояний (020), (100), и (001) с использованием модели эффективного гамильтониана, нам пришлось провести переидентификацию части вращательных уровней состояния (020), представленных в [158] и записать их как уровни, принадлежащие состоянию (100). Это уровни 14 _{14 1}, 14 _{14 0}, 15 _{14 2}, 15 _{14 1}, 15 _{15 1}, 15 _{15 0}, и все серии уровней с $J = 16 \div 20$ для $K_a = 13 \div J$.

Рисунок 2.18. Сравнение наблюдаемых вращательных уровней энергии состояний первой триады молекулы D_2^{16} O с уровнями, опубликованными в работе Тоса [155].

Рисунок 2.19 Сравнение наблюдаемых вращательных уровней энергии состояния (020) и молекулы D₂¹⁶O с уровнями, опубликованными в работе Ширина и др. [158].

В Приложении 2.6. приведен пример коэффициентов смешивания для состояния (020). В случае, когда коэффициенты смешивания близки к 50%, колебательную идентификацию можно считать условной, и она может меняться в зависимости от теоретической модели, выбранной для описания энергетического спектра молекулы. Однако, для перечисленных выше уровней колебательная идентификация, следующая как из глобальных расчетов, так и расчета на основе \mathbf{H}^{eff} , является однозначной, и дана авторами работы [158] неправильно.

Общая статистика сравнения уровней энергии (020) с данными из [158] следующая. Хорошее согласие наблюдается для 238 уровней, для которых абсолютная величина отклонения составляет меньше, чем 0.01 см⁻¹. Для 66 уровней энергии это значение варьируется между 0.01 см⁻¹ и 0.05 см⁻¹, и для оставшихся 26 уровней размер отклонения больше, чем 0.05 см⁻¹ вплоть до 0.527 см⁻¹. Анализ доверительных интервалов (δE в Приложении 2.4.) показывает, что значения уровней энергии, полученные в нашей работе

можно считать более точными, так как они были определены как из переходов на основное состояние, так и из горячих полос, обусловленных переходами между возбужденными колебательными состояниями. Все колебательно-вращательные уровни подтверждаются несколькими переходами в двух разных спектральных диапазонах. Достоверность идентификации так же подтверждается теоретическим расчетом с помощью модели эффективного гамильтониана, который является достаточно точным для однозначной идентификации переходов (RMS = 0.004 см⁻¹), а так же сравнением с глобальными расчетами на основе потенциальной функции [10].

Сравнение полученных в нашей работе наблюдаемых частот переходов для полос $2v_2$, v_1 и v_3 и определенных из них уровней энергий с глобальными предсказаниями, рассчитанными на основе поверхности потенциальной энергии молекулы, приведены на рисунках 2.20. и 2.21. Отклонения расчетных значений от наблюдаемых носят тот же характер, что и для первых двух колебательных состояний (000) и (010) молекулы D₂¹⁶O. Для уровней энергии с небольшими вращательными квантовыми числами до Ј ~ 10 расчетные предсказания (PS) являются достаточно хорошими. Абсолютные значения отклонений расчетных значений уровней энергии от наблюдаемых для средних J и K_a , в случае первой триады для уровней с $J \leq$ 15, $K_a \le 10$ и 16 $\le J \le 20$, $K_a = 9$, меньше, чем 0.1 см⁻¹. Для высоких значений вращательных квантовых чисел предсказания являются систематически завышенными, разница (PS – Эксп.) постепенно растет с ростом K_a .

Кроме того, поведение отклонений наблюдаемых значений частот переходов (или уровней энергии) от расчетных зависит от колебательного состояния. Как видно из рисунков 2.20. и 2.21, эти отклонения во многих случаях носят регулярный характер, что очень важно для идентификации спектров. Только для отдельных наборов квантовых чисел отклонения уровней энергий показывают менее регулярные зависимости от *J* и *K*_a.

Существенным примером такого исключения являются серии отклонений для уровней с $K_a \sim 13$, которые отсутствуют для состояния (100) (рисунок 2.21) и возмущение регулярных отклонений для уровней состояния (020). Это уровни энергии с большими коэффициентами смешивания из-за сильного ангармонического взаимодействия, о котором речь шла выше.

На рисунках 2.22. и 2.23. представлены участки спектра вблизи 2298 и 2557.5 см⁻¹ с КВ идентификацией линий. Видно, что некоторые линии на рисунке 2.23. соответствуют переходам с колебательных состояний, более высоких, чем те, которые входят в первую и вторую триады. Например, линии таких полос, как (002) – (001), (021) – (020) и (031) – (030).

Общий итог. В работе проведена идентификация 3550 новых линий молекулы $D_2^{16}O$, соответствующих переходам с высоковозбужденных вращательных уровней состояний (020), (100) и (001). Существенно расширен набор экспериментально определённых вращательных уровней энергии указанных состояний до максимальных значений квантовых чисел $J_{max} = 29$ и $K_{a(max)} = 22$ для (020), $J_{max} = 29$ и $K_{a(max)} = 25$ для (100), $J_{max} = 30$ и $K_{a(max)} = 23$ для (001). Результаты анализа первой триады колебательных состояний молекулы $D_2^{16}O$ опубликованы в работе [192].

Рисунок 2.20 Сравнение наблюдаемых положений линий полос $2v_2$, v_1 и v_3 молекулы $D_2^{16}O$ с глобальным расчетом на основе потенциальной функции Партриджа и Швенке [10].

Рисунок 2.21. Сравнение наблюдаемых вращательных уровней энергий состояний (020), (100) и (001) молекулы $D_2^{16}O$ с уровнями, посчитанными на основе потенциальной поверхности Партриджа и Швенке [10].

Рисунок 2.22. Фрагмент спектра молекулы D_2^{16} О в районе 2298 см⁻¹

Рисунок 2.23. Фрагмент спектра молекулы D_2^{16} О в районе 2557.5 см⁻¹

§2.7 Анализ второй триады колебательных состояний (110), (030) и (011) молекулы D₂¹⁶O

Анализ высокотемпературных эмиссионных спектров $D_2^{16}O$ в диапазонах 320 – 860 см⁻¹ и 1750 – 4300 см⁻¹ (рисунки 2.5-2.8, 2.10, 2.11) позволил проидентифицировать более 5600 переходов, принадлежащих второй триаде {(030), (110), (011)} колебательных состояний данной молекулы. Как и в случае пяти нижележащих колебательных состояний, идентификация переходов с малыми и средними значениями вращательных квантовых чисел *J* и *K*_a выполнялась на основе уровней энергии, ранее опубликованных в работах [154, 158, 164, 165, 192]. Идентификация переходов с высокими *J* и *K*_a выполнялась на основе результатов глобальных вариационных расчетов на основе потенциальной функции молекулы [10, 11] с одной стороны и экстраполяционных расчетов с помощью модели гамильтониана в виде производящих функций с другой стороны.

В результате анализа был определен набор из 1593 колебательновращательных уровней энергии, принадлежащих второй триаде колебательных состояний D_2^{16} О. Уровни энергии определялись с помощью программы RITZ, в которую было включено порядка 18000 переходов, включая ранее опубликованные в работах [154, 155, 158, 161, 164, 165, 177-181, 183, 187, 192]. Максимальные значения вращательных квантовых чисел, а также сравнение полученных нами наборов экспериментальных уровней энергии второй триады с наиболее полными опубликованными наборами в литературе приведено в Таблице 2.8.

Обработка вращательных уровней энергии второй триады колебательных состояний осуществлялась с помощью модели гамильтониана в виде производящей функции. Эффективные вращательные гамильтонианы для трех состояний, как и операторы, отвечающие за ангармоническое и

Состояние	Число уровней	J	Ka	E_{max} (cm ⁻¹)	Число уровней	J	Ka	E_{max} (cm ⁻¹)	
		Работы [15	58-161]		Наша работа				
(030)	348	25	13	7698	525	29	21	10540	
(110)	176	16	9	5798	502	26	22	10488	
(011)	224	19	10	6153	566	30	21	10568	

Таблица 2.8 Сравнение полученных результатов с литературными данными

Кориолисово взаимодействие, были выбраны в той же форме, что и для первой триады (формулы (2.6.2)-(2.6.4)). Среднеквадратичное отклонение между наблюдаемыми значениями уровней энергии и вычисленными составляет 7.6×10^{-3} см⁻¹ для 1450 уровней вплоть до J = 22. Для большей части из них (1078 уровней) разница между экспериментальным и вычисленным значениями уровней $dE < 5 \times 10^{-3}$ см⁻¹. 42 уровня с dE > 0.05 см⁻¹ были исключены из обработки.

В Приложении 2.7 приведен пример смешивания вращательных уровней энергии второй триады молекулы D_2O для J = 20. Видно, что смешивание не носит регулярной зависимости от вращательных квантовых чисел. Коэффициенты смешивания определялись по формуле (2.6.5).

В Приложении 2.8. приведен пример сравнения полученных нами вращательных уровней энергии состояний (030), (011) и (110) для *J* = 15 с расчетными уровнями (с помощью модели эффективного гамильтониана) и экспериментальными значениями из [158, 160, 161].

Из Приложений 2.7 и 2.8 видно, что нами получены более полные наборы экспериментальных уровней энергии по сравнению с теми, что опубликованы в литературе. В целом согласие между значениями экспериментальных уровней энергий достаточно хорошее и максимальное отклонение между ними не превышает 0.085 см⁻¹ для всей совокупности уровней из Таблицы 2.8. В Приложении 2.8 два уровня энергии из работы [160]: (110) 15 _{6 9} и (011) 15 _{5 11} помечены символом (*). Коэффициенты

смешивания этой пары уровней близки к 50% для состояний (110) и (011). Это означает, что колебательная идентификация этих уровней носит, в достаточной степени, условный характер. В Приложении 2.8 идентификация этих уровней дана в соответствии с нашим расчетом и отличается от той, что приведена в работе [160].

Сравнение полученных в нашей работе наблюдаемых частот переходов для полос $3v_2$, v_1+v_2 и v_2+v_3 молекулы $D_2^{16}O$ с глобальными предсказаниями, рассчитанными на основе поверхности потенциальной энергии молекулы [10], приведены на рисунке 2.24. Из рисунка видно, что поведение отклонений экспериментальных частот переходов от рассчитанных подобно тому, что мы наблюдали для первой триады колебательных состояний молекулы. Для уровней с $J \leq 20$ and $K_a \leq 15$ абсолютное значение $dE = |E_{3\kappa cn} - E_{6\omega q}|$ не превышает 0.2 см⁻¹. Для более высоких значений квантовых чисел эти разницы возрастают по-разному для различных полос, но в целом это возрастание является регулярным, за исключением некоторых случаев. Например, как для уровня 19 8 12 состояния (030), который находится в сильном резонансе с уровнем 19 5 14 состояния (011).

Таким образом, в ходе выполнения работы по исследованию вышеупомянутых спектров было проидентифицировано более 2000 новых молекулы $D_2^{16}O$. Эти линий линии принадлежат переходам с высоковозбужденных уровней колебательных состояний (030), (110) и (011) на основное колебательное состояние (диапазон 3300-4300 см⁻¹), на состояние (010) (диапазон 2000 – 3200 см⁻¹), на состояния первой триады (диапазон 1750 – 2000 см⁻¹), а также переходам между этими состояниями (диапазон 320 – 860 см⁻¹). Пример линий полос v_2+v_3 and $2v_2+v_3-v_2$ показан на рисунке 2.25. в диапазоне 4227 – 4230 см⁻¹. В общей сложности были обнаружены линии принадлежащие 24 вращательным и КВ полосам.

Рисунок 2.24. Сравнение наблюдаемых положений линий полос $3v_2$, v_1+v_2 и v_2+v_3 молекулы $D_2^{16}O$ с глобальным расчетом на основе потенциальной функции Партриджа и Швенке [10]

Рисунок 2.25. Пример идентификации спектра в диапазоне 4227-4229 см⁻¹

На данном этапе обработка всех уровней энергии второй триады ещё не закончена, в связи с существенными трудностями, вызванными влиянием двух факторов, действующих одновременно. Это сильное центробежное искажение вращательных уровней состояния (030) и наличие сильного резонансного взаимодействия с состояниями (110) и (011). Как видно из таблицы 2.8, нами определены уровни энергии до $J_{max} = 30$, однако обработка проведена лишь до J = 22. Полученные результаты анализа второй триады колебательных состояний D_2^{16} О докладывались на различных конференциях [193-195] и опубликованы в работе [196].

§2.8 КВ спектры D₂¹⁶O: подтверждение идентификации уровней энергии, определенных по спектрам поглощения, при помощи горячих эмиссионных переходов

Данный этап работы посвящен совместному анализу высокотемпературного спектра излучения D_2O в диапазоне 4600 – 5600 см⁻¹ и

спектра поглощения смеси газов HDO/D₂O, зарегистрированного в диапазоне $5600 - 8800 \text{ см}^{-1}$.

Эмиссионный спектр чистого D_2O (рисунок 2.12.) был зарегистрирован при температуре 1950 К и давлении 16 торр с разрешением 0.005 см⁻¹. Положения более 3800 линий в этом спектре определялись с помощью программы SpectrumFit.

Спектр поглощения HDO/D₂O был зарегистрирован при температуре 290 К с разрешением 0.015 см⁻¹, при полном давлении около 10 торр на Фурье-спектрометре Bruker IFS 120М в г. Реймс (Франция). Парциальное давление D₂O - до 3 торр. Длина пути - 603 метра. Два важных фактора: очень высокое качество спектра (отношение сигнала к шуму S/N = 3000) и достаточно большая оптическая толща (1800 торр×метр) позволили определить параметры очень слабых линий, вплоть до интенсивности 1×10⁻²⁷ см/молекулу. Такие слабые линии чаще всего соответствуют переходам с уровней с большими значениями J и K_a, и, как правило, недоступны наблюдению в спектрах поглощения при комнатной температуре (методами Фурье-спектроскопии). Именно это обстоятельство позволяет провести совместный анализ спектров поглощения и излучения. Более подробно детали эксперимента можно найти в работе [197]. Всего в этом спектре около 17900 линий. Из сравнения спектров с разными парциальными давлениями $HD^{16}O$ и $D_2^{16}O$, более 5800 линий отнесено к молекуле $D_2^{16}O$, а около 9500 линий – к молекуле $HD^{16}O$.

Диапазон 4700 – 5600 см⁻¹ (I) соответствует полосам первой гексады взаимодействующих состояний {(040), (120), (021), (200), (101), (002)}. Наиболее сильной полосой данного диапазона является полоса (101) – (000) ($v_1 + v_3$). В этот диапазон попадают также горячие полосы состояний второй гексады взаимодействующих состояний (например (111) – (010)) и более высоких состояний (например (201) – (100)).

Диапазон 6000 – 7000 см⁻¹ (II) соответствует полосам второй гексады взаимодействующих состояний {(050), (130), (031), (210), (111), (012)}. Наиболее сильной полосой данного диапазона является полоса (111) – (000) $(v_1 + v_2 + v_3)$. В этот диапазон попадают также горячие полосы состояний первой декады взаимодействующих состояний (например (121) – (010)).

Диапазон 7500 – 8300 см⁻¹ (III) соответствует полосам первой декады взаимодействующих состояний {(060), (140), (041), (220), (121), (022), (300), (201), (102), (003)}. Наиболее сильной полосой данного диапазона является полоса (201) – (000) (2 v_1 + v_3). В этот диапазон попадают также горячие полосы состояний второй декады взаимодействующих состояний (например (211) – (010)).

Поскольку спектр в диапазоне 4700 – 5600 см⁻¹ зарегистрирован при высокой температуре, то мы имеем реальную возможность наблюдать линии горячих полос и, тем самым, проверять правильность идентификации спектра в более высокочастотных диапазонах (диапазоны (II) и (III)).

Как и ранее, для идентификации линий в спектрах использовались результаты предсказательных расчетов на основе потенциальной поверхности Партриджа и Швенке [10, 11]. Уровни энергии определялись с помощью программы RITZ. Статистика использованных в программе RITZ частот переходов и полученных уровней энергии приведена в Таблице 2.9.

В качестве примера рассмотрим более детально идентификацию линий полосы $v_1 + v_2 + v_3$. Расчётные спектры части полос для верхнего состояния (111) показаны на рисунке 2.26. Данные взяты из информационной системы SPECTRA (<u>http://spectra.iao.ru</u>).

Таблица 2.9. Статистика использованных в программе RITZ частот переходов и полученных уровней энергии

Спектральный диапазон: 0.3 - 9540 см⁻¹.

Всего частот переходов: около 23780.

Определено уровней: 8687 для 31 колебательного состояния.

$V_1V_2V_3$	Ν	J	Ka	$V_1V_2V_3$	Ν	J	Ka
(000)	914	30	29	(130)	100	14	9
(010)	776	30	26	(012)	237	18	12
(020)	620	30	22	(111)	232	26	11
(100)	689	29	25	(210)	155	17	10
(001)	722	30	23	(041)	11	21	3
(030)	531	29	20	(121)	175	16	10
(110)	505	26	22	(220)	5	7	4
(011)	568	30	21	(032)	14	9	5
(040)	152	25	11	(131)	81	13	9
(021)	196	28	12	(230)	11	10	6
(120)	179	19	15	(013)	157	16	9
(200)	186	20	16	(112)	139	17	9
(101)	413	30	17	(211)	177	16	9
(002)	401	25	15	(310)	102	14	7
(050)	29	20	8	(221)	8	7	2
(031)	192	25	10				

Примечание:(V₁V₂V₃) колебательная идентификация, N число уровней энергии для каждого колебательного состояния, *J*, *K*_a максимальные значения квантовых чисел.

Рисунок 2.26. Расчетные спектры D₂¹⁶O, выполненные на основе потенциальной поверхности Партриджа и Швенке [10, 11] в зависимости от температуры Т

Из рисунка видно, что если при комнатной температуре реально наблюдаемой является лишь горячая полоса (111) – (010), то с повышением температуры растёт интенсивность полос для переходов на состояниия первой {(020), (100), (001)} и второй {(030), (110), (011)} триад. При температуре в 2000 К наиболее интенсивными становятся полосы (111) – (110) и (111) – (011), лежащие в области полосы v_3 (диапазон 2200 – 3000 см⁻¹).

Таким образом, при идентификации полосы $v_1 + v_2 + v_3$, можно проверить правильность определения уровней состояния (111) привлекая данные о частотах переходов в полосах (111) – (010), (111) – (020), (111) – (100), (111) – (001), (111) – (030), (111) – (110) и (111) – (011).

Рассмотрим подробно пример определения вращательного уровня J = 9, $K_a = 9$ состояния (111). Ормсби с соавторами [164] определили этот уровень (E = 7813.4747 см⁻¹) из единственного перехода (111) $9_{90} \leftarrow (000) 9_9$ ₁, приписав его линии на частоте v = 6554.6052 см⁻¹. Зобов с соавторами [198] приводит то же самое значение этого уровня и приводит также всего один переход, связанный с этим уровнем – (111) $9_{90} \leftarrow (110) 9_{91}$ на частоте v = 2652.413 см⁻¹. Отметим, что исходя из приведённых Зобовым с соавторами энергий уровней (111) 9_{90} и (110) 9_{91} , частота соответствующего перехода должна быть 2652.432 см⁻¹.

В нашей работе частота перехода (111) $9_{90} \leftarrow (000) 9_{91}$ определена как $v = 6554.5083 \text{ см}^{-1}$, кроме того, для этого уровня найдено ещё 6 переходов пяти различных полос. Все переходы, а также полученное значение энергии уровня (111) 9_{90} , приведены в Таблице 2.10. Два перехода, выделенные серым цветом, не использовались для определения верхнего уровня энергии. Окончательно, для уровня (111) 9_{90} E = 7813.3784 см⁻¹.

Частота	$v_1v_2v_3 J K_a K_c$	$v_1v_2v_3 J K_a K_c$	Энергия	Энергия
перехода	верхнего	нижнего	нижнего	верхнего
(cm^{-1})	уровня	уровня	уровня (см ⁻¹)	уровня (см ⁻¹)
2528.9109	111 9 9 0	110 10 9 1	5284.4738	7813.3847
2652.3357	111 9 9 0	110 9 9 1	5161.0430	7813.3787
3776.2350	111 9 9 0	100 10 9 1	4037.1505	7813.3855
3940.5085	111 9 9 0	001 9 8 1	3872.8698	7813.3783
4051.8237	111 9 9 0	020 9 9 1	3761.5564	7813.3801
5298.7994	111 9 9 0	010 9 9 1	2514.5776	7813.3770
6554.5083	111 9 9 0	000 9 9 1	1258.8695	7813.3778
		(Среднее значение	7813.3784

Таблица 2.10 Переходы, использовавшиеся для определения уровня энергии 9 _{9 0} состояния (111)

Необходимо отметить, что линия v = 6554.6052 см⁻¹ в нашем спектре не наблюдается вовсе. Схематически все найденные переходы показаны на рисунке 2.27.

Рисунок 2.27. Схема переходов с участием уровня энергии 990 состояния (111)

Таким образом, можно уверенно утверждать, что найденная нами идентификация линий и полученное из соответствующих частот значение уровня энергии правильно, в отличие от значений, приведённых авторами работ [164] и [198].

(111)							продолжение						
J	K _a	K_{c}	$E(cM^{-1})I$	N	<i>E[178]</i> II	I-II	J	Ka	K_{c}	$E(cM^{-1})I$	N	<i>E[178]</i> II	I-II
	0	9	7000.1281	6	7000.1297	-1.6	10	7	4	7649.0554	5	7649.0565	-1.1
9	1	9	7000.0304	4	7000.0308	-0.4	10	7	3	7649.0546	2		
9	1	8	7084.7139	8	7084.7153	-1.4	10	8	3	7777.7742	4	7777.7750	-0.8
9	2	8	7085.2572	4	7085.2583	-0.9	10	8	2	7777.7745	3	7777.7752	-0.7
9	2	7	7146.3708	8	7146.3718	-1.0	10	9	2	7937.5935	5	7937.5949	-1.4
9	3	7	7168.8123	6	7168.8131	-0.8	10	9	1	7937.5942	3	7937.5949	-0.7
9	3	6	7189.6765	8	7189.6779	-1.4	10	10	1	8093.3754	2	8093.3763	-0.9
9	4	6	7226.6847	4	7226.6859	-2.2	10	10	0	8093.3754		8093.3763	-0.9
9	4	5	7231.1689	6	7231.1703	-1.4							
9	5	5	7313.1326	4	7313.1334	-0.8	11	0	11	7206.2930	5	7206.2951	-2.1
9	5	4	7312.9226	6	7312.9243	-1.7	11	1	11	7206.3158	2	7206.2959	19.9
9	6	4	7412.9391	2	7412.9405	-1.4	11	1	10	7312.6989	6	7312.7001	-1.2
9	6	3	7412.9188	5	7412.9202	-1.4	11	2	10	7312.8928	5	7312.8935	-0.8
9	7	3	7528.8513	2	7528.8536	-2.3	11	2	9	7399.9323	6	7399.9331	-0.8
9	7	2	7528.8519	5	7528.8531	-1.2	11	3	9	7402.3110	4	7402.3114	-0.4
9	8	2	7658.1987	3	7658.1995	-0.8	11	3	8	7458.3690	5	7458.3700	-1.0
9	8	1	7658.1984	4	7658.1995	-1.1	11	4	8	7482.5566	4	7482.5571	-0.5
9	9	1	7813.3784		7813.4747	-96.3	11	4	7	7513.1986	5	7513.1995	-0.9
9	9	0	7813.3784	5	7813.4747	-96.3	11	5	7	7568.4868	4	7568.4874	-0.6
							11	5	6	7569.7525	5	7569.7535	-1.0
10	0	10	7098.5199	4	7098.5221	-2.2	11	6	6	7666.8963	2	7666.8980	-1.7
10	1	10	7098.5350	4	7098.5362	-1.2	11	6	5	7666.7878	4	7666.7887	-0.9
10	1	9	7194.1895	5	7194.1903	-0.8	11	7	5	7781.5393	3	7781.5397	-0.4
10	2	9	7194.5484	6	7194.5499	-1.5	11	7	4	7781.4981	3	7781.4991	-1.0
10	2	8	7269.4708	5	7269.4719	-1.1	11	8	4	7909.7451	2	7909.7468	-1.7
10	3	8	7273.0222	6	7273.0233	-1.1	11	8	3	7909.7456	3		
10	3	7	7318.8959	4	7318.8965	-0.6	11	9	3	8073.5331		8073.3101	223.0
10	4	7	7345.9783	5	7345.9796	-1.3	11	9	2	8073.5331	2	8073.3101	223.0
10	4	6	7374.6567	3	7374.6572	-0.5	11	10	2	8229.3785		7206.2951	
10	5	6	7434.8284	6	7434.8297	-1.3	11	10	1	8229.3785	2	7206.2959	
10	5	5	7434.7729	3	7434.7735	-0.6	11	11	1	8401.7210		7312.7001	
10	б	5	7533.7051	5	7533.7064	-1.3	11	11	0	8401.7210	2	7312.8935	
10	6	4	7533.6503	2	7533.6518	-1.5							

Таблица 2.11. сравнение полученных в нашей работе уровней энергии состояния (111) с уровнями, приведенными в работе [198]

В Таблице 2.11. приведено сравнение полученных нами уровней энергии в см⁻¹ (четвертая колонка) состояния (111) для J = 9, 10 и 11 с энергиями Зобова и соавторов в см⁻¹ (шестая колонка). В пятой колонке приведено число переходов, используемых для определения каждого уровня. В седьмой колонке разница между наблюдаемым значением уровня энергии и опубликованным в работе [198] в единицах 10⁻³ см⁻¹. Стоит заметить, что

реально для определения уровня энергии использовались далеко не все частоты проидентифицированных переходов, связанных с этим уровнем. Часто оказывается, что частоты многих линий не могут быть определены с достаточной точностью из-за перекрывания их более сильными линиями или по иным причинам. Такие линии, как правило, дают нам большую уверенность в правильности идентификации верхнего уровня, но значения их частот не используются для численного определения энергии уровня.

Необходимо отметить, что уровни (111) 11 _{9 3} и (111) 11 _{9 2} взяты из работы Ормсби и соавторов. В работе [198] этот уровень не приводится. Цветом выделены новые и сильно отличающиеся от литературных данных уровни.

Таким образом, эмиссионные высокотемпературные спектры являются прекрасным источником информации о высоковозбужденных колебательновращательных переходах молекулы и дают возможность не только значительно расширить набор уже известных уровней энергии, но и проверить правильность их идентификации.

В настоящий момент, колебательно-вращательная идентификация проведена для 1450 линий в спектре излучения $D_2^{16}O$, большая часть из которых наблюдается впервые. Наблюдаемые переходы были проидентифицированы как переходы, принадлежащие колебательным состояниям (101), (002), (200), (021), (040), (111), (210), (012), (031), (300), (201), (102), (121), (220), (041).

В спектре поглощения HDO/D₂O колебательно-вращательная идентификация проведена для более чем 14000 линий. Отметим, что в используемых для регистрации этого спектра образцах воды имелось естественное содержание молекул воды с кислородом-18 (примерно 0.2% по отношению концентрации молекул с кислородом-16). В результате этого, нам удалось обнаружить линии молекул HD¹⁸O и D₂¹⁸O в исследуемом спектре. Таким образом, среди проидентифицированных линий 8237

принадлежит молекуле $HD^{16}O$, 4340 - молекуле $D_2^{16}O$, 876 - молекуле $HD^{18}O$, 565 - молекуле $H_2^{16}O$ и 140 - молекуле $D_2^{18}O$. Предварительные результаты работы докладывались на Международном симпозиуме по молекулярной спектроскопии в Праге [199]. Большая часть полученных данных о молекуле $HD^{18}O$ опубликована в работе [200].

Глава 3

Исследование CW-CRDS спектра озона ¹⁸О₃ в диапазоне 5930-7000 см⁻¹
§ 3.1 Введение

Озон является одним из важнейших компонентов земной атмосферы и интерес к этой молекуле был всегда велик. Среди различных методов исследования озона, особое место занимают оптические методы исследования инфракрасного и микроволнового диапазонов [201]. Связано это с тем, что молекула имеет ряд сильных колебательно-вращательных полос в ИК-области и сильную вращательную полосу в микроволновой и дальней ИК-области, что и определяет важную роль этой молекулы в термодинамике и оптике атмосферы.

С другой стороны, молекула озона является в высшей степени интересным объектом для исследования, так как обладает следующими важными свойствами, по сравнению с другими атмосферными молекулами: первое - низкая энергия диссоциации, второе - высокая плотность колебательно-вращательных уровней, и третье – молекула озона обладает сильным резонансным поглощением 9,6 мкм излучения СО₂ - лазера. Благодаря низкой энергии диссоциации молекулы, порядка 8500 см⁻¹, существует возможность зарегистрировать переходы, соответствующие высоковозбужденным колебательным состояниям. С практической точки зрения они представляют большой интерес, так как дают важный вклад (асимметричная мода колебаний озона v₃) в собственное излучение верхней атмосферы Земли, возникающее при трехчастичной рекомбинации О₃ [201]. С теоретической информация возбужденным точки зрения, ПО колебательным состояниям позволяет экспериментально проверить правильность формы потенциальной поверхности энергии молекулы в основном электронном состоянии в области высоких энергий.

Спектроскопия высокого разрешения молекулы озона имеет долгую историю. ИК - спектры молекулы в диапазоне до 5800 см⁻¹ изучались в основном с помощью Фурье спектроскопии. Набор фундаментальных полос,

первых обертонов, полосы комбинационного рассеяния основного изотополога озона ¹⁶O₃ исследовались в сериях работ Фло, Ками-Пере, Ринсланда с коллегами [202-204]. В 1990 г. они опубликовали атлас спектральных линий озона [204] в микроволновом и ИК-диапазонах (0 – 3400 см⁻¹), где систематизировали результаты по спектроскопии озона высокого разрешения. Барб с коллегами [205-208] расширил набор наблюдаемых полос, проидентифицировав более 30 новых полос "основного" озона в диапазоне вплоть до 5800 см⁻¹. Результаты по спектроскопии озона до 2003 года приведены в обзорах Стейнфелда, Фло и Бассиса, Михайленко и др. [69, 84, 209, 210].

Фурье - спектры изотопических модификаций ¹⁷O₃, ¹⁸O₃ молекулы озона анализировались в работах [211-219]. Наиболее широкий спектральный диапазон изучался Шишери [214, 215] для изотополога ¹⁸O₃ и Барбом, Де Бакер и др. [216-219] для смешанных изотопологов ¹⁶O¹⁸O¹⁶O, ¹⁸O¹⁶O¹⁸O, ¹⁶O¹⁶O¹⁸O. Во всех доступных в литературе работах анализ проводился в спектральном диапазоне ниже 4900 см⁻¹ для полос с $\Delta v = 5$. Большая часть результатов доступна на сайтах информационной системы S&MPO (Spectroscopy & Molecular Properties of Ozone) [85]: <u>http://ozone.univ-reims.fr</u> и <u>http://smpo.iao.ru</u>.

Несмотря на значительные усилия научного сообщества в изучении спектров озона и свойств молекулы, многие важные проблемы остаются до конца нерешенными. Например, понимание и описание эффекта аномального изотопического обогащения в процессе образования озона [220-222], вычисление скоростей диссоциации и рекомбинации молекулы [115, 223], детальное описание процессов нелокального термодинамического равновесия в верхних слоях атмосферы [224] или поиск оптимальных каналов многофотонного лазерного возбуждения озона. Для решения многих из этих проблем требуется детальная информация о высоковозбужденных колебательно-вращательных состояниях изотопических модификаций озона.

Трудность получения информации 0 высоких колебательновращательных состояниях озона из спектров высокого разрешения связана с тем, что с ростом колебательных квантовых чисел интенсивность полос существенно падает и требуется более чувствительная техника для их регистрации. Обычно, в таких случаях проводят измерения при высоких температурах (как в случае D₂O), но для молекулы озона это неприемлемо из-за быстрого её разложения в таких условиях. Вторая проблема связана со многократных КВ резонансов сложностью анализа из-за между возбужденными состояниями, а также необходимости учета резонансов с темными состояниями, параметры которых не всегда известны.

Новый этап в продвижении в более высокие спектральные диапазоны был осуществлен благодаря развитию очень чувствительной лазерной техники [225-231]. Вентц с соавторами [225] зарегистрировали более 3500 линий основного изотополога озона в диапазоне 6430 – 6670 см⁻¹, но только 400 из них были проидентифицированы. Существенный прогресс был получен благодаря измерениям с CW-CRDS (CW-Cavity Ring Down Spectroscopy) спектрометром [231], который был разработан в Университете города Гренобля (Франция). Спектр основного изотополога озона ¹⁶O₃ был зарегистрирован в диапазоне 5850 – 7000 см⁻¹ [226-231]. Анализ этого диапазона был недавно полностью завершен, в работах группы Реймского Университета [226-230] в нем было проидентифицировано более 7500 линий, принадлежащих 21 колебательному состоянию, определено около 4000 уровней энергии озона. Результаты этого анализа были опубликованы в работах [226-230] и обобщены в обзоре Кампарга с соавторами [231].

С теоретической стороны, существенные попытки были предприняты в определении поверхности потенциальной энергии молекулы озона для основного электронного состояния. [12, 13, 112, 115, 232-224]. Расширенные *ab initio* вычисления были выполнены Зибертом и Шинке [112, 232]. Бабиков [233] и Гребенщиков [234] использовали эти расчеты для изучения

метастабильных состояний и состояний Ван дер Ваальса, соответственно. На сегодняшний день самая точная эмпирическая потенциальная поверхность для открытой конфигурации была получена Тютеревым, Ташкуном и соавторами [12, 13] с использованием экспериментальных (Фурье) КВ спектров для основного изотопа озона в диапазоне ниже 5800 см⁻¹. Эта поверхность использовалась для теоретической идентификации колебательно-вращательных СW-CRDS спектров ¹⁶O₃ и для предсказания высоковозбужденных колебательных состояний.

Данная глава диссертации посвящена анализу CW-CRDS спектра молекулы ${}^{18}O_3$ в диапазоне 5950-7000 см⁻¹. Общие сведения о молекуле следуют из работ [84, 201].

§ 3.2 Общие сведения о молекуле озона

В открытой электронной конфигурации молекула озона является нелинейной трехатомной молекулой. Атомы кислорода В случае симметричных изотопов расположены по вершинам равнобедренного треугольника (рисунок 3.1.). Наиболее распространенным в естественных условиях является изотополог ¹⁶О₃, который составляет 99,28% от общего природного содержания озона в атмосфере. Молекула озона имеет три невырожденных нормальных колебания, которые описываются тремя $(v_1, v_2, v_3).$ Наиболее квантовыми числами являются сильными фундаментальные полосы, удовлетворяющие отбора правилам гармонического осциллятора: $\Delta v_i = \pm 1$ (i = 1, 2, 3).

валентное антисимметричное колебание

Рисунок 3.1. Схема нормальных колебаний молекулы озона и их гармонические частоты для $^{18}\mathrm{O}_3$

Молекула озона обладает достаточно большим постоянным дипольным моментом (0,53D), вследствие чего имеет интенсивную вращательную полосу поглощения в дальнем ИК, субмиллиметровом и миллиметровом диапазонах длин волн.

В открытой электронной конфигурации симметричные изотопические модификации молекулы относятся к точечной группе C_{2V} , а несимметричные - к С_S., молекула является слегка асимметричным вытянутым волчком. Колебательно-вращательные спектры молекулы, наряду С тремя колебательными квантовыми числами, описываются тремя вращательными квантовыми числами J, K_a и K_c. Для точечной группы С_{2V}, к которой относятся симметричные изотопные модификации, симметрия колебательных уровней однозначно определяется четностью числа v₃, как было ранее описано в параграфе 1.10. В нем же приведены правила отбора для КВ переходов. Для молекулы озона наиболее интенсивными являются переходы с ΔK_a , ΔK_c , = 0, ±1. Величина вероятности перехода с $|\Delta K_a, \Delta K_c| > 1$

зависит от степени асимметрии тензора инерции молекулы, которая характеризуется параметром асимметрии $\kappa = (2B-A-C)/(A-C)$, где A, B, C – вращательные постоянные, обратно пропорциональные моментам инерции вдоль главных осей. Согласно групповым свойствам молекулы и спиновой статистике, в озоне возможны только КВ переходы типа $A_1 \leftarrow \rightarrow A_2$.

Полосы А - типа молекулы озона имеют четко выраженную форму: ветвь R является очень плотной с резко выраженной верхней границей в области высоких частот, ветвь Р является довольно протяженной с убывающей интенсивностью в область низких частот. Полосы В - типа не обладают такой особенностью, их ветви растянуты и перекрываются друг с другом.

Приближенные соотношения для гармонических частот нормальных колебаний имеют вид:

$$\omega_1 \approx \omega_3,$$
 (3.2.1)

$$3\omega_2 \approx \omega_1 + \omega_3,$$
 (3.2.2)

в силу чего многие колебательные уровни являются близко расположенными, и соответствующие КВ состояния резонансно взаимодействуют друг с другом. Для учета таких взаимодействий применяют эффективные КВ гамильтонианы для полиад взаимодействующих состояний. В области низких энергий для молекулы озона в полиады объединяются состояния с фиксированным значением числа v_2 и удовлетворяющие условию: $v_1+v_3 =$ const. Такие полиады называются валентными, так как стоятся лишь с учетом соотношения (3.2.1). Однако такое объединение пригодно в области невысоких энергий. Так как разница между частотами ω_1 и ω_3 не слишком велика, а плотность КВ линий большая, то с некоторого момента полиады начинают перекрываться. В энергетическом интервале до половины энергии диссоциации для их формирования нужно учитывать оба соотношения (3.2.1) и (3.2.2). При этом в одну полиаду включают колебательные состояния, удовлетворяющие условию $3v_1+2v_2+3v_3 = \text{const.}$ В более высокочастотных диапазонах, при практической обработке спектра, приходится включать в одну группу состояния, формально принадлежащие различным валентным полиадам.

§ 3.3 CW-CRDS спектр молекулы ¹⁸О₃ в диапазоне 5930-7000 см⁻¹

Общий вид спектра поглощения озона ¹⁸O₃, зарегистрированного с помощью CW-CRDS спектрометра в диапазоне 5930 – 7000 см⁻¹, представлен на рисунке 3.2. Подробное описание схемы спектрометра и процесса регистрации спектров изложено в ряде работ [226-231]. Кратко остановимся на общих моментах. Для регистрации спектра в указанном диапазоне использовалось около 50 перестраиваемых диодных лазеров, каждый из которых охватывает диапазон порядка 7 нм (~ 30 см⁻¹). Высокая чувствительность спектрометра a_{min} ~2-5×10⁻¹⁰ см⁻¹ позволяет регистрировать линии с интенсивностью меньше 2×10⁻²⁸ см/молекулу. Калибровка спектра и Проводилась относительно реперных линий поглощения молекул H₂¹⁶O и H₂¹⁸O, положения которых хорошо известны и брались из банка данных HITRAN [235]. Оценочная точность положений линий в спектре составляет 2×10⁻³ см⁻¹.

Процесс приготовления озона при слабом электрическом разряде (12 кВ, 400 Гц) в жидком азоте кратко изложен на сайте <u>http://ozone.iao.ru</u>. Образец газа на 95% был обогащен кислородом ¹⁸O₂, что приводит приблизительно к 86% содержания озона ¹⁸O₃ в процессе его получения. Следовательно, в спектре должны присутствовать линии смешанных изотопических модификаций озона, в основном таких, как ¹⁶O¹⁸O¹⁸O и ¹⁸O¹⁶O¹⁸O.

Рисунок 3.2. Обзор CRDS-спектра озона ¹⁸О₃ в диапазоне 5930-7000 см⁻¹. Интервалы, в которых поглощение примесями наиболее заметно, отмечены скобками

Кислород ¹⁸O₂ в ячейке находился под давлением 30 Торр, что приводит к парциальному давлению озона в 20 Торр. Не принимая во внимание несущественные парциальные давления от смешанных изотопических модификаций, постепенное уменьшение концентрации озона в образце оценивалось по формуле $P_{O_3} = 2(P_i - P_t)$, где P_i начальное давление газа O_2 и P_t общее измеренное давление.

Так как концентрации озона определена неточно (из-за возможной рекомбинаций озона в кислород в образце газа, а так же из-за присутствия в нем примесей смешанных изотопологов), погрешность в регистрации абсолютных интенсивностей линий составляет 15-20%.

Как видно из рисунка, в спектре присутствуют сильные линии примесей, таких как $H_2^{18}O$, ${}^{12}C^{18}O$, ${}^{16}O^{12}C^{18}O$, ${}^{12}C^{18}O_2$, $H_2^{16}O$, что существенно осложнило работу с участками спектра, где они локализованы. Переходы $H_2^{18}O$, ${}^{16}O^{12}C^{18}O$ и ${}^{12}C^{18}O$ были проидентифицированы на основе базы данных HITRAN и недавней работы по исследованию CO₂ спектра [236] и частично использовались для калибровки спектров ${}^{18}O_3$.

§3.4 "Глобальные" (вариационные) и "локальные" (эффективные) расчеты в спектроскопии озона: метод идентификации нормальных мод из потенциала

К данной главе, колебательная Как говорилось BO введении идентификация CW-CRDS спектров молекулы ¹⁶O₃ [226-231] основывалась на экстраполяциионных расчетах из эмпирической поверхности [12, 13]. Эта поверхность была получена на основе экспериментальных данных для основного изотополога в области до 5000 см⁻¹. Поверхность является массово независимой. DVR или вариационный расчет не дает спектроскопической идентификации состояний. Чтобы получить спектроскопическую

идентификацию, матрицу гамильтониана записывают в спектроскопических координатах (нормальных модах и эккартовых осях), затем преобразуют к эффективным гамильтонианам для перекрывающихся полиад состояний. Для этого использовался метод контактных преобразований, о котором шла речь в первой главе диссертации. Использование пакета программ MOL_CT [14, 74] позволяет получить эффективные гамильтонианы с очень высокой точностью: их диагонализация дает почти тот же спектр, что и метод DVR. До энергии диссоциации расхождение между двумя расчетами составляет менее 1 см⁻¹. Преимуществом такого подхода, схематически изображенного на рисунке 3.3., является получение спектроскопической идентификации состояний, а так же вращательных состояний как функций $v_1v_2v_3$.

Для анализа CRDS спектров 18го изотополога озона, Тютеревым с соавторами [12-14] была выполнена вся серия преобразований, включая

Рисунок 3.3. Схема теоретических расчетов уровней энергии озона из потенциальной поверхности молекулы с использованием метода контактных преобразований согласно [14]

переход к массово зависимым координатам, построение эффективного гамильтониана с точной алгеброй (коммутаторы считаются точно, без приближений), получение волновых функций и спектра до диссоциации. На представленной схеме уровней энергии (рисунок 3.3.) для простоты представлены толькоуровни, соответствующие валентным колебаниям $v_2 = 0$. Энергетический диапазон молекулы ¹⁸O₃, уже исследовавшийся в литературе, обозначен закрашенным квадратом. Спектральный диапазон, анализу которого посвящена данная глава диссертации, выделена штрихованным контуром.

Для колебательной идентификации спектров ¹⁸O₃ использовались две версии поверхности потенциальной энергии озона. Одна - адаптированная к «Morse-cosine kinetic model» [12], другая, к точному оператору кинетической энергии [13]. Соответствующие вычисления показывают, что для уровней энергии с J = 0 и J = 1 среднеквадратичное отклонение между двумя расчетами вплоть до энергии 7000 см⁻¹ составляет 0.9 см⁻¹.

основывается Первый метод на вариационных вычислениях, использующий численное интегрирование с большим базисом примитивных волновых функций, определенных во внутренних координатах (длины связей и угол меду ними), как описано в [12, 13]. Для того, чтобы достигнуть хорошей сходимости вычислений в представленном диапазоне, было необходимо расширить размер базиса, по крайней мере, на порядок, по сравнению с подобными вычислениями для молекулы воды. Второй метод является чисто алгебраическим И основывается на контактных преобразованиях высокого порядка для полного колебательно-вращательного эффективных гамильтонианов, гамильтониана, приводящих К сериям определенных групп сильновзаимодействующих колебательных для состояний. Для реализации этих расчетов был использован пакет вычислительных кодов MOL_CT [14]. Такие вычисления учитывают различные резонансные взаимодействия, специфические для молекулы озона,

включая межполиадные взаимодействия. Метод обеспечивает разложение собственных функций преобразованного гамильтониана | $\Psi_{\Gamma N_V}$ > по базису нормальных мод:

$$|\Psi_{\Gamma N_{V}}\rangle = \sum_{\mathbf{v}_{1}\mathbf{v}_{2}\mathbf{v}_{3}} C_{\mathbf{v}_{1}\mathbf{v}_{2}\mathbf{v}_{3}}^{\Gamma N_{V}} |\mathbf{v}_{1}\mathbf{v}_{2}\mathbf{v}_{3}\rangle_{0} .$$
(3.4.1)

Здесь Г- тип симметрии состояния, N_V порядковый номер колебательного Γ. мере возрастания энергии данного Базис состояния ПО ДЛЯ $|v_{1}v_{2}v_{3}\rangle_{0} = |v_{1}\rangle_{0}|v_{2}\rangle_{0}|v_{3}\rangle_{0}$ соответствует нормальным колебаниям, которые в гармоническом приближении независимы между собой в окрестности минимума потенциальной энергии. Выражение (3.4.1) написано для колебательных волновых функций. Подобные выражения получены также для колебательно-вращательных волновых функции, прямым умножением на вращательный базис асимметричного волчка. Коэффициенты смешивания определяются как квадраты от коэффициентов разложения волновой функции:

$$P_{n} = (C_{\mathbf{v}_{1}\mathbf{v}_{2}\mathbf{v}_{3}}^{\Gamma N_{v}})^{2} \quad \Gamma Д e \quad \sum_{n} P_{n} = 1$$
(3.4.2)

n = 1 соответствует самому большому вкладу в выражение (3.4.1), n = 2, 3, 4 соответствуют последующим уменьшающимся вкладам.

Сходимость MOL_CT вычислений с увеличением порядка контактных преобразований была проверена по отношению к вариационным расчетам с той же потенциальной поверхностью. Для колебательных уровней $^{16}O_3$ и $^{18}O_3$, среднеквадратичное отклонение между этими двумя расчетами для восьмого порядка контактных преобразований вплоть до 7000 см⁻¹ меньше, чем 1 см⁻¹. По этой причине, только CT вычисления ("calc_2"), соответствующие ФПЭ [13] приведены в таблице 3.1.

Таблица 3.1. Теоретический расчет нижних колебательно-вращательных уровней энергий колебательных состояний ¹⁸О₃, полосы с которых наблюдаются в исследуемых спектрах. Глобальная и спектроскопическая идентификация состояний.

N	E/hc	[cm ⁻¹]		P_{I}	Ш7.	P_2	Ш7.	P_3	Ш7.
1.00	Calc_1	Calc_2	$J \mathbf{K}_a \mathbf{K}_c$	(%)	VV I	(%)	<i>ww</i> 2	(%)	VV 3
			Колебате	ельные	состояния	A_1			
65	6012.31	6011.74	000	72	(430) _o	10	(322) _o	9	(124) _o
66	6047.95	6046.71	000	41	(214) _o	17	$(124)_{0}$	14	(412) _o
71	6245.81	6245.50	000	49	(016) _o	23	(304) _o	10	(106) _o
82	6591.83	6592.73	000	32	(134) _o	26	(224) _o	11	(422) _o
	Колебат	тельные сос	тояния B_1	(колеба	ательно-вр	ащател	ьные уров	ни A ₂)	
44	5985.28	5985.58	101	49	(025)0	10	(223)0	10	(313)0
45	6013.84	6013.71	101	74	(501)o	22	(303)o	3	(105)o
46	6073.20	6071.34	101	28	(115)0	27	(313)0	23	(223)0
51	6272.97	6271.24	101	44	(205)0	28	(403)0	12	(115)0
54	6394.42	6394.58	101	38	(233)0	23	(143)0	11	(035)o
58	6558.19	6560.01	101	37	(035)0	13	(323)0	12	(125)0
59	6611.19	6610.71	101	69	(511)0	16	(313)0	6	(007)o
60	6644.93	6642.85	101	35	(233)0	12	(323)0	10	(431)0
64	6796.01	6797.32	101	38	(125)0	16	(413)0	15	(215)0
66	6828.44	6826.45	101	38	(431)0	20	(323)0	11	(233)0

Примечания:

 N_V : глобальный порядковый номер состояния, Calc_1: вариационные расчеты на основе ФПЭ [12] во внутренних координатах (r_1 , r_2 , θ); Calc_2: расчеты, полученные с помощью неэмпирического эффективного гамильтониана, полученного из ФПЭ [13], используя 8-ой порядок контактных (в нормальных координатах q_1 , q_2 , q_3) [14]; $J K_a K_c$: вращательные квантовые числа; P_1 , P_2 , P_3 коэффициенты смешивания (в %) согласно выражению (3.4.1)-(3.4.2); W_1 , W_2 , W_3 соответствующая колебательная идентификация ($v_1 v_2 v_3$).

В своей работе мы используем два типа колебательной идентификации. Первая глобальная (Γ , N_V), которая включает тип симметрии Γ (A_I or B_I) на группе C_{2V} и порядковый номер энергии N_V . Если потенциальная поверхность достаточно точная, т.е. если разница (Obs.-Calc.) много меньше, чем расстояние между уровнями, глобальная идентификация является однозначной. Дальнейшие сравнения с экспериментальными значениями уровней энергии показывают, что в нашем случае это условие выполняется, глобальная идентификация является однозначной в рассматриваемом спектральном диапазоне. Между 5900-7000 см⁻¹ обе поверхности [12, 13] позволили рассчитать 28 полос А типа ($B_1 \leftarrow A_1$) и 33 полосы В типа ($A_1 \leftarrow A_1$).

Второй способ – это традиционная идентификация по колебательным числам, соответствующим модам нормальных колебаний в квантовым молекуле. Согласно спиновой статистике, только колебательновращательные уровни A_1 и A_2 разрешены в случае молекул озона ¹⁶O₃ и ¹⁸O₃. Это значит, что самый нижний разрешенный уровень для колебаний А-типа соответствует $\{(v_1)(v_2)(v_3)_{even} [JK_aK_c = 000]\}_{A_1},$ колебаний В-типа И для $\{(v_1)(v_2)(v_3)_{add} [JK_aK_c = 101]\}_{A_2}$. Предсказания для уровней ЭТИХ нижних приведены в таблице 3.1 вместе с коэффициентами смешивания.

Первый этап анализа: определение центров полос из колебательновращательных спектров CRDS

Среди атмосферных трехатомных молекул, молекула озона является достаточно тяжелой с плотной вращательной структурой. В случае полос поглощения, зарегистрированных при комнатной температуре, в зависимости от типа полосы, самые сильные линии соответствуют значениям J = 15-35. Как видно из таблицы 3.1, большинство полос, попадающих в наш спектральный диапазон, соответствуют колебательному возбуждению $\Delta v = \sum v_i = 7$ или 8. Эти полосы являются очень слабыми и полный набор переходов со слабозаселенных уровней с малыми J не может быть зарегистрирован (измерены лишь некоторые переходы), даже с учетом высокой чувствительности CRDS техники. Поэтому определение центра полосы с экспериментальной точки зрения является сложной задачей.

Центр колебательно-вращательных полос определяются как предел $J \rightarrow 0$ для энергий верхнего уровня. Этот предел может быть достаточно точно определен, следуя сериям линий в *P*, *Q* ог *R* ветвях полос, если набор

чисел Ј и К_а достаточно большой. Это предполагает квантовых использование всей колебательно-вращательной идентификации зарегистрированного спектра. Как проиллюстрировано в предшествующих работах по анализу CRDS спектров ¹⁶О₃, идентификация и обработка тысяч линий озона, наблюдаемых в диапазоне 5930 – 7000 см⁻¹, представляет собой существенную работу. Большое количество возможных колебательновращательных резонансов, в особенности с темными состояниями, делает обработку уровней энергии в рамках эффективных гамильтонианов очень трудной. Спектр, представленный на рисунке 3.2, был разделен на несколько соответствующих взаимодействующим системам состояний, участков, которые могут обрабатываться независимо: 5930 - 6080, 6170 - 6280, 6320 -6400, 6490 – 6650 и 6745 – 6840 см⁻¹. В общем, процедура идентификации имела много общего с той, которая выполнялась для озона ¹⁶О₃. Однако, вследствие нерегулярного поведения изотопических сдвигов, резонансная картина существенно меняется при переходе к ¹⁸O₃.

Совместная обработка состояний, принадлежащих к одной полиаде, какие уровни позволяет определить, возмущены резонансными взаимодействиями. На первом этапе работы, для определения центров полос, соответствующие серии линий были исключены из обработки. Переходы, соответствующие невозмущенным уровням энергии, обрабатывались с помощью гамильтониана Уотсона для изолированного колебательного состояния. Затем центр полосы определялся как предел $J \to 0$. Для большинства полос существенная точность центра полосы была достигнута при использовании серий линий с максимальными значениями J = 20 и K_a = 4. Только для полосы $v_1+3v_2+4v_3$ в обработку включались уровни энергии с *J* = 30, так как число наблюдаемых переходов *J* ≤ 20 для этой полосы было ограничено. Полученные центры полос представлены в Таблице 3.2. вместе с точностью их определения (среднеквадратичное отклонение между наборами наблюдаемых и вычисленных положений линий для каждой конкретной

полосы). Неопределенность для всех полученных центров полос меньше чем 3×10^{-2} см⁻¹, что является достаточно удовлетворительным результатом, принимая во внимание изотопические сдвиги которые для нашего диапазона варьируются в пределах от 296 до 372 см⁻¹.

Глобальная идентификация колебательных состояний является однозначной и показывает хорошее согласие между предсказанными и экспериментальными центрами полос. Спектроскопическая идентификация состояний по колебательным квантовым числам является более сложной. Как уже обсуждалось в работах по исследованию спектров ¹⁶О₃ [226-231, 12], идентификация состояний по нормальным модам колебаний в области близких к энергии диссоциации, высоких энергий, перестает быть однозначной для некоторых состояний. Главная причина состоит в сильном перемешивании базисных волновых функций благодаря многочисленным ангармоническим резонансам. В Таблице 3.1. видно, что для многих состояний нет определенной доминирующей моды колебаний. В Таблице 3.2 кроме глобальной идентификации состояний приводится колебательная идентификация ($v_1v_2v_3$), соответствующая главному вкладу в формуле (3.4.1). Так как для малых значений вращательных квантовых чисел Ј. коэффициенты смешивания волновых функции остаются практически неизменными, мы использовали приведенные в Таблице 3.2. значения идентификации $(V_1V_2V_3)$ колебательной наблюдаемых ЛЛЯ полос. Колебательная идентификация является традиционной при изучении спектров многих молекул, однако следует помнить, что она перестает быть однозначной в высоком энергетическом диапазоне. Например, две полосы $^{18}O_3$ в районе 6392 и 6643 см⁻¹ имеют одну и ту же колебательную идентификацию, соответствующую главному вкладу в разложение волновой функции. Несмотря на это, колебательная идентификация способствует лучшему пониманию резонансных взаимодействий в молекуле.

Наблюдаемые полосы: спектроскопическая идентификация	Идентификация верхнего уровня (v ₁ v ₂ v ₃)	Глобальная идентификация	Г σ(Obs.) (см ⁻¹)	Центр полос dσ (10 ⁻³ см ⁻¹)	сы о Calc_1 (см ⁻¹)	Obs-Calc (cm ⁻¹)
		Полосы В-ти	na			
$4v_1 + 3v_2$	(430)	$65A \leftarrow 1A$	6011.836	9	6012.31	-0.5
$2v_1 + v_2 + 4v_3$	(214)	66A ← 1A	6047.101	14	6047.95	-0.8
$v_2 + 6v_3$	(016)	$71A \leftarrow 1A$	6245.039	11	6245.81	-0.7
$v_1 + 3v_2 + 4v_3$	(134/224)	$82A \leftarrow 1A$	6592.661	14	6591.83	0.9
		Полосы А-ти	na			
$2v_2 + 5v_3$	(025)	$44B \leftarrow 1A$	5984.439	6	5984.58	-0.1
$5v_1 + v_3$	(501)	$45B \leftarrow 1A$	6013.048	8	6013.12	-0.1
$v_1 + v_2 + 5v_3$	(115/313/223)	$46B \leftarrow 1A$	6072.132	6	6072.49	-0.4
$2v_1 + 5v_3$	(205/403)	$51B \leftarrow 1A$	6270.604	7	6272.27	-1.7
$2v_1 + 3v_2 + 3v_3$ (I)	(233/143)	$54B \leftarrow 1A$	6392.214	9	6393.72	-1.5
$3v_2 + 5v_3$	(035)	$58B \leftarrow 1A$	6556.788	2	6557.49	-0.7
$5v_1 + v_2 + v_3$	(511)	$59B \leftarrow 1A$	6611.039	34	6610.48	0.6
$2v_1 + 3v_2 + 3v_3$ (II)	(233/323)	$60B \leftarrow 1A$	6642.896	21	6644.23	-1.3
$v_1 + 2v_2 + 5v_3$	(125/413/215)	$64B \leftarrow 1A$	6796.463	6	6795.31	1.2
$4v_1 + 3v_2 + v_3$	(431/323)	$66B \leftarrow 1A$	6825.512	6	6827.74	-2.2

Таблица 3.2. Идентификация колебательно-вращательных полос молекулы ¹⁸О₃, анализируемых в спектральном диапазоне 5930-7000 см⁻¹, сравнение их центров с теоретическими предсказаниями, выполненными на основе ФПЭ молекулы

Примечания: В случае сильного перемешивания нормальных мод колебаний, во второй колонке представлены несколько значений (v₁v₂v₃), соответствующих Таблице 3.1. dσ - ошибка в определении центра полосы.

Необходимо отметить, что идентификация, использующая локальные моды колебаний также не является достаточно удовлетворительной в широком диапазоне частот колебаний озона, так как сильные взаимодействия с изгибной модой колебаний нарушают простую модель трансформации нормальных мод в локальные моды [237].

§3.5 Анализ CW-CRDS спектра озона в диапазоне 5930 – 6080 см⁻¹

Общий вид спектра озона ¹⁸O₃, зарегистрированного в диапазоне 5930 – 6080 см⁻¹ представлен на рисунке 3.4. На нем отчетливо видны три полосы А-типа, которые на основе теоретического расчета были проидентифицированы как полосы $2v_2+5v_3$, $5v_1+v_3$ и $v_1+v_2+5v_3$. Анализ спектра в этом диапазоне является достаточно сложным, так как приводит к необходимости работать с полиадой из шести взаимодействующих состояний. Для наглядности, конечная схема резонансов между ними показана на рисунке 3.5.

Вращательная идентификация переходов колебательных полос в спектре осуществлялась с помощью программы ASSIGN [238] на основе предсказательного расчета уровней энергии соответствующего состояния, выполненного с помощью модели эффективного гамильтониана Уотсона (1.6.2). Первоначально основные параметры модели (центр полосы *E* и вращательные постоянные *A*, *B*, *C*) берутся из теоретического расчета, описанного в предыдущем параграфе. Программа ASSIGN рассчитывает возможные переходы на один и тот же верхний уровень с уровней энергии основного состояния, которые хорошо известны. Она работает по принципу комбинационных разностей, используя серии переходов, соответствующие ветвям и подветвям полос. Данная программа особенно эффективна для полос А - типа, включающих серии $\Delta K_a = 0$. Однако, в ней используется информация только о положениях линий, не принимая во внимание их

Для обработки интенсивностей линий спектре интенсивности. В использовалась программа "MultiFit" [239], разработанная в GSMA (г. Реймс). Программа позволяет проводить одновременную обработку нескольких спектров, зарегистрированных при различных условиях (длина пути, давление и т.д.). Входными параметрами для программы служат значения интенсивностей, близкие к реальным (например, из базы данных HITRAN). В случае молекулы озона, в качестве входных параметров мы интенсивности рассчитанные использовали переходов, помощью С GIP [86]. Ha начальном этапе работы программы co спектрами, синтетический спектр, построенный с помощью "MultiFit", позволяет оценить правильность или ошибочность выполненной идентификации.

Рисунок 3.4. Обзор CRDS – спектра озона в диапазоне 5930-6080 см⁻¹. Стрелками показаны центры идентифицированных полос.

Полоса 2v2+5v3

На первом этапе, программа ASSIGN позволила проидентифицировать переходы данной полосы вплоть до значений квантовых чисел J = 35 и $K_a =$ 12. Параметры модели эффективного гамильтониана для изолированного состояния не позволили описать отклонения для серий переходов $K_a = 7-9$, вызванные резонансом Кориолиса с уровнями энергии состояния (430). Из-за перекачки интенсивности, в спектре был проидентифицирован один переход для уровня 13₆ полосы $4v_1+3v_2$, в то время как переходы с уровней 11_7 и 12_7 состояния (025) не удалось обнаружить. На рисунке 3.6.а показано смешивания состояний (205) и (430) для указанных серий K_a . В общей сложности, для полосы $2v_2+5v_3$ удалось проидентифицировать 507 переходов и получен набор из 283 уровней энергии состояния (205) (Приложение 3.1).

Рисунок 3.5. Общая схема резонансов между колебательными состояниями, входящими в полиаду. Цифрами обозначены резонансные серии *K*_a уровней энергии, Anh – ангармонический резонанс, С – резонанс Кориолиса

Полоса $v_1+v_2+5v_3$

Первоначальная идентификация переходов этой была полосы выполнена для серий $K_a = 0.7$ вплоть до J = 35. Переходы, соответствующие $K_a = 8$ находятся в сильном резонансе с серией $K_a = 7$ состояния (322), коэффициенты смешивания которых приведены на 3.6.b. рисунке Максимальное значение смешивания (около 50%) соответствует уровню энергии с J = 13. Переход с этого уровня для полосы $v_1+v_2+5v_3$ не был обнаружен, в то время как переход $12_8 (000) \rightarrow 13_7 (322)$ с частотой 6073.358 см⁻¹ удалось проидентифицировать. Второе резонансное взаимодействие было обнаружено между сериями уровней $K_a = 4$ состояния (115) и $K_a = 5$ состояния (214). С учетом этих двух резонансов в конечном итоге удалось проидентифицировать 599 переходов полосы $v_1+v_2+5v_3$ вплоть до $K_a = 12$, и получить 307 уровней энергии состояния (115) (Приложение 3.1).

Рисунок 3.6. Примеры резонансного смешивания колебательно-вращательных уровней, переходы для которых наблюдаются в спектре

Полоса $5v_1+v_3$

Идентификация переходов этой полосы оказалась довольно сложной. На рисунке 3.4. хорошо видно, что ее Р-ветвь перекрывается с полосой 2v₂+5v₃, к (501) тому же состояние находится В сильном резонансном взаимодействиями с другими колебательными состояниями. Сильный резонанс Кориолиса наблюдается между сериями уровней $K_a = 6$ и $K_a = 5$ (214) (рисунок 3.6.с). Максимальное смешивание (48%) состояния наблюдается между уровнями 23₆ (501) и 23₅ (214). Такой же сильный резонанс Кориолиса наблюдается между сериями уровней $K_a = 1$ и 2 состояния (501) и $K_a = 0$ и 1 состояния (430).

Полосы B-типа: 2v₁+v₂+4v₃ и 4v₁+3v₂

Из вышесказанного видно, что состояние (214) находится в сильном резонансе как с состоянием (115) так и с состоянием (501), поэтому их необходимо объединить в одну полиаду. На рисунке 3.7.а показан пример сильного перемешивания уровней $K_a = 4$ состояния (115), $K_a = 6$ состояния (501) и $K_a = 5$ состояния (214). На данном этапе была предпринята попытка проидентифицировать переходы полосы 2v₁+v₂+4v₃. Для этого был построен её синтетический спектр, параметры разложения эффективного оператора дипольного момента d_1 и d_5 подбирались вручную. Сначала удалось проидентифицировать сильные линии полосы для $K_a = 0$ и 1 и значений J от 24 до 32. После их обработки, используя теоретические расчеты переходов, полученные с новыми параметрами модели, проводилась дальнейшая идентификация данной полосы. В конечном итоге, нам удалось проидентифицировать 184 КВ перехода в диапазоне K_a от 0 до 5, и определить 93 уровня энергии состояния (214) (Приложение 3.2).

Подобным образом были проидентифицированы 32 перехода полосы $4v_1+3v_2$, из которых определены 21 уровень энергии с $K_a = 0$ и 1. Как говорилось выше, еще один переход с уровня энергии 13₆ был

проидентифицирован благодаря его взаимодействию с уровнем 13₅ состояния (025).

Совместная обработка шести колебательных состояний

Для корректного описания уровней энергии наблюдаемых полос, мы объединили их в одну полиаду с учетом всех резонансных взаимодействий, о которых речь шла выше. Кроме того, в процессе обработки пришлось добавлять новые резонансные параметры. Основная трудность в этой работе заключается в том, что для многих резонирующих уровней смешивание близко к 50% (рисунок 3.7). Их обработка требует большой аккуратности, так как любое изменение параметров модели может привести к колебательной переидентификации уровней энергий.

Рисунок 3.7. Примеры резонансного смешивания для всех вычисленных уровней энергий

Пара	метр	(025)	(430)	(501)	(214)	(115)	(322)
E^{VV}		5984.4391 ₀ (13)	6011.836 ₂ (13)	6013.0482 ₀ (13)	6047.1007 ₀ (76)	6072.1322 ₀ (13)	6112.224 (34)
A-(B-	+C)/2	2.712994 (12)	0.288801 (46)	2.732072 ₃ (84)	2.70450 ₃ (55)	2.708283 ₀ (95)	2.851 ₂ (19)
(<i>B</i> + <i>C</i>	<i>C)/2</i>	0.3516666_8 (28)	0.362396 ₆ (70)	0.35864868 (45)	0.351201 (35)	0.3514641 ₃ (55)	0.35596 ₂ (13)
(B-C))/2	0.0241591 (10)	0.020443 ₈ (85)	0.0218893 (16)	0.0227697 (11)	0.0230734 (12)	0.032824 (41)
Δ_K	$\times 10^3$	0.1905 ₃ (19)	2.547 (71)	0.17508 (12)	g	0.18917 (17)	3.352 (28)
Δ_{JK}	$\times 10^5$	-0.4061 (22)	4.761 (14)	-0.248 ₈ (15)	-3.5445 (80)	-0.4549 (10)	g
Δ_J	$\times 10^{6}$	-0.37294 (51)	1.983 ₁ (57)	0.12320 (74)	-0.3615 (48)	g	g
δ_J	$\times 10^{6}$	0.10975 (52)	0.114 ₃ (35)	0.14586 (93)	0.33544 (49)	0.0699 ₁ (62)	g
δ_K	$\times 10^5$	g	g	0.401 (16)	2.7198 (80)	0.6627 (92)	g
H_K	$\times 10^7$	0.959 ₃ (93)	g	0.4030 (42)	g	1.473 ₀ (84)	g
H_{KJ}	$\times 10^7$	-0.2202 (20)	g	-0.1193 (14)	g	g	g

Таблица 3.3. Спектроскопические параметры шести колебательных состояний (см⁻¹)

$C_{y/2}^{115,322}=0.00987(35)$	
$C_{011}^{115,322}=0.00675$ 1(46)	
$C_{011}^{214,115}$ =-0.0015087(45)	
$C_{y/2}^{501,430}$ =0.0127675(88)	
$C_{011}^{115,430}$ =-0.0016876(95)	
$C_{y/2}^{430,025}=0.07057$ 1(16)	
$C_{y/2}^{214,501}$ =0.03051 $i(11)$	

 $A_{200}^{115,025} = 0.00072205(94)$

 $A_{200}^{214,430} = 0.00105895(48)$

Так как колебательный параметр ангармонического взаимодействия A_{000} не включен в эффективную модель, то центр полосы совпадает с параметром E^{VV} ,

g – фиксированное значение параметра, соответствующее основному состоянию [219], колонка, выделенная серым цветом, соответствует параметрам темного состояния.

Таблица 3.4. Статистика колебательно-вращательных переходов, участвовавших в определении параметров эффективного гамильтониана

Состояние	(025)	(430)	(501)	(214)	(115)	всего
Центр полосы (см ⁻¹)	5984.44	6011.84	6013.05	6047.10	6072.13	
J _{max}	35	37	38	38	35	
$K_{a max}$	12	6	14	5	12	
Число переходов	507	32	566	184	599	1888
Число ур. энергии	283	21	313	92	307	1016
$rms (\times 10^3 \text{ cm}^{-1})$	5.75	9.37	7.16	15.38	11.30	
Общее rms (×10 ³ см ⁻¹)			9.5			

Параметры гамильтониана, полученные при обработке уровней энергий всех состояний, приведены в Таблице 3.3. Статистика КВ переходов, участвовавших в обработке, и максимальные значения квантовых чисел представлены в Таблице 3.4. Среднеквадратичное отклонение (RMS) для 1888 переходов составляет 9.5×10^{-3} см⁻¹. Учитывая сложность данного энергетического диапазона, такой результат можно считать достаточно удовлетворительным. В Таблице 3.4. так же приведены RMS для каждого отдельного состояния. Самые большие отклонения соответствуют состоянию (214), что связано с наличием множественных сильных резонансов с состояниями (025), (501), (115) и (430).

Вращательные уровни энергий колебательных состояний В₁ -типа симметрии приведены в Приложении 3.1, симметрии А₁ - в Приложении 3.2.

Интенсивности линий

Из спектра были определены интенсивности 721 линии для указанных полос с помощью программы "MultiFit" [239]. Количество линий для каждой из них, вместе с максимальными значениями *J* и *K_a*, приведены в Таблице

3.5. При проведении совместной обработке всех экспериментальных интенсивностей, варьируя параметры разложения эффективного оператора дипольного момента перехода, используя параметры эффективного гамильтониана из Таблицы 3.3., удалось описать экспериментальные интенсивности со средней ошибкой в 17.4%. Результаты решения обратной задачи для интенсивностей приведены в Таблице 3.5.

Таблица 3.5. Интегральная интенсивность полос (при T=296 K) и параметры эффективного оператора дипольного момента перехода (в Дебаях)

Оператор	Параметр	Значение	Число переходов (J max, Ka max)	rms (%)
	$2v_2 + $	- $5v_3$ $S_v = 2.63 \times 10^{-24}$	(см/мол)	
$arphi_z$	$d_{l} (\times 10^{4})$	0.39275 (49)		
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2(\times 10^8)$	- 0.2724 (40)	169	18.0
$\left\{ \boldsymbol{\varphi}_{z}, \boldsymbol{J}_{z}^{2} ight\}$	d_{3} (×10 ⁷)	0.3663 (48)	(33, 12)	
	$4v_1$ +	$-3v_2 S_{\nu} = 1.11 \text{ x } 10^{-25}$	(см/мол)	
$arphi_x$	$d_{l} (\times 10^{4})$	0.21482 (71)	15	27.6
$\left\{ \boldsymbol{\varphi}_{z},\boldsymbol{iJ}_{y} ight\}$	$d_5 (\times 10^6)$	-0.3002(14)	(34, 1)	27.6
	5v ₁	$s_{v} + v_{3}$ $S_{v} = 3.72 \text{ x } 10^{-1}$	²⁴ (см/мол)	
φ_z	d_{1} (×10 ⁴)	0.45487 (26)	187 (33, 13)	15.0
	$2v_1 + v_2$	$_{2}$ +4 v_{3} S_{v} = 7.78 x 10	-25 (см/мол)	
$arphi_x$	$d_1 (\times 10^5)$	0.359 ₂ (41)	84	
$\left\{ \varphi_{z},iJ_{y} ight\}$	$d_5 (\times 10^6)$	-0.8032 ₉ (75)	(38, 4)	20.5
	$v_1 + v_2$	$v_2 + 5v_3$ $S_v = 3.94 \times 10^{-10}$	0 ⁻²⁴ (см/мол)	
$arphi_z$	$d_{I} (\times 10^{4})$	0.5003 ₆ (33)	266	167
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2(\times 10^8)$	-0.5559 (36)	(32, 11)	16./

Примечание: rms относится к величине $(I_{3\kappa cn} - I_{6biv})/I_{3\kappa cn}$

Расчет суммарной интенсивности S_v полос по полученным параметрам был проведен путем сложения интенсивностей всех переходов для уровней энергии, определенных для каждого состояния, с отсечкой по интенсивности 10^{-28} см/мол. Значение статистической суммы принималось равным Z (296K) = 4145. Полученные параметры эффективного гамильтониана и эффективного оператора дипольного момента перехода позволили построить синтетический спектр исследуемых полос. Сравнение расчетного спектра с экспериментальным приведено на рисунке 3.8.

Заключение

Несмотря на сложность спектров ¹⁸O₃ в исследуемом диапазоне, нам удалось проидентифицировать 1888 переходов, соответствующих пяти колебательно-вращательным полосам, три из которых полосы А-типа: $2v_2+5v_3$, $v_1+v_2+5v_3$ и $5v_1+v_3$ и две полосы В-типа: $2v_1+v_2+4v_3$ и $4v_1+3v_2$. Модель эффективного гамильтониана воспроизводит колебательно-вращательные переходы (соответствующие 1016 уровням энергии) со среднеквадратичным отклонением rms = 9.5×10^{-3} см⁻¹. Получены параметры эффективного оператора дипольного момента перехода для всех полос. Результаты этой работы опубликованы в статье [241].

Рисунок 3.8. Сравнение экспериментального спектра озона в диапазоне 5930-6080 см⁻¹ с теоретическим спектром, построенным с помощью полученных параметров эффективного гамильтониана и эффективного оператора дипольного момента перехода

§3.6 Анализ CW-CRDS спектра озона в диапазоне 6200 – 6400 см⁻¹

Вторым в нашей работе исследовался участок CRDS-спектра озона ¹⁸О₃, зарегистрированный в диапазоне 6200 – 6400 см⁻¹. Общий вид спектра 3.9. представлен на рисунке При сравнении теоретическими С предсказаниями центров полос, две полосы А - типа, которые хорошо видны на спектре, были проидентифицированы как $2v_1+5v_3$ и $2v_1+3v_2+3v_3$. Так же в этом спектре были проидентифицированы переходы слабой полосы В-типа 3v₁+4v₃. Два энергетических диапазона, соответствующие состояниям (205) вместе с (304), и (233) рассматривались по отдельности. Как обычно, вращательная идентификация переходов для каждой полосы и их обработка осуществлялась с помощью модели эффективного гамильтониана для В процессе обнаружения изолированного состояния. резонансных взаимодействий объединялись С другими состояниями, они В соответствующие полиады.

Рисунок 3.9. Обзор CRDS – спектра озона в диапазоне 6200-6400 см⁻¹. Стрелками показаны центры идентифицированных полос

На рисунке 3.10. приведена схема всех уровней, предсказанных в диапазоне 6200 – 6400 см⁻¹ и резонансные взаимодействия, которые учитывались в каждой из двух моделей гамильтониана. Пунктирные линии соответствуют темным состояниям, наклонный шрифт – темным состояниям, которые не участвовали в резонансах. На рисунке введены обозначения: Anh-ангармонический резонанс, С-резонанс Кориолиса.

Полоса 2 v1+5 v3

Используя расчетные значения центра полос и вращательных помощью эффективного гамильтониана Уотсона постоянных, с ЛЛЯ программы ASSIGN изолированного состояния И удалось проидентифицировать переходы данной полосы до J = 26 и K_a = 4. Некоторые переходы (расчетные) для серии уровней $K_a = 0$ и $K_a = 1$ имели большие отклонения от экспериментальных значений, причиной чего было резонансное взаимодействие Кориолиса с состоянием (350). Наиболее сильное взаимодействие наблюдается между уровнями 190, 221 и 262 состояния (205) и 19₁, 22₀ и 26₁ состояния (350) соответственно.

Рисунок 3.10. Общая схема всех энергетических уровней в диапазоне 6200-6400 см⁻¹ и обнаруженные резонансы между ними (Anh-ангармонический резонанс, C-резонанс Кориолиса)

Коэффициенты смешивания приведены на рисунке 3.11. Благодаря этому взаимодействию, в результате перекачки интенсивности, в спектре удалось обнаружить пять переходов на состояние (350). Это переходы $23_1 \rightarrow 22_0$, $21_1 \rightarrow 22_0$, $20_0 \rightarrow 19_1$, $27_2 \rightarrow 26_1$ и $25_2 \rightarrow 26_1$.

Второй сильный резонанс Кориолиса был обнаружен для серии переходов $K_a = 5$ состояния (205) с уровнями состояния (016), вследствие чего расчетные значения частот переходов отличались от экспериментальных на 0.2 см⁻¹. После учета этого резонансного взаимодействия в модели гамильтониана, удалось проидентифицировать 89 переходов полосы v_2 +6 v_3 в диапазоне квантовых чисел 16< J <42 и 0< K_a <2.

Таким образом, на данном этапе мы получили модель эффективного гамильтониана для трех колебательных состояний, которая позволила проидентифицировать переходы полосы $2v_1+5v_3$ для более высоких значений J и K_a . Для того, чтобы улучшить качество их обработки, в модель гамильтониана были добавлены параметры, отвечающие за слабое резонансное взаимодействие между состояниями (205) и (421) с одной стороны, и (016) и (350) с другой (рисунок 3.10.).

Рисунок 3.11. Коэффициенты смешивания состояний (350) и (205) для уровней с $K_a = 0, 1$

Кроме того, для серии уровней $K_a = 6$ состояния (205) было обнаружено резонансное взаимодействие с уровнями состояния (304).

Следуя выше изложенной схеме, для полосы $3v_1+4v_3$ удалось проидентифицировать 131 переход с максимальными значениями J = 43 и K_a = 4. Эти переходы, вместе с остальными, учитывались при определении параметров модели эффективного гамильтониана, которые приведены в Таблице 3.6. Статистика переходов, участвовавших в обработке, дана в Таблице 3.7. Четыре перехода полосы v_2+6v_3 не участвовали в обработке изза их существенного возмущения, которое на данном этапе не удалось определить. Это переходы для уровней 232 и 272. Таким образом, в обработке участвовали 880 колебательно-вращательных переходов, соответствующих колебательным состояниям (205), (350), (016) и (304), четырём среднеквадратичное отклонения для которых составляет 6.28×10⁻³ см⁻¹. Уровни энергии, определенные из наблюдаемых переходов, приведены в Приложении 3.3 для состояния (205) и Приложении 3.4 для состояний {(304), (016), (350).

Необходимо сказать несколько слов о сравнении результатов данного анализа с теми, которые были получены для полосы $2v_1+5v_3$ основной изотопической модификации озона ¹⁶O₃ [231]. Полосы v_2+6v_3 и $3v_1+4v_3$ в спектре ¹⁶O₃ не наблюдались, в то время как были проидентифицированы переходы слабой полосы $4v_1+2v_2+v_3$. Это еще раз подтверждает тот факт, что хотя изотопозамещение ¹⁸O₃ \leftarrow ¹⁶O₃ является однородным, оно приводит к нерегулярным изотопическим сдвигам и разным резонансным перемешиваниям состояний. К этому вопросу мы еще вернемся в параграфе 3.9.

Параметр		(421)	(016)	(350)	(205)	(304)
E^{VV}		6231.975 ₅ (91)	6245.0089 ₀ (70)	6266.3841 (56)	6270.60400 (83)	6296.3577 ₀ (24)
A - (B + C)/2		2.9465 (18)	2.60225 (13)	3.35429 ₆ (41)	2.6374221 (84)	2.652754 (70)
(B+C)/2		0.34765 ₆ (30)	0.3494895 (36)	0.3568121 (89)	$0.349821_{6}(57)$	0.351151 ₀ (43)
(<i>B</i> - <i>C</i>)/2		0.02300 (p)	0.0232241 (34)	0.021224 ₆ (59)	$0.0223060_9(45)$	0.02290649 (57)
Δ_K	$\times 10^3$	g	g	g	0.147504 (84)	-0.1961 (40)
Δ_{JK}	$\times 10^5$	g	g	g	-0.742 ₂ (11)	-0.841 ₅ (58)
\varDelta_J	$\times 10^{6}$	g	0.43 ₆ (69)	g	$0.2455_3(42)$	0.3038 ₈ (75)
δ_J	$\times 10^{6}$	g	$-0.92_{6}(26)$	g	$0.1056_3(45)$	0.7107 (39)
δ_K	$\times 10^4$	g	-0.3099 (45)	g	$0.676_8(69)$	-0.394 (60)
H_K	$\times 10^{6}$	g	g	g	$0.3068_0(36)$	g
H_{KJ}	$\times 10^{6}$	g	g	g	$0.264_2(10)$	g

Таблица 3.6. Спектроскопические параметры колебательных состояний (421), (016), (350), (205) и (304) (в см⁻¹)

$A_{200}^{205,421} = -0.0001800_0 \ (93)$	$C_{003}^{205,016} = 0.0000058_1 (10)$
$A_{200}^{350,016} = -0.000648_5 \ (45)$	$C_{001}^{205,350} = 0.003451_9 \ (77)$
$C_{201}^{016,421} = 0.00003149_6 (83)$	$C_{003}^{205,350} = -0.00001237_4 \ (44)$
$C_{001}^{205,016} = 0.1001_4 \ (38)$	$C_{001}^{304,205} = 0.024_8 \ (13)$
$C_{011}^{205,016} = -0.00084_4 \ (71)$	$C_{011}^{304,205} = 0.0068_6 \ (25)$

Так как колебательный параметр ангармонического взаимодействия не включен в модель, то центр полосы совпадает с параметром E^{VV} ,

(р) – фиксированное значение параметра, вычисленного на основе функции потенциальной энергии молекулы [232],

g – фиксированное значение параметра, соответствующее основному состоянию [240],

колонка, выделенная серым цветом, соответствует параметрам темного состояния.

Таблица 3.7. Статистика КВ переходов, включенных в обработку для определения параметров эффективного гамильтониана колебательных состояний (016), (350), (205) (304)

Состояние	(016)	(350)	(205)	(304)	всего
Центр полосы (см ⁻¹)	6245.00	6266.38	6270.60	6296.36	
J_{max}	42	22-26	37	43	
K _{a max}	2	1	13	4	
Число переходов	89 [*]	5	659	131	884
Число ур. энергии	49	3	330	104	486
Общее rms (×10 ³ см ⁻¹)		6.	3		

четыре перехода полосы v₂+6v₃ не участвовали в обработке (см. текст)

Для получения параметров разложения оператора дипольного момента перехода, были выбраны интенсивности 434 переходов (линии с ровным контуром, несмешанные). Число переходов, включенных в обработку, набор вращательных квантовых чисел, и результаты обработки для каждого состояния приведены в Таблице 3.8. 342 значения интенсивностей переходов полосы 2v₁+5v₃ могут быть восстановлены со среднеквадратичным отклонением между наблюдаемыми и вычисленными значениями в 11.6%. Для полос В-типа, таких как v_2+6v_3 (*rms* = 32%) и $3v_1+4v_3$ (*rms* = 20.5%), эта величина намного больше из-за того, что полосы слабые и, следовательно, экспериментальные интенсивности определяются с меньшей точностью. Для того, чтобы рассчитать суммарную интенсивность *S_v* для каждой полосы, был выполнен теоретических расчет всех переходов для уровней, определенных из наблюдаемых переходов, с отсечкой по интенсивности 2×10⁻²⁸ см/ мол (при температуре 296 К). Значения S_v приведены в Таблице 3.8. На рисунке 3.12. проиллюстрирован пример хорошего согласия между расчетным и экспериментальным спектром в районе полосы $2v_1+5v_3$.

Оператор	Параметр	Значение	Число переходов (Ј макс, Ка макс)	rms (%)					
	$2v_1 + 5v_3$	$S_v = 2.85 \times 10^{-24}$ (см/л	мол)						
$arphi_z$	$d_1 (\times 10^4)$	0.41424 (21)							
$\left\{ arphi_{z}^{},\mathbf{J}^{2} ight\}$	$d_2(\times 10^8)$	-0.444 ₈ (20)	342	11 6					
$\left\{ oldsymbol{arphi}_{z},oldsymbol{J}_{z}^{2} ight\}$	$d_{3} (\times 10^{8})$	-0.525 (16)	(35, 12)	11.6					
$\frac{1}{2} \Big[\big\{ \varphi_x, iJ_y \big\} - \big\{ i\varphi_y, J_x \big\} \Big]$	$d_4 (\times 10^7)$	-0.4655 (60)							
	$\mathbf{v}_2 + 6\mathbf{v}_3$ S	$_{\nu} = 1.48 \times 10^{-25}$ (см/м	ол)						
$arphi_x$	$d_1 (\times 10^5)$	-0.129 ₃ (41)	32	22.2					
$\left\{ \varphi_{z},iJ_{y} ight\}$	$d_5 (\times 10^6)$	-0.42830 (65)	(39, 2)	32.2					
	$3v_1 + 4v_3$ S	$S_{\nu} = 1.04 \times 10^{-25} (\text{cm/m})$	иол)						
$arphi_x$	$d_1 (\times 10^5)$	-0.384 ₆ (29)	60	20.5					
$\{\varphi_z, iJ_y\}$	$d_5 (\times 10^6)$	0.2713 ₀ (56)	(42, 4)	20.5					
Οби									

Таблица 3.8. Суммарная интенсивность полос (при T=296 K) и параметры эффективного оператора дипольного момента перехода (в Дебаях)

Полоса 2 v1+3 v2+3 v3

При идентификации переходов этой полосы был обнаружен сильный резонанс Кориолиса между сериями уровней $K_a = 0$ состояния (233) и $K_a = 1$ состояния (520), максимум которого, 42.8%, приходится на значение J = 17. Это же взаимодействие возмущает уровни серии $K_a = 2$ с максимальным значением перемешивания в 47% для J = 24. Вследствие этого резонанса в спектре удалось проидентифицировать семь переходов полосы $5v_1+2v_2$. Второй сильный резонанс Кориолиса наблюдался для серий уровней $K_a = 7$ с уровнями $K_a = 6$ состояния (242). Несмотря на это, не один переход полосы $2v_1+4v_2+2v_3$ в спектре проидентифицировать не удалось. Как показано на рисунке 3.10., в модель эффективного гамильтониана были включены

параметры, отвечающие за два вышеописанных резонанса. В Таблице 3.9. приведены параметры гамильтониана, в Таблице 3.10. приводится статистика колебательно-вращательных уровней, участвовавших В обработке. Полученная модель эффективного гамильтониана воспроизводит 344 перехода полосы $2v_1+3v_2+3v_3$ и 7 переходов полосы $5v_1+2v_2$ с точностью, равной 9.3×10⁻³ см⁻¹. Параметры эффективного оператора дипольного момента перехода определялись при обработке 66 интенсивностей переходов и представлены в Таблице 3.11. Интенсивность полосы 2v₁+3v₂+3v₃ получена при суммировании экспериментальных интенсивностей 468 переходов для уровней энергий, определенных для состояния (233). Уровни энергии состояний (233) и (520) приведены в Приложении 3.5. Согласие синтетического спектра (построенного, используя полученные параметры эффективного гамильтониана и оператора дипольного момента перехода) с экспериментальным показано на узком участке спектра в диапазоне 6383 – 6386 см⁻¹ (рисунок 3.13.). Много слабых линий в этом диапазоне остались Вероятнее непроидентифицированными. всего. они соответствую смешанным изотопическим модификациям ${}^{18}O^{18}O^{16}O$ или ${}^{18}O^{16}O^{18}O$, которые присутствуют в образце газа (см. выше) или линиям полос на темные состояния.
Параме	тр	(520)	(233)	(242)
E^{VV}		6385.359 ₈ (29)	6392.2135 ₀ (18)	6427.073 (22)
A - (B + C)/2		2.9397 (17)	2.77740 ₈ (22)	2.80404 (p)
(B+C)/2		0.3643985 (36)	$0.3482099_4(75)$	0.34862 ₆ (33)
(B-C)/2		$0.01683_6(15)$	0.0238939 (15)	0.02295 ₂ (72)
\varDelta_K	$\times 10^3$	g	0.1437 ₃ (54)	g
\varDelta_{JK}	$\times 10^5$	g	-0.19 ₀ (38)	g
\varDelta_J	$\times 10^{6}$	g	0.3584 ₃ (94)	g
δ_J	$\times 10^{6}$	g	0.10498 (81)	g
δ_K	$\times 10^5$	g	-0.555 (14)	g

Таблица 3.9. Спектроскопические параметры колебательных состояний (520), (233), (242) (в см⁻¹)

 $C_{011}^{242,233} = 0.00125_5 (82)$ $C_{001}^{233,520} = -0.031665_7 (81)$

Так как параметр ангармонического взаимодействия отсутствует, то центр полосы совпадает с E^{VV} ,

(р) – фиксированное значение параметра, вычисленного на основе функции потенциальной энергии молекулы [232],

g – фиксированное значение параметра, соответствующее основному состоянию [240],

колонка, выделенная серым цветом, соответствует параметрам темного состояния.

Таблица 3.10. Статистика КВ переходов, включенных в обработку для определения параметров эффективного гамильтониана колебательных состояний (520) и (233)

состояние	(520)	(233)
Центр полосы (см ⁻¹)	6385.360	6392.214
J _{max}	24	33
K _{a max}	1	7
Число переходов	7	344
Число ур. энергии	4	191
<i>Общий rms</i> (10 ⁻³ см ⁻¹)	9	.3

Таблица 3.11. Суммарная интенсивность полосы 2v₁ + 3v₂+3v₃ (при Т=296 К) и параметры эффективного оператора дипольного момента перехода (в Дебаях)

$2v_1 + 3v_2 + 3v_3$ $S_v = 0.496 \times 10^{-24} (см/мол)$					
Оператор	Параметр	Значение	Число переходов (<i>J</i> max, <i>K_a</i> max)	rms (%)	
$arphi_z$	$d_1 (\times 10^4)$	0.1927 ₃ (24)	66	12.1	
$\left\{ \pmb{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2(\times 10^8)$	-0.189 ₆ (38)	(26, 6)	13.1	

Заключение

Анализ CRDS спектра озона в диапазоне $6200 - 6400 \text{ см}^{-1}$ позволил проидентифицировать 1128 колебательно-вращательных переходов пяти полос: $2v_1+5v_3$, v_2+6v_3 , $3v_1+4v_3$, $3v_1+5v_2$ и $2v_1+3v_2+3v_3$. Большая часть из них, 659, соответствует переходам на состояние (205) и 344 — переходам на состояние (233). В общей сложности определен 681 уровень энергии при анализе двух систем, для каждой из которых получены параметры эффективного гамильтониана и оператора дипольного момента перехода. Результаты анализа данного спектрального диапазона опубликованы в работе [243].

Рисунок 3.13. Пример сравнения наблюдаемого спектра с синтетическим в диапазоне 6383.0-6383.0 см⁻¹, соответствующем Р-ветви полосы $2v_1+3v_2+3v_3$

§3.7 Анализ CRDS-спектра озона в диапазоне 6490 – 6700 см⁻¹

Общий вид спектра, зарегистрированного в диапазоне 6490 – 6700 см⁻¹, представлен на рисунке 3.14. В него попадают переходы, принадлежащие трем полосам А - типа: $3v_2 + 5v_3$, $2v_1 + 3v_2 + 3v_3$, $5v_1 + v_2 + v_3$ и одной полосе В – типа: $v_1 + 3v_2 + 4v_3$. Этот диапазон является самым сложным с точки зрения обработки колебательно-вращательных переходов. Во-первых, все состояния приходится обрабатывать совместно, включая еще 4 темных состояния: (063), (440), (106) и (270). Вторая сложность связана с наличием резко выраженного тройного резонанса между состояниями (035), (134) и (063).

Рисунок 3.14. Обзор CRDS – спектра озона в диапазоне 6490-6660 см⁻¹. Стрелками показаны центры идентифицированных полос

Для наглядности, на рисунке 3.15. представлена схема резонансов между всеми 8 состояниями, где цифрами обозначены взаимодействующие серии *K*_a КВ переходов. Сплошными стрелками обозначены ангармонические резонансы (Anh), пунктирными – резонансы Кориолиса.

Полосы $3v_2 + 5v_3$ и $v_1 + 3v_2 + 4v_3$

Идентификация спектра в указанном диапазоне началась с переходов полосы $3v_2 + 5v_3$. Как и во всех остальных случаях, для этой цели использовалась программа ASSIGN [238] и модель эффективного гамильтониана Уотсона для изолированного состояния, основные параметры которой (центр полосы *E* и вращательные постоянные *A*,*B*,*C*) были взяты из теоретического расчета. В ходе обработки частот переходов, проводя предсказательные расчеты на более высокие значения вращательных квантовых чисел, шаг за шагом удалось проидентифицировать колебательновращательные переходы до J = 20 для серий $K_a = 1 \div 6$ и $K_a = 8, 9$.

Рисунок 3.15. Схема резонансов между 8 состояниями, включенными в полиаду. Пунктирной линией обозначены темные состояния. Синий цвет соответствует состояниям В-типа, красный – А типа. Сплошными стрелками обозначены ангармонические резонансы (Anh), пунктирными – резонансы Кориолиса

После многочисленных попыток были обнаружены линии, предположительно принадлежащие серии $K_a = 7$. Однако найденные линии отстояли от расчетных в среднем на 2 см⁻¹ (а для высоких *J* отклонение достигало 4 см⁻¹).

Серии линий с $K_a = 2$ и 3 состояния (035) были сильно возмущены. Причиной этого возмущения является резонансное взаимодействие с состоянием (134), после учета, которого удалось проидентифицировать переходы полосы $v_1 + 3v_2 + 4v_3$ вплоть до J = 48 и $K_a = 5$. Однако это не помогло полностью решить проблему с серией $K_a = 7$ состояния (035), большая часть линий не поддавалась корректному описанию, и характер их отклонений был нерегулярным. Еще один сильный резонанс Кориолиса был обнаружен между уровнями 26₄ состояния (035) и 26₃ состояния (106), коэффициенты смешивания которых приведены на рисунке 3.16.а. Из-за перекачки интенсивности в спектре удалось проидентифицировать один переход полосы $v_1 + 6v_3$ с уровня 26₃ на частоте 6518.6 см⁻¹ и определить из него значение уровня энергии 26₃ состояния (106).

Полосы $5v_1 + v_2 + v_3$ и $2v_1 + 3v_2 + 3v_3$

Как и в случае (035), состояния (511) и (233) молекулы озона рассматривались как изолированные. В процессе идентификации и обработки переходов полосы $5v_1 + v_2 + v_3$ было обнаружено резонансное взаимодействие для некоторых переходов с $K_a = 6$ с уровнями энергии с $K_a = 5$ состояния (440). Второй сильный резонанс Кориолиса был обнаружен между уровнями энергии серий $K_a = 1$, 3, 4 состояния (511) с уровнями энергии $K_a = 2$, 4, 5 состояния (134). Коэффициенты смешивания уровней энергии указанных состояний представлены на рисунке 3.16.b.

Первоначально, колебательно-вращательные переходы полосы $2v_1 + 3v_2 + 3v_3$ были проидентифицированы до значений J = 17 и $K_a = 4$.

Рисунок 3.16. Примеры смешивания уровней энергии колебательных состояний, включенных в полиаду

Для уровней серии $K_a = 1$ был обнаружен сильный резонанс с уровнями энергии $K_a = 2$ состояния (440), смешивание между которыми для нечетных значений *J* выше 40% процентов (рисунок 3.16.с). По этой причине 4 перехода на состояние (233) не участвовали в подгонке параметров эффективного гамильтониана. Это переходы для уровней энергии 4₁₄ и 21_{1 20}.

Полиада из 8 колебательных состояний

Из вышесказанного видно, что главными связующими звеньями в этой цепочке являются состояние (134), переходы с которого простираются в широком спектральном диапазоне от 6494 до 6614 см⁻¹, и темное состояние (440). Таким образом, было принято решение объединить все состояния в одну полиаду и провести совместную их обработку. Первоначально в

полиаду были включены все темные состояния, которые предположительно попадали в диапазон 6500 – 6700 см⁻¹, однако резонансы в наблюдаемом спектре были обнаружены только с четырьмя из них. Это состояния (063), (440), (106) и (270) (рисунок 3.15.). В Таблице 3.12. приведены параметры эффективного гамильтониана для каждого состояния и параметры резонансных взаимодействий между ними.

В ходе многочисленных попыток, наблюдая за поведением отклонений расчетных положений линий от экспериментальных для серии переходов K_a = 7 полосы $3v_2 + 5v_3$, стало ясно, что причиной их сильного отклонения является резонансное взаимодействие между состояниями (035), (134) и (063), смешивание между которыми близко к 50% (рисунок 3.16.d). Главная трудность заключается в том, что из-за такого сильного перемешивания состояний часто приходится выполнять колебательную переидентификацию переходов при подгонке параметров модели. В конечном счете, в процессе работы, переходы этой серии с $J = 1 \div 12$ были проидентифицированы как переходы, принадлежащие полосе $6v_2 + 3v_3$ ($K_a = 7$), а с $J = 13 \div 30$ – полосе v_1 $+ 3v_2 + 4v_3$ ($K_a = 6$).

Среднеквадратичное отклонение вычисленных положений линий от наблюдаемых составляет 18.4×10^{-3} см⁻¹ для 1551 КВ перехода вплоть до J = 48. Общая статистика переходов и результаты их обработки приведены в Таблице 3.13. В работе получен общий набор из 876 уровней энергии озона. Уровни энергии для состояний В-типа представлены в Приложении 3.6, для состояний А-типа - в Приложении 3.7.

Параметр	(063)	(035)	(106)	(134)	(270)	(511)	(440)	(233)
E^{VV}	6547.99 ₅ (19)	6556.7869 ₀ (28)	6573.402 ₈ (25)	6592.6614 ₀ (56)	6600.372 (p)	6611.0390 ₀ (34)	6633.244 ₉ (52)	6642.8973 ₀ (34)
A - (B + C)/2	2.90189 (40)	2.74105 ₈ (19)	2.636 (p)	2.73000 ₈ (80)	3.049 (p)	2.749424 (16)	2.936261 (33)	2.773587 (22)
(B+C)/2	0.3499854 (65)	0.3482970 ₀ (99)	0.351 (p)	0.3475877 (20)	0.352 (p)	0.3564582 (15)	0.36179 ₂ (12)	0.350355 ₀ (28)
(B-C)/2	0.021021 ₈ (29)	0.0241914 (19)	0.023 (p)	0.023230 ₅ (15)	0.024 (p)	0.021718 ₆ (25)	0.02161 ₆ (52)	0.022745 ₈ (55)
$\Delta_K \times 10^3$	g	0.21137 (13)	g	0.214 ₀ (32)	g	g	g	0.1713 ₃ (28)
$\Delta_{JK} \times 10^5$	g	-0.257 ₂ (13)	g	0.717 ₅ (81)	g	0.982 (16)	g	0.792 ₉ (74)
$\Delta_J \times 10^6$	g	0.396 ₈ (12)	g	0.5865 (20)	g	0.370 ₃ (19)	g	0.145 ₆ (55)
$\delta_J = \times 10^6$	g	0.76 ₀ (12)	g	$0.058_0(55)$	g	0.123 ₃ (14)	g	0.495 ₅ (67)
$\delta_K \times 10^5$	g	0.37 ₆ (17)	g	-0.2607 (79)	g	-0.268 (24)	g	-10.495 (73)
$H_K \times 10^7$	g	0.1724 (17)	g	g	g	g	g	g
$H_J imes 10^{10}$	g	g	g	$0.600_5(64)$	g	g	g	g

Таблица 3.12. Спектроскопические параметры восьми колебательных состояний, входящих в полиаду (см⁻¹)

$A_{000}^{035,063} = 0.519_6 \ (11)$	$C_{011}^{511,134} = 0.007654_3 $ (84)
$A_{020}^{035,063} = 0.000235_7 \ (18)$	$C_{011}^{511,106} = 0.01396_9$ (51)
$A_{200}^{511,035} = 0.000514_2 \ (24)$	$C_{011}^{233,134} = 0.00666_6 \ (31)$
$C_{011}^{134,035} = 0.009099_8 \ (55)$	$C_{011}^{233,440} = 0.02770_6 $ (44)
$C_{011}^{106,035} = 0.00302_9 \ (11)$	$C_{011}^{233,270} = 0.00245_0 \ (12)$

(р) – фиксированное значение параметра, вычисленного на основе функции потенциальной энергии молекулы [221],

g – фиксированное значение параметра, соответствующее основному состоянию [219],

колонки, выделенные серым цветом, соответствуют параметрам темных состояний.

Таблица 3.13. Статистика колебательно-вращательных переходов, участвовавших в определении параметров эффективного гамильтониана для данной полиады состояний

Состояние	(063)	(035)	(134)	(511)	(233)	всего
E_{VV} (cm ⁻¹)	6547.99	6556.78	6592.66	6611.03	6642.89	
J _{макс}	7-12	37	48	35	34	
Ка макс	7	12	6	6	9	
Число переходов	11	574	352	255	364 ^a	1554
Число ур. энергии	6	310	162	164	233	875
<i>Общий rms</i> (×10 ³ см ⁻¹)			18.4 ^b			

^а четыре перехода полосы $2v_1 + 3v_2 + 3v_3$ не участвовали в обработке,

^b среднеквадратичное отклонение, полученное в результате обработки 1551 перехода $(1550 + \text{один} \text{ переход} \text{ полосы } v_1 + 6v_3)$

Статистика обработки

$0 < dv \le 10$	1055 переходов	68.0%
$10 < dv \le 20$	293 перехода	18.9%
$20 < dv \le 50$	162 перехода	10.4%
50 < dv < 100	35 переходов	2.2%
100 < dv < 165	б переходов	0.4%

 $dv = |v_{_{\mathcal{H}Cn}} - v_{_{\mathcal{G}bl}u}| \times 10^3 \text{ cm}^{-1}$

Попытки улучшить качество обработки приводят к тому, что приходится включать параметры резонансов высоких порядков, которые, по сути, могут оказаться наведенными. Они улучшают невязку лишь на несколько мк, но не приводят к существенным улучшениям. Во-вторых, тройной резонанс между состояниями (035), (134) и (063) не позволяет включать в обработку новые резонансные параметры, так как система является «чувствительной» к их изменениям. Происходит колебательная переидентификация уровней, и каждый раз их необходимо исключать из обработки. Поэтому 18 мк можно считать достаточно хорошим результатом совместной обработки колебательно-вращательных переходов 4-х полос, локализованных в спектральном диапазоне, близком к пределу диссоциации (около 80%).

Параметры разложения оператора дипольного момента перехода определялись при обработке 392 интенсивной переходов. Из-за сильного перекрывания полос в этом диапазоне очень мало несмешанных линий, которые могут участвовать в обработке. На рисунке 3.17. показан пример идентификации переходов трех разных полос в диапазоне 6595.2 – 6596 см⁻¹.

Рисунок 3.17. Пример идентификации спектра озона в диапазоне 6595.2-6596 см⁻¹

Число переходов, включенных в обработку, набор вращательных квантовых чисел, и статистика обработки интенсивностей для каждого состояния приведены в Таблице 3.14.

Оператор	Параметр	Значение	Число переходов (Ј макс, К _а макс)	rms (%)
	$3v_2 + 5v_3$	$S_v = 5.94 \times 10^{-25}$ (см/мол)	
$arphi_z$	$d_1 (\times 10^4)$	0.2018 ₂ (25)		
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	-0.365 ₆ (22)	156 (32, 9)	18.3
$\frac{1}{2} \Big[\big\{ \varphi_x, i J_y \big\} - \big\{ i \varphi_y, J_x \big\} \Big]$	$d_4 (\times 10^7)$	0.339 ₃ (69)	(32, 9)	
	$v_1 + 3v_2 + 4v_3$	$S_v = 1.74 \times 10^{-25} \text{ (cm/most})$	ол)	
$arphi_x$	d_{1} (×10 ⁴)	-0.01487 (21)	86	25.0
$\left\{ {{{oldsymbol{arphi}}_{z}},i{{oldsymbol{J}}_{y}}} ight\}$	$d_5 (\times 10^6)$	0.31977 (37)	(48, 4)	25.0
	$5v_1+v_2+v_3$	$S_v = 1.36 \times 10^{-25}$ (см/мо	л)	
$arphi_z$	$d_1 (\times 10^4)$	0.09303 (28)	47	21.0
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	0.0671 (28)	(31, 4)	21.0
	$2v_1+3v_2+3v_3$	$S_{\nu} = 3.49 \times 10^{-25} \text{ (cm/m)}$	ол)	
φ_{z}	$d_1 (\times 10^4)$	0.1712 ₀ (27)	103	10.0
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	-0.2699 (44)	(27, 8)	18.0

Таблица 3.14. Суммарная интенсивность полос (при T=296 К) и параметры эффективного оператора дипольного момента перехода (в Дебаях)

Для полосы $3v_2+5v_3$ 156 значений интенсивностей переходов могут быть восстановлены со среднеквадратичным отклонением вычисленных значений от наблюдаемых в 18.3%. Для полос $5v_1+v_2+v_3$ и $2v_1+3v_2+3v_3$ эти значения равны 21% и 18% соответственно. Для полосы В-типа $v_1+3v_2+4v_3$ (*rms* = 25%) эта величина больше из-за того, что её переходы достаточно слабые. Для того, чтобы рассчитать суммарную интенсивность S_v для каждой полосы, был выполнен теоретический расчет всех переходов для уровней, определенных

Рисунок 3.18. Пример сравнения наблюдаемого спектра с синтетическим в диапазоне 6560.0-6563.0 см⁻¹, соответствующем R-ветви полосы 3v₂+5v₃

из наблюдаемых переходов, с отсечкой по интенсивности 2×10^{-28} см/мол (при температуре 296 К). Значения S_{ν} приведены в Таблице 3.14. Полученные параметры эффективного гамильтониана и эффективного оператора дипольного момента перехода позволили построить теоретический спектр в диапазоне 6490 – 6650 см⁻¹, который находится в хорошем согласии с экспериментальным спектром (рисунок 3.18.).

Заключение

В результате анализа CRDS-спектра озона в диапазоне $6490 - 6700 \text{ см}^{-1}$ удалось проидентифицировать 1555 КВ переходов шести полос, четыре из которых полосы А-типа симметрии: $3v_2+5v_3$, $6v_2+3v_3$, $2v_1+3v_2+3v_3$, $5v_1+v_2+v_3$, и две полосы В-типа симметрии: $v_1+3v_2+4v_3$, v_1+6v_3 (один переход). Получены параметры модели эффективного гамильтониана для полиады из восьми резонирующих состояний. Вместе с параметрами эффективного оператора дипольного момента перехода они позволили построить синтетический спектр, который показывает хорошее согласие с экспериментальным спектром. В общей сложности определено 876 уровней энергии исследовавшихся колебательных состояний. Результаты анализа представлены в [244].

§3.8 Анализ CRDS-спектра озона ¹⁸О₃ в диапазоне 6700 – 6900 см⁻¹

Как уже говорилось ранее в этой главе, спектральный диапазон 6700 – 6900 см⁻¹ озона ¹⁸O₃ вызывает особый интерес, так как в нем локализованы две слабые полосы А-типа: $v_1+2v_2+5v_3$ и $4v_1+3v_2+v_3$, соответствующие самым высоким колебательным уровням энергии, когда-либо наблюдаемым для этой молекулы. Из-за изотопического сдвига уровни (125) и (431) еще экспериментально не доступны для основного изотополога озона. Основная трудность при работе с данным участком спектра связана с наличием сильных линий поглощения молекулы H₂O (рисунок 3.2.).

Полоса $v_1+2v_2+5v_3$

Идентификация колебательно-вращательных переходов полосы осуществлялась по традиционной схеме, начиная с расчетов с помощью эффективного гамильтониана Уотсона для изолированного состояния и ASSIGN. В программы конечном было итоге, В спектре проидентифицировано 389 КВ переходов, принадлежащих полосе $v_1+2v_2+5v_3$, с максимальными значениями вращательных квантовых чисел J = 30 и $K_a =$ 9. Статистика переходов, участвовавших в обработке, приведена в Таблице 3.15. Для уровней энергии состояния (125) было обнаружено два резонансных взаимодействия. Первое – резонанс Кориолиса между уровнями

192

серии $K_a = 4$ с уровнями энергии серии $K_a = 5$ состояния (054). На рисунке 3.19. приведены соответствующие коэффициенты смешивания. Второй резонанс Кориолиса наблюдался между уровнями с четными значениями *J* серии $K_a = 1$ состояния (125) с уровнями энергии серии $K_a = 2$ состояния (026). Учет этих двух резонансов в модели эффективного гамильтониана, параметры которой представлены в Таблице 3.16., позволяет описать все переходы с точностью 7.3×10^{-3} см⁻¹. 13 уровней энергий, определенных из наблюдаемых переходов, даны в Приложении 3.8.

Для определения параметров разложения эффективного оператора дипольного момента перехода были отобраны 67 интенсивностей линий полосы $v_1+2v_2+5v_3$, которые воспроизводятся с точностью 19.3%. Параметры эффективного гамильтониана и эффективного оператора дипольного момента перехода позволили рассчитать 451 переход для наблюдаемых уровней энергии, на основе которых получена суммарная интенсивность полосы $S_v = 2.57 \times 10^{-25}$ см/мол (при T=296K). Отсечка по интенсивности осталась прежней, а именно – 2×10^{-28} см/мол.

Рисунок 3.19. Коэффициенты смешивания колебательных состояний (054) и (125)

Таблица 3.15. Статистика колебательно-вращательных переходов полосы v₁+2v₂+5v₃, участвовавших в определении параметров эффективного гамильтониана

Состояние	(125)
Центр полосы (см ⁻¹)	6796.46
$J_{\scriptscriptstyle MAKC}$	30
Ка макс	9
Число переходов	389
Число ур. энергии	213
$rms (\times 10^3 \text{ cm}^{-1})$	7.26

Таблица 3.16. Спектроскопические параметры колебательных состояний (054), (026) и (125), входящих в полиаду (см⁻¹)

Параметр	(054)	(026)	(125)
E^{VV}	6762.069 (27)	6789.183 ₂ (53)	6796.4612 ₀ (17)
A - (B + C)/2	2.8224 ₃ (81)	2.403 ₂ (13)	2.690047 (20)
(B+C)/2	0.365194 (24)	0.348221 (12)	0.34688705 (97)
(B-C)/2	0.0187 ₂ (15)	0.01808 (12)	0.0230563 (17)
$\Delta_K \times 10^3$	g	g	0.38412 (62)
$\Delta_{JK} \times 10^5$	g	g	0.1017 (57)
$\Delta_J \times 10^6$	g	g	0.5809 (13)
$\delta_J \times 10^6$	g	g	0.2224 (14)
$H_K \times 10^6$	g	g	0.718 ₁ (46)
$H_{JK} \times 10^7$	g	g	$0.67_0(11)$

$$\begin{split} C_{011}^{125,026} &= 0.01568_8(21) \,, \\ C_{011}^{125,054} &= 0.007784_6(77) \,, \\ C_{201}^{125,054} &= -0.00002363_6(61) \end{split}$$

Так как параметр ангармонического взаимодействия A_{000} не включен в модель, то центр полосы совпадает с параметром E^{VV} ,

g – фиксированное значение параметра, соответствующее основному состоянию [240], колонки, выделенные серым цветом, соответствуют параметрам темных состояний.

Оператор	Параметр	Значение	Число переходов (<i>J</i> макс, <i>Ka</i> макс)	rms (%)
	v_1+2v_2	$v_2 + 5v_3$ $S_v = 2.57 \text{ x}$	10 ⁻²⁵ (см/мол)	
$arphi_z$	$d_{1} (\times 10^{4})$	0.1394 ₁ (21)	67	10.2
$\left\{ oldsymbol{arphi}_{z},\mathbf{J}^{2} ight\}$	$d_2 (\times 10^8)$	-0.2193 (32)	30,11	19.3

Таблица 3.17. Суммарная интенсивность полосы v₁+2v₂ +5v₃ (при T=296 K) и параметры эффективного оператора дипольного момента перехода (в Дебаях)

Полоса 4v₁+3v₂+v₃

В спектре было проидентифицировано 183 перехода полосы 4v₁+3v₂+v₃ с максимальными значениями J = 25 и $K_a = 6$. Уровни энергии серии $K_a = 4$ были слегка возмущены уровнями энергии серии $K_a = 3$ состояния (502). Максимальное значение коэффициентов смешивания между ними в 7.8% наблюдается для значения J = 19. Из наблюдаемых переходов было определено 109 уровней энергии состояния (431) (Приложение 3.9). Статистика участвовавших в обработке переходов приведена в Таблице 3.18. Полученные параметры эффективного гамильтониана (Таблица 3.19.) описывают все наблюдаемые переходы со среднеквадратичным отклонением 5.66×10⁻³ см⁻¹. Параметр разложения эффективного оператора дипольного момента перехода (Таблица 3.20.) определялся при обработке 72 интенсивностей линий полосы $4v_1 + 3v_2 + v_3$ Вместе С параметрами эффективного гамильтониана они использовались для расчета 246 переходов на уровни энергии, определенные из наблюдаемых переходов. Суммарная интенсивность полосы $S_v = 1.10 \times 10^{-25}$ см/мол.

Таблица 3.18. Статистика колебательно-вращательных переходов, включенных в обработку уровней энергии состояния (431)

Состояние	(431)
Центр полосы (см ⁻¹)	6825.51
J _{макс}	25
Ка макс	6
Число переходов	183
Число ур. энергии	109
$rms (\times 10^3 \text{ cm}^{-1})$	5.66

Таблица 3.19. Спектроскопические параметры состояний (431) и (502) (в см⁻¹)

Параметр	(431)	(502)	
E^{VV}	6825.5123 ₀ (12)	6842.57 ₁ (42)	
A - (B + C)/2	2.77723 ₉ (17)	2.68198 (p)	
(B+C)/2	0.351026 ₃ (11)	0.357644 (83)	
(B-C)/2	0.0228061 (15)	0.00228237 (p)	
$\Delta_K \times 10^3$	0.1933 ₀ (46)	g	
$\Delta_{JK} \times 10^5$	$-0.542_0(61)$	g	
$\Delta_J \times 10^6$	0.3174 (23)	g	
$\delta_J \times 10^6$	0.1544 (19)	g	

$$C_{011}^{431,502} = 0.00391_7(35)$$

(р) – фиксированное значение параметра, вычисленного на основе функции потенциальной энергии молекулы [242],

g – фиксированное значение параметра, соответствующее основному состоянию [240], колонка, выделенная серым цветом, соответствуют параметрам темного состояния.

Таблица 3.20. Суммарная интенсивность полосы 4v₁+3v₂ + v₃ (при T=296 K) и параметр эффективного оператора дипольного момента перехода полосы (в Дебаях)

Оператор	Параметр	Значение	Число переходов (Ј макс, Ка макс)	rms (%)	
$4\mathbf{v_1}+3\mathbf{v_2}+\mathbf{v_3}$ $S_v=1.10 \ge 10^{-25} ($ см/мол $)$					
$arphi_z$	$d_{I} (\times 10^{4})$	0.1028 ₈ (13)	72 26,6	19.9	

Полоса $2v_1 + 5v_3$

Теоретический расчет уровней энергии озона ${}^{18}O_3$ говорит о том, что на данном участке спектра мы должны наблюдать полосу $2v_1+5v_3$ с центром вблизи 6712 см⁻¹. Действительно, в районе 6717 см⁻¹ наблюдаются серии переходов, по внешнему виду образующие R - ветвь полосы A - типа. Однако спектральная чувствительность прибора не позволила зарегистрировать переходы P - ветви этой полосы, по которым можно было бы проверить правильность (или наоборот) идентификации переходов R - ветви.

Заключение

В результате анализа CRDS-спектра озона в диапазоне 6700 – 6900 см⁻¹ удалось проидентифицировать 389 колебательно-вращательных переходов полосы $v_1 + 2v_2 + 5v_3$ и 183 перехода полосы $4v_1 + 3v_2 + v_3$. Эти полосы соответствуют переходам на самые высокие колебательные состояния, когдалибо зарегистрированные для озона. В результате анализа получены параметры эффективных гамильтонианов для каждой ИЗ систем резонирующих состояний, а также параметры операторов дипольного момента перехода для каждой полосы, которые позволяют построить синтетический спектр, находящийся хорошем В согласии с экспериментальным спектром.

§3.9 Изотопический эффект для центров полос при переходе ¹⁶O₃ → ¹⁸O₃ и изменение их спектроскопической идентификации

На рисунке 3.20. показано сравнение синтетических спектров озона ¹⁸О₃ (на основе параметров, полученных в данной работе) и ¹⁶О₃ [230] в районе полосы $5v_1+v_3$. В среднем, полосы ¹⁸O₃ лежат на 340 см⁻¹ ниже соответствующих полос ¹⁶О₃, однако из рисунка видно, что изотопические сдвиги отдельных полос являются нерегулярными. Например, перекрывание полос 5v₁+v₃ и 2v₂+5v₃ является различным для двух изотопических модификаций. Нерегулярное поведение изотопических сдвигов уже наблюдалось для других молекул, однако в рассматриваемом случае ситуация является более уникальной, так как замещения атомов кислорода ${}^{16}O_3 \rightarrow {}^{18}O_3$ является однородным. В самом деле, обычно изотопическое замещение меняет массово зависимые моды нормальных колебаний, и таким образом приводит к изменению полиадной структуры и схемы резонансных взаимодействий.

В нашем случае L матрицы, которые связывают внутренние и нормальные координаты являются точно пропорциональными, отношение матричных элементов и гармонических частот являются константой

$$\mathbf{L}_{nm}({}^{16}O_3)/\mathbf{L}_{nm}({}^{18}O_3) = \omega_k({}^{16}O_3)/\omega_k({}^{18}O_3) = \sqrt{\frac{m({}^{18}O)}{m({}^{16}O)}} = 1.0608$$
(3.9.1)

независимо от *n*, *m*, k = 1, 2, 3. Следовательно, формы нормальных колебаний идентичны как для ¹⁶O₃, так и для ¹⁸O₃. В таких условиях, если принять во внимание, что нормальные моды колебаний озона, связанные условием (3.2.1), образуют полиады, структура этих полиад должна быть очень схожей для двух изотопологов, и, следовательно, изотопические сдвиги тоже должны быть регулярными. Однако это не соответствует тому, что мы наблюдаем в

исследуемом спектральном диапазоне. Учитывая, что изменение массы является малым, этот результат является неожиданным.

Изотопическое замещение меняет картину резонансных взаимодействий, приводя в некоторых случаях, к различному перемешиванию колебательных функций, и, следовательно, к другой колебательной идентификации. Пример этого приведен на рисунке 3.20. для

Рисунок 3.20. Сравнение синтетических спектров ${}^{18}O_3$ (верхняя панель) и ${}^{16}O_3$ (нижняя панель) в диапазоне полосы $5v_1+v_3$. На рисунке показана глобальная и спектроскопическая идентификация полос

полосы, соответствующей высокому колебательному состоянию. В случае глобальной идентификации полоса (как для ¹⁶O₃, так и для ¹⁸O₃) проидентифицирована как полоса на состояние 46В, но колебательная идентификация соответствует различным валентным полиадам ($v_1+v_3 = 5$, v_2 = 2) для ${}^{16}O_3$ и (v₁+v₃ = 6, v₂ = 1) для ${}^{18}O_3$. В терминах нормальных мод это смешанные состояния (Таблицы 3.1. и 3.2.). Межполиадные сильно взаимодействия, ответственные за такую переидентификацию, зависят от случайного перекрывания полиадных структур, соответствующих различным мысль, что значениям у2. Это наводит на такие взаимодействия, локализованные в узком энергетическом интервале и распределенные нерегулярным образом, являются очень чувствительными к изменению массы, даже если оно мало и однородно.

Для того, чтобы проверить это предположение, мы провели следующий посчитаны колебательной тест. Центры полос были посредством экстраполяции с помощью модели эффективного гамильтониана для полиад состояний схеме Дарлинга-Деннисона валентных В (ДД), следуя возрастающим значениям полиадного номера P = v₁+v₃. Эта упрощенная включает все члены, отвечающие за внутриполиадные ДД модель взаимодействия < $v_1 \pm 2 | H^{eff} | v_3 \mp 2 >$, < $v_1 \pm 4 | H^{eff} | v_3 \mp 4 >$, но исключает те, которые ответственны за межполиадные взаимодействия. Рассчитанный в этой модели центр полосы 45В←1А (в центре рисунка 3.20.) находится в отличном согласии с нашими полными расчетами и с экспериментом для двух изотопов, ошибка в его определении меньше 1 см⁻¹. Это согласуется с колебательной идентификацией (Таблица 3.2.), которая не содержит межрезонансных вкладов для состояния 45В. Но ситуация совершенно противоположная для двух других полос на рисунке 3.20. Для высокой полосы 46В ← 1А модель полиады ДД дает одинаковую идентификацию по нормальным модам колебаний v₁+v₂+5v₃ для двух изотопологов, в

200

противоположность полному расчету, приведенному в Таблице 3.1. Для обоих полос результат проверки согласуется с разложением волновой функции по нормальным модам колебаний, потому что межполиадные резонансы для ${}^{16}O_3$ больше, чем для ${}^{18}O_3$. Это значит, что случайные межполиадные резонансы дают вклад в изотопический сдвиг весьма нерегулярным образом.

На рисунке 3.21. показана зависимость изотопических сдвигов от энергии. На верхнем рисунке мы приводим разницу между центрами полос ¹⁶О₃ и ¹⁸О₃, соответствующих одной глобальной идентификации. Все наблюдаемые полосы ¹⁸О₃ были включены в это сравнение. Закрашенные символы соответствуют эквивалентным полосам ¹⁶О₃, которые наблюдались экспериментально. Серые символы соответствуют полосам ¹⁶О₃, которые рассматривались в предыдущих работах [226-231] как «темные» полосы. Пустые символы соответствуют полосам, которые в спектрах 16-го изотополога не наблюдались. В последнем случае, для сравнения использовались расчетные значения центров полос. На нижнем рисунке 3.21, сравнение центров полос основывается на «нормальной» колебательной идентификации, которая традиционно используется в спектроскопии озона. Мы сравниваем центры полос ¹⁶O₃ и ¹⁸O₃, соответствующих наиболее близким (родственным) разложениям по нормальным модам колебаний. Как говорилось выше, эта процедура приводит к неоднозначности в некоторых случаях, так как резонансные картины существенно меняются при переходе от одной изотопической модификации к другой. Это хорошо видно на рисунке 3.22., где представлены коэффициенты смешивания от первых в разложение волной функции. вкладов Определенная корреляция прослеживается между нерегулярным поведением коэффициентов смешивания P₁ и изотопических сдвигов.

201

Рисунок 3.21. Изотопический сдвиг центров полос ${}^{18}O_3$, наблюдаемых в диапазоне 5930-6900 см ${}^{-1}$ при однородном замещении ${}^{16}O_3 \rightarrow {}^{18}O_3$

Верхняя панель: изотопический сдвиг центров полос, имеющих одинаковую глобальную идентификацию.

Нижняя панель: сдвиг центров полос, имеющих одинаковую идентификацию по модам нормальных колебаний.

Рисунок 3.22. Коэффициенты смешивания для верхних колебательных состояний, соответствующих исследуемым полосам

Верхняя панель: состояния ¹⁸O₃, исследуемые в данной работе, Нижняя панель: соответствующие состояния ¹⁶O₃, По оси ординат отложены коэффициенты смешивания P₁ в разложении волновых функций по нормальным модам колебаний (3.4.1)-(3.4.2).

Заключение

Основные результаты, полученные при анализе эмиссионных спектров $D_2^{16}O$ и CRDS спектров ¹⁸O₃, могут быть сформулированы в виде следующих пунктов.

D₂¹⁶**O**:

- 1. Проведен анализ высоковозбужденных вращательных уровней нижних восьми колебательных состояний молекулы D₂¹⁶O: основного (000), первого возбужденного (010) и двух триад взаимодействующих колебательных состояний: {(020), (100), (001)} и {(030), (110), (011)}. Исследования вращательной структуры указанных состояний проводилось на основе анализа спектров излучения в диапазонах 320 -860 и 1750 – 4300 см⁻¹. Проведена идентификация более 10 000 линий, что позволило впервые определить более 2 300 высоковозбужденных вращательных уровней энергии указанных выше состояний с максимальными значениями вращательных квантовых чисел J = 30 и $K_a = 29$. Примерно для 7 000 линий идентификация была проведена впервые.
- 2. Теоретическое моделирование полученных экспериментальных данных показало неработоспособность традиционных моделей гамильтониана в виде полиномиального разложения по вращательным операторам при описании высоковозбужденных вращательных уровней даже для состояний (000) и (010) молекулы $D_2^{16}O$. Поэтому для описания вращательной структуры исследуемых колебательных состояний молекулы $D_2^{16}O$ использовалась модель эффективного гамильтониана в виде производящих функций. Использование этой модели позволило обработать уровни энергии с точностью, близкой к экспериментальной.

Отметим, что ранее, во всех работах по анализу КВ спектров этой молекулы использовалась именно полиномиальная модель эффективных гамильтонианов.

3. Для исследования колебательных состояний первой и второй гексад колебательных состояний проводится совместный анализ спектра излучения в диапазоне 4500 – 5600 см⁻¹ и длинноходовых спектров поглощения в диапазоне 5600 – 8800 см⁻¹. В процессе анализа исправлены значения энергий ряда уровней состояний первой гексады колебательных состояний молекулы D₂¹⁶O.

¹⁸O₃:

- Анализ CRDS спектра в диапазоне 5930 7000 см⁻¹ позволил идентифицировать 14 новых полос озона ¹⁸O₃. Эти полосы соответствуют переходам на высоковозбужденные колебательные состояния (Δv = 6-8) и локализованы в диапазоне, верхняя граница которого соответствует 82% от энергии диссоциации молекулы. Из них 2 полосы v₁+2v₂+5v₃ и 4v₁+3v₂+v₃ являются наиболее высокими полосами, когда-либо наблюдавшимися для изотопических модификаций озона.
- 2. В исследуемом спектре было проидентифицировано более 5000 переходов, определено более 2000 уровней энергий молекулы ¹⁸O₃. Определены спектроскопические параметры полос и параметры резонансных взаимодействий, которые позволили описать переходы 10 полос с точностью 6-10×10⁻³ см⁻¹, оставшихся четырех полос с точностью 18 ×10⁻³ см⁻¹.

205

- 3. Анализ экспериментальных спектров озона ¹⁸О₃ показал возникновение качественных аномалий интенсивностей полос в этом спектральном интервале: возрастание удельной доли полос с большими изгибными квантовыми числами и резкое спадание интенсивностей серии наиболее сильных полос.
- Показано, что малое однородное изменение масс ядер озона приводит к нерегулярным изотопическим сдвигам, находящимся в качественной корреляции с коэффициентами смешивания нормальных мод колебаний.

Литература

- 1. K. Mauersberger, J. Morton, B. Schueler, J. Stehr, S.M. Anderson, Multiisotope study of ozone: Implications for the heavy ozone anomaly // Geophys. Res. Lett. 20, 1031-1034 (1993).
- D. Krankowsky, F. Bartecki, G.G. Klees, K. Mauersberger, K. Schellenbach, J. Stehr, Measurement of heavy isotope enrichment in tropospheric ozone // Geophys. Res. Lett. 22, 1713-1716 (1995).
- 3. D. Krankowsky, K. Mauersberger, Heavy ozone a difficult puzzle to solve // Science 274, 1324-1325 (1996).
- 4. Ю.С. Макушкин, Вл.Г. Тютерев, Методы возмущений и эффективные гамильтонианы в молекулярной спектроскопии. Новосибирск: Изд-во Наука, 1984 240 с.
- 5. J.K.G. Watson, Determination of centrifugal distortion coefficients of asymmetric-top molecules // J. Chem. Phys. 46, 1935-1949 (1967).
- 6. J.M. Flaud, C. Camy-Peyret, The interacting states (020), (100), and (001) of $H_2^{16}O$ // J. Mol. Spectrosc. 51, 142-150 (1974).
- 7. C. Camy-Peyret, J.M. Flaud, The interacting states (030), (110), and (011) of $H_2^{16}O$ // J. Mol. Spectrosc. 59, 327-337 (1976).
- 8. S.A. Clough, F.X. Kneizys, Coriolis interaction in the v_1 and v_3 fundamentals of ozone // J. Chem. Phys. 44, 1855-1861 (1966).
- 9. L.E. Snyder, T.H. Edwards, Simultaneous analysis of the (110) and (011) states of hydrogen sulfide // J. Mol. Spectrosc. 31, 347-361 (1969).
- 10. H. Partridge, D.W. Schwenke, The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data // J. Chem. Phys. 106, 4618-4639 (1997).
- 11. D.W. Schwenke, H. Partridge, Convergence testing of the analytical representation of an ab initio DMS function of water: Improved fitting yields improved intensities // J. Chem. Phys. 113, 6592-6597 (2000).
- 12. VI.G. Tyuterev, S.A. Tashkun, P. Jensen, A. Barbe and T. Cours, Determination of the effective ground state potential energy function of ozone from high resolution infrared spectra// J. Mol. Spectrosc. 198, 57-76 (1999).
- VI.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, P. Jensen, T. Cours, A. Barbe, M. Jacon, Variational EKE-calculations of rovibrational energies of the ozone molecule from an empirical potential function // Chem. Phys. Lett. 316, 271-279 (2000).

- VI.G. Tyuterev, S.A. Tashkun, H. Seghir, High-order contact transformations: general algorithm, computer implementation and triatomic tests // SPIE 5311, 167-175 (2004).
- 15. Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Нерелятивистская теория. Москва: Изд-во Наука, 1989 767 с.
- 16. P. Jensen, P. Bunker, The BO approximation. Computational Molecular Spectroscopy. J. Wiley&Sons, Chichester (2000).
- 17. B.P. Johnson, W.P. Reinhardt, Adiabatic separations of stretching and bending vibrations: Applications to H_2O // J. Chem. Phys. 85, 4538-4556 (1986).
- 18. R. Islampour, M. Gharibi, M. Miralinaghi, The molecular Hamiltonian in Jacobi coordinates // Molecular Physics 104, №12, 1879-1890 (2006).
- 19. B.P. Johnson, On hyperspherical coordinates and mapping the internal configurations of a tree body system // J. Chem. Phys. 73, 5051 (1980).
- 20. D. Papousek, M.R. Aliev, Molecular vibration-rotation spectra. Elsevier Academia, 1982 300 p.
- R. Rey, Transformation from internal coordinates to Cartesian displacements in the Eckart frame for a triatomic molecule // Chemical Physics 229, 217-222 (1998).
- 22. W. Gabriel, E.-A. Reinsch, P. Rosmus, S. Carter, N.C. Handy, Theoretical integrated vibrational band intensities of water vapor // J. Chem. Phys. 99, 897-900 (1993).
- 23. X Chapuisat, Exact quantum molecular hamiltonians. II, On the choice of the moving frame of reference: the principal axis system // Molecular Physics 72, №6, 1233-1265 (1991).
- 24. S. Carter, N.C. Handy, On the calculation of vibration-rotation energy levels of quasi-linear molecules // J. Mol. Spectrosc. 95, 9-19 (1982).
- 25. J. Tennyson, B.T. Sutcliffe, The *ab initio* calculation of the vibrationalrotational spectrum of triatomic systems in the close-coupling approach, with KCN and H₂Ne as examples // J. Chem. Phys. 77, 4061 (1982).
- 26. J. Makarewicz, A. Skalozub, Exact quantum mechanical kinetic energy operator in valence coordinates for internal motions of a polyatomic molecule // Chem. Phys. Lett. 306, 352-356 (1999).
- 27. A. Csaszar et al. Computational Molecular Spectroscopy. J.Wiley&Sons, Chichester (2000).
- D.W. Schwenke, Beyond the potential energy surface: Ab initio corrections to the Born-Oppenheimer, Approximation for H₂O // J. Phys. Chem. 105, 2352-2360 (2001).

- 29. L. Lodi, R.N. Tolchenov, J. Tennyson, A.E. Lynas-Gray, S.V. Shirin, N.F. Zobov, O.L. Polyansky, A.G. Csaszar, J.N. Van Stralen, and L. Visscher, A new ab initio ground-state dipole moment surface for the water molecule // J. Chem. Phys. 128, 044304 (2008).
- 30. S.E. Choi, J.C. Light, Highly excited vibrational eigenstates of nonlinear triatomic molecules. Application to H_2O // J. Chem. Phys. 97, 7031-7054 (1992).
- 31. J. Tennyson. Computational Molecular Spectroscopy. J. Wiley&Sons, Chichester (2000).
- J. Tennyson, M. A. Kostin, P. Barletta, G.J. Harris, O. Polyansky, J. Ramanlal, N. Zobov, DVR3D: a program suite for the calculation of rotation-vibration spectra of triatomic molecules // Computer Physics Communications 163, 85-116 (2004).
- 33. E.Br. Wilson, J.B. Howard, The vibration-rotation energy levels of polyatomic molecules. I. Mathematical theory of semirigid asymmetrical top molecules // J. Chem. Phys. 4, 260-268 (1936).
- 34. М.А. Ельяшевич. Вращательно-колебательная энергия молекул. Труды ГОИ, 1938, т.12, вып.106, с. 3-134.
- 35. B.T. Darling, D.M. Dennison, The water vapour molecule // Phys. Rev. 57, 128-139 (1940).
- 36. J.K.G. Watson, Simplification of the molecular vibration-rotation Hamiltonian // Molecular Physics 15, 479-490 (1968).
- 37. H.H. Nielsen, The vibration-rotation energies of polyatomic molecules // Phys. Rev. 60, 794-810 (1941); Rev. Mod. Phys. 23, 90-136 (1951).
- 38. G. Amat, M. Goldsmith, H.H. Nielsen, Higher order rotation-vibration energies of polyatomic molecules. I.-II. // J. Chem. Phys. 24, 1178-1186 (1957).
- 39. G. Amat, H.H. Nielsen, G. Tarrago, Rotation-vibration of polyatomic molecules. New York: M. Dekker, 1971 519 p.
- 40. M.L. Grenier-Besson, G. Amat, S. Maes, Energie de vibration-rotation des molecules polyatomiques. Tables des coefficients de l'hamiltonian transformed a second ordre // J. Phys. Radium 19, №10, 781-789 (1958).
- 41. S. Maes, G. Amat, Sur les calculs de perturbation effectues par la method de Van Vleck // Can. Phys. 11, №83, 277-284 (1957).
- 42. S. Maes, Les corrections du troisieme ordre a l'energie de vibration rotation des molecules polyatomiques // Can. Phys. 14, №116-117, 125-208 (1960).
- 43. G. Amat, H.H. Nielsen, Higher order rotation-vibration energies of polyatomic molecules. III.-V. // J. Chem. Phys. 27, №4, 845-850 (1957); J.

Chem. Phys. 29, №3, 665-672 (1958); J. Chem. Phys. 36, №7, 1859-1865 (1962).

- 44. J.H. Van Vleck, On σ type doubling and electron spin in the spectra of diatomic molecules // Phys. Rev. 33, 467-506 (1929).
- 45. M.R. Aliev, J.K.G. Watson, Higher-order effects in the vibration-rotation spectra of semirigid molecules. Molecular spectroscopy. Modern research. New York: Acad. Press. v.3, 1-67 (1985).
- 46. VI.G. Tyuterev, V.I. Perevalov, Generalized contact transformations for quasi-degenerate levels // Chem. Phys. Lett. 74, 494-502 (1980).
- 47. F. Jorgensen, Effective Hamiltonians // Molecular Physics 29, 1137-1164 (1975).
- 48. C. Camy-Peyret and J.-M. Flaud. Molecular Spectroscopy: Modern Research, volume III, Academic Press: San Diego CA, 1985.
- 49. K. Sarka, J. Demaison, Perturbation theory, effective hamiltonians and force constants. Computational Molecular Spectroscopy, J. Wiley, Chichester, (2000).
- 50. Вл.Г. Тютерев, В.И. Перевалов, В.И. Стариков, Метод эффективных операторов в теории спектров высокого разрешения молекул. Современные проблемы оптики и спектроскопии. Томск: ТГУ, с.279-322 (2001).
- 51. P.R. Bunker, R.C. Moss, The breakdown of the Born-Oppenheimer approximation // Molecular Physics 33, №2, 417-424 (1977).
- 52. J.K.G. Watson, Vibrational Spectra and Structure. Elsevier: Amsterdam, Ed. 6, 1–89 (1977).
- 53. C. Camy-Peyret and J.-M. Flaud. Thèse d'état. PhD thesis, Université Pierre et Marie Curie, 1975.
- 54. J.-M. Flaud, C. Camy-Peyret, Vibration-rotation intensities in H₂O-type molecules. Application to the $2v_2$, v_1 and v_3 bands of H₂¹⁶O // J. Mol. Spectrosc. 55, 278-310 (1975).
- 55. Y.Y. Kwan, Intensities of rotation lines in combination bands for axially symmetric molecules of the group $C_{3,v}$ // J. Mol. Spectrosc. 49, 27-47 (1974).
- J.L. Teffo, V.I. Perevalov, and O.M. Lyulin, Reduced effective Hamiltonian for a global treatment of rovibrational energy levels of nitrous oxide // J. Mol. Spectrosc. 168, 390-403 (1994).
- 57. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, and Vl.G. Tyuterev, Global fit of ¹²C¹⁶O₂ vibrational-rotational line intensities using the effective operator approach // JQSRT. 62, 571-598 (1999).

- 58. J.-P. Champion, M. Loete, G. Pierre, Spherical top spectra. Spectroscopy of the Earth's atmosphere and interstellar medium. San Diego: Academic Press. 339-422 (1992).
- 59. A. Nikitin, J.-P. Champion, Vl.G. Tyuterev, Improved algorithms for the modeling of vibrational polyads of polyatomic molecules: application to T_d, O_h, and C_{3v} molecules // J. Mol. Spectrosc. 182, 72-84 (1997).
- 60. A.V. Nikitin, J.-P. Champion, R.A.H. Butler, L.R. Brown, I. Kleiner, Global modeling of the lower three polyads of PH₃: Preliminary results // J. Mol. Spectrosc. (2009) (in press).
- 61. L.H. Coudert, Analysis of the rotational levels of water // J. Mol. Spectrosc. 154, 427-442 (1992).
- R. Lanquetin, L.H. Coudert, C. Camy-Peyret, High-lying rotational levels of water: An analysis of the energy levels of the five first vibrational states // J. Mol. Spectrosc. 206, 83-103 (2001).
- 63. S.N. Mikhailenko, Vl.G. Tyuterev, K.A. Keppler, B.P. Winnewisser, M. Winnewisser, G. Mellau, S; Klee, K. Narahari Rao, The 2v₂ band of water: analysis of new FTS measurements and high-K_a transitions and energy levels // J. Mol. Spectrosc. 184, 330-349 (1997).
- 64. Б.И. Жилинский, В.И. Перевалов, Вл.Г. Тютерев, Метод неприводимых тензорных операторов в теории спектров молекул. Новосибирск: Наука, 1987 234 с.
- 65. А.Д. Быков, Л.Н. Синица, В.И. Стариков, Экспериментальные и теоретические методы в спектроскопии водяного пара. Новосибирск: Изд-во СО РАН, 1999 376 с.
- 66. A. Nikitin, et al., The infrared spectrum of CH₃D between 900 and 3200 cm⁻¹. Extended assignment and modeling // J. Mol. Structure 517-518, 1-24 (2000).
- 67. F. Legay, Intensite des raies d'une bande de vibration-rotation // Can. Phys. 12, №99, 416-436 (1958).
- 68. H.M. Hanson, H.H. Nielen, W.H. Shaffer, J. Waggoner, Intensities of rotation lines in absorption bands // J. Mol. Spectrosc. 27, 40-43 (1957).
- 69. J.-M. Flaud, R. Bacis, The ozone molecule: infrared and microwave spectroscopy // Spectrochimica Acta 54A, 3–16 (1998).
- 70. J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy-Devi, Atlas of ozone line parameters from microwave to medium infrared. Academic Press, New York, (1990).
- В.И. Стариков, Вл.Г. Тютерев, Внутримолекулярные взаимодействия и теоретические методы в спектроскопии нежестких молекул. Томск: Издво СО РАН, 1997 – 230 с.

- 72. S.N. Mikhailenko, VI.G. Tyuterev, V.I. Starikov, K.K. Albert, B.P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, R. Lanquetin, J.-M. Flaud and J.W. Brault, Water spectra in the 4200-6250 cm⁻¹ region: extended analysis of v_1+v_2 , v_2+v_3 , and $3v_2$ bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations // J. Mol. Spectrosc. 213, 91–121 (2002).
- 73. S.A. Tashkun, V.I. Perevalov, J.L. Teffo, A.D. Bykov and N.N. Lavrent'eva, CDSD-1000, the high-temperature carbon dioxide spectroscopic databank // JQSRT 82, 165-196 (2003).
- 74. J. Lamouroux, S.A. Tashkun, VI.G. Tyuterev, Accurate calculation of transition moment parameters for rovibrational bands from ab initio dipole and potential surfaces: application to fundamental bands of the water molecule // Chem. Phys. Lett. 452, 225-231 (2008).
- 75. V.I. Perevalov, S.A. Tashkun, et al., Global modeling of high-resolution spectra of the atmospheric molecules // Atm. Oceanic Opt. 20, 789-794 (2007).
- 76. S.A. Tashkun, Usage of robust methods to estimate spectroscopic parameters of vibrational bands of linear molecules from experimental data // Atmos. Oceanic Opt. 17, 887-889 (2004).
- 77. B.V. Perevalov, S. Kassi, D. Romanini, V.I. Perevalov, S.A. Tashkun and A. Campargue, CW-cavity ringdown spectroscopy of carbon dioxide isotopologues near 1.5 μm // J. Mol. Spectrosc. 238, 241-255 (2006).
- H.-Y. Ni, K.-F. Song, V.I. Perevalov, S.A. Tashkun, A.-W. Liu, L. Wang, S.-M. Hu, Fourier-transform spectroscopy of ¹⁴N¹⁵N¹⁶O in the 3800-9000 cm⁻¹ region and global modeling of its absorption spectrum // J. Mol. Spectrosc. 248, 41-60 (2008).
- 79. A. Nikitin, J.P. Champion, New ground state constants of ¹²CH₃³⁵Cl and ¹²CH₃³⁷Cl from global polyad analysis // J. Mol. Spectrosc. 230, 168-173 (2005).
- 80. A. Nikitin, J.P. Champion, H. Burger, Global analysis of (CH₃)-C-12 Cl-35 and (CH₃)-C-12 Cl-37: simultaneous fit of the lower five polyads (0-2600 cm⁻¹) // J. Mol. Spectrosc. 230, 174-184 (2005).
- 81. VI.G. Tyuterev, Recent advances in global variational and effective calculations of the line positions and intensities for triatomic molecules: some features of a new generation of spectroscopic databanks // Atmos. Ocean. Optics, 16, 220-230 (2003).
- 82. В.И. Перевалов, Вл.Г. Тютерев, Модель с однозначно восстанавливаемыми параметрами для совместной обработки двух резонирующих

колебательных состояний. Ангармонические резонансы. Известия вузов. Физика, №2, 108-112 (1982).

- 83. В.И. Перевалов, Вл.Г. Тютерев, Эффективный центробежный гамильтониан с эмпирически восстанавливаемыми параметрами в случае резонансов Кориолиса в молекулах типа асимметричного волчка // Оптика и Спектроскопия, т.52, вып.4, 644-650 (1982).
- 84. S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, A. Chichery, High resolution IR spectra of the ozone molecule // Atmos. Ocean. Optics, 12, 771–785 (1999).
- 85. С. Михайленко, Ю. Бабиков, Вл.Г. Тютерев, А. Барбе, Электронная база данных по спектроскопии озона (S&MPO) // Компьютерные технологии 7, 64-70 (2002).
- 86. S.A. Tashkun and VI.G. Tyuterev, GIP: a program for experimental data reduction in molecular spectroscopy // SPIE 2205, 188-191 (1993).
- 87. S. Mikhailenko, FMOD: a program for data reduction of rovibrational energies and line positions for asymmetric top molecules, LTS, IOA SB RAS, private communication.
- 88. C. Camy-Peyret, J.M. Flaud, The $3v_2$ band of $H_2^{16}O$ // Spectrochimica Acta 77, No11, 5363-5369 (1973).
- 89. Вл.Г. Тютерев, В.И. Стариков, В.И. Толмачёв, Асимптотика вращательных уровней энергии нежёстких молекул типа H₂O. Производящие функции и радиусы сходимости. ДАН СССР, т.297, №2, стр.345-349 (1987).
- 90. В.И. Стариков, Вл.Г. Тютерев, Метод улучшения сходимости эффективного вращательного гамильтониана нежёстких молекул // Оптика и спектроскопия, т.63, вып.1, стр.75-79 (1987).
- 91. В.И. Стариков, В.И. Толмачёв, Вл.Г. Тютерев, О новой форме вращательного гамильтониана нежесткого асимметричного волчка // Оптика и спектроскопия, т.59, вып.2, стр.473-474 (1985).
- 92. Vl.G. Tyuterev, The generating function approach to the formulation of the effective rotational hamiltonian // J. Mol. Spectrosc. 151, №1, 97-129 (1992).
- 93. V.I. Starikov, S.A. Tashkun, Vl.G. Tyuterev, Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method // J. Mol. Spectrosc. 151, №1, 130-147 (1992).
- 94. VI.G. Tyuterev, V.I. Starikov, S.A. Tashkun, S.N. Mikhailenko, Calculation of high rotational energies water molecule using the generating function model // J. Mol. Spectrosc. 170, 38-58 (1995).
- 95. G.A. Baker, Essential of Pade approximants. N.-Y.: Academic Press, 1975 306 p.

- A.V. Burenin, Vl.G. Tyuterev, On the application of the effective rotational Pade Hamiltonian operator of the molecule // J. Mol. Spectrosc. 108, 153-154 (1984).
- 97. O.L. Polyansky, One-dimensional approximation of the effective rotational Hamiltonian of the ground state of the water molecule // J. Mol. Spectrosc. 112, 79-87 (1985).
- V.F. Golovko, S.N. Mikhailenko, Vl.G. Tyuterev, Application of the Padeform Hamiltonians for processing of vib-rot spectra of diatomic and triatomic molecules // J. Mol. Structure, 218, 291-296 (1990).
- 99. Е. Вигнер, Теория групп и её приложения к квантовомеханической теории атомных спектров. Москва: Изд-во иностранной лит-ры, 1961 444 с.
- 100. М. Хаммермеш, Теория групп и её применение к физическим проблемам. Москва: Мир, 1966 588 с.
- 101. Г.Я. Любарский, Теория групп и её применения к физике. Москва: Физмат-гиз, 1957 – 354 с.
- 102. J.T. Hougen, Classification of rotational energy levels for symmetric-top molecules // J. Chem. Phys. 37, №7, 1433-1441 (1962).
- 103. J.T. Hougen, Classification of rotational energy levels // J. Chem. Phys. 39, №2, 358-565 (1963).
- 104. H.C. Longuet-Higgins, The symmetry groups of non-rigid molecules // Mol. Phys. 6, №2, 445-460 (1963).
- 105. Ф. Банкер. Симметрия молекул и молекулярная спектроскопия. Москва: Мир, 1981 – 452 с.
- 106. Ph.R. Bunker and P. Jensen, Molecular symmetry and spectroscopy, Second edition. NRS Research Press, Canada, 1998-747 p.
- 107. А.В. Буренин, Симметрия квантовой внутримолекулярной динамики. Нижний Новгород: ИПФ РАН, 2006-368 с.
- 108. G.W. King, R.M. Hainer, P.C. Cross, The asymmetric rotor I. Calculation and symmetry classification of energy levels // J. Chem. Phys. 11, 27 (1943).
- 109. H.C. Allen Jr., P.C. Cross. Molecular vib-rotors: the theory and interpretation of high resolution infrared spectra. J. Wiley&Sons, New York and London, 1963 – 324 p.
- 110. K. Yamashita, K. Morokuma, Qu'er'e F. Le, C. Leforestier, New ab initio potential surfaces and three-dimensional quantum dynamics for transition state spectroscopy in ozone photodissociation // Chem. Phys. Lett. 191, 515-520 (1992).
- 111. R. Siebert, R. Schinke, M. Bittererova, Spectroscopy of ozone at the dissociation threshold: Quantum calculations of bound and resonance states on a new global potential energy surface // PCCP 3, 1795–98 (2001).
- 112. R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererova, S.C. Farantos, The vibrational energies of ozone up to the dissociation threshold: Dynamics calculations on an accurate potential energy surface // J. Chem. Phys. 116, 9749-9767 (2002).
- 113. P. Rosmus, P. Palmieri, R. Schinke, The asymptotic region of the potential energy surfaces relevant for the $O(^{3}P) + O_{2}(X3_{-g}) \rightarrow O_{3}$ reaction // J. Chem. Phys. 117, 4871-4877 (2002).
- 114. D. Babikov, B.K. Kendrick, R. B. Walker, R.T Pack, P. Fleurat-Lesard, R. Schinke, Metastable states of ozone calculated on an accurate potential energy surface // J. Chem. Phys. 118, №14, 6298-6308 (2003).
- 115. R. Schinke, S.Yu. Grebenshchikov, M.V. Ivanov, P. Fleurat-Lessard, Dynamical studies of the ozone isotope effect // A Status Report, Annu. Rev. Phys. Chem. 57, 625-661 (2006).
- 116. А. Мессиа, Квантовая механика. Москва: Наука, т.1, 1978 480 с.
- 117. S.C. Wang, On the asymmetrical top in quantum mechanics // Physical Review 34, 243 (1929).
- 118. Г. Герцберг, Колебательные и вращательные спектры многоатомных молекул. Москва: Изд-во иностранной лит-ры, 1949 648 с.
- 119. C. Camy-Peyret, J.M. Flaud, Line positions and intensities in the v_2 band of $H_2^{16}O$ // Mol. Phys. 32, No2, 523-537 (1976).
- 120. M.A.H. Smith, C.P. Rinsland, B. Fridovich, K. Narahari Rao, Intensities and collision broadening parameters from infrared spectra. Molecular spectroscopy: Modern Research, v.3, Academic Press 1985.
- 121. Vl.G. Tyuterev, L. Régalia-Jarlot, D.W. Schwenke, S.A. Tashkun, Y.G. Borkov, Global variational calculations of high-resolution rovibrational spectra: isotopic effects, intensity anomalies and experimental confirmations for H₂S, HDS, D₂S molecules // Comptes Rendus de Physique 5, 189-199 (2004).
- 122. G.S. Kedziora, I. Shavitt, Calculation and fitting of potential energy and dipole moment surfaces for the water molecule: Fully ab initio determination of vibrational transition energies and band intensities // J. Chem. Phys. 106, №21, 8733-8745 (1997).
- 123. S.N. Mikhailenko, S.A. Tashkun, Yu.L. Babikov, V.F. Golovko, Vl.G. Tyuterev, Direct spectroscopic calculations in the framework of the information system «Spectroscopy of atmospheric gases" // Atmos. Ocean. Optics 17, №11, 927-938 (2004).

- 124. S. Mikhailenko, Yu. Babikov, Vl. Golovko, S. Tashkun, SPECTRA, an Internet accessible information system for spectroscopy of atmospheric gases // 10th HITRAN Database Conference, Cambridge, MA, USA, June 22-24, 2008, Poster PI-13.
- 125. R.A. Toth, C. Camy-Peyret, J.-M. Flaud, Strengths of H₂O lines in the 5000-5750 cm⁻¹ region // JQSRT 18, №5, 515-523 (1977).
- 126. Ч. Лоусон, Р. Хенсон, Численное решение задач метода наименьших квадратов. Москва: Наука, Гл. редакция физ.-мат. лит-ры, 1986-232 с.
- 127. P.-F. Bernath, The spectroscopy of water vapour: Experiment, theory and applications // Phys. Chem. Chem. Phys. 4, 1501-1506 (2002).
- 128. F.W. Very, The presence of water vapor in the atmosphere of Mars demonstrated by quantitative measurements // Science, 29, 191-193 (1909).
- 129. T. Owen, H.P. Mason, Mars: water vapor in its atmosphere // Science 165, 893-895 (1969).
- 130. H.J. Smith, Water on Venus and Mars // Science 187, 598-600 (1975).
- 131. T. Fouchet, E. Lellouch, N.I. Ignatiev, F. Forget, D.V. Titov, M. Tschimmel, F. Montmessin, V. Formisano, M. Giuranna, A. Maturilli, T. Encrenaz, Martian water vapor: Mars express PFS/LW observations // Icarus 190, 32-49 (2007).
- 132. M. Tschimmel, N.I. Ignatiev, D.V. Titov, E. Lellouch, T. Fouchet, M. Giuranna, V. Formisano, Investigation of water vapor on Mars with PFS/SW of Mars express // Icarus 195, 557-575 (2008).
- 133. M.E. Koukouli, P.G.J. Irwin, F.W. Taylor, Water vapor abundance in Venus middle atmosphere from Pioneer Venus OIR and Venera 15 FTS measurements // Icarus 173, 84-99 (2005).
- 134. B.J. Sandor, R.T. Clancy, Water vapor variations in the Venus mesosphere from microwave spectra // Icarus 177, 129-143 (2005).
- 135. P. Drossart, T. Encrenaz, The abundance of water on Jupiter from the voyager IRIS data at 5 μm // Icarus 52, 483-491 (1982).
- 136. I. de Pater, D. DeBoer, M. Marley, R. Freedman, R. Young, Retrieval of water in Jupiter's deep atmosphere using microwave spectra of its brightness temperature // Icarus 173, 425-438 (2005).
- 137. A.J. Friedson, Water, ammonia and H₂S mixing ratios in Jupiter's five-micron hot spots: A dynamical model // Icarus 177, 1-17 (2005).
- 138. C.B. Pilcher, C.R. Chapman, L.A. Lebofsky, H.H. Kieffer, Saturn's rings: Identification of water frost // Science 167, 1372-1373 (1970).

- 139. C.B. Pilcher, S.T. Ridgway, T.B. McCord, Galilean satellites: Identification of water frost // Science 178, 1087-1089 (1972).
- 140. T.C. Owen, D.P. Cruikshank, C.M. Dalle Ore, T.R. Geballe, T.L. Roush, C. de Bergh, Detection of water ice on Saturn's satellite Phoebe // Icarus 139, 379-382 (1999).
- 141. C.J. Hansen, L. Esposito, A.I.F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, R. West, Enceladu's water vapor plume // Science 311, 1422–1425 (2006).
- 142. L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, K. Zhang, Water on the Sun // Science 268, 1155-1158 (1995).
- 143. O.L. Polyansky, N.F. Zobov, S. Viti, J. Tennyson, P.F. Bernath, L. Wallace, Water on the Sun: line assignments based on variational calculations // Science 277, 346-348 (1997).
- 144. H.R.A. Jones, A.J. Longmore, F. Allard, P.H. Hauschildt, S. Miller, J. Tennyson, Water vapour in cool dwarf stars // Mon. Not. R. Astron. Soc. 277, 767-776 (1995).
- 145. F. Allard, P.H. Hauschildt, D. Schwenke, TiO and H₂O absorption lines in cool stellar atmospheres // Astrophysical Journal 540, 1005-1015 (2000).
- 146. R.A. Toth, V.D. Gupta, J.W. Brault, Line positions and strengths of HDO in 2400-3300 cm⁻¹ region // Applied Optics 21, 3337-3347 (1982).
- 147. А.Д. Быков, Ю.С. Макушкин, О.Н. Улеников, Колебательновращательная спектроскопия водяного пара. Новосибирск: Наука, Сиб. Отд-ние, 1989 – 296 с.
- 148. J. Tennyson, N.F. Zobov, R. Williamson, O.L. Polyansky, P.F. Bernath, Experimental energy levels of the water molecule // J. Phys. Chem. Ref. Data 30 735-831 (2001).
- 149. P. Maksyutenko, T.R. Rizzo, O.V. Boyarkin, A direct measurement of the dissociation energy of water // J. Chem. Phys. 125, 181101 (2006).
- 150. A.K. Wyczalkowska, Kh.S. Abdulkadirova, M.A. Anosimov, J.V. Sengers, Thermodynamic properties of H₂O and D₂O in the critical region // J. Chem. Phys. 113, 4985-5002 (2000).
- 151. M. Vidler, J. Tennyson, Accurate partition function and thermodynamic data for water // J. Chem. Phys. 113, 9766-9771 (2000).
- 152. N.S. Babkovskaya, D.A. Varshalovich, A model for the molecular accretion disk and H₂O maser in nucleus of the galaxy NGC 4258 // Astronomy Lett. 26, 144-152 (2000).

- 153. А.Д. Быков, Ю.С. Макушкин, О.Н. Улеников, Изотопозамещение в многоатомных молекулах. Новосибирск: Наука. Сиб. Отд-ние, 1985 157 с.
- 154. G. Mellau, S.N. Mikhailenko, E.N. Starikova, S.A. Tashkun, H. Over, Vl.G. Tyuterev, Rotational levels of the (000) and (010) states of $D_2^{16}O$ from hot emission spectra in the 320-860 cm⁻¹ region // J. Mol. Spectrosc. 224, 32-60 (2004).
- 155. R.A. Toth, HDO and D₂O low pressure, long path spectra in the 600-3100 cm⁻¹ region. II. D₂O line positions and strengths // J. Mol. Spectrosc. 195, 98-122 (1999).
- 156. N. Papineau, J.M. Flaud, C. Camy-Peyret, G. Guelachvili, The $2v_2$, v_1 , and v_3 bands of $D_2^{16}O$. The ground state (000) and the triad of interacting states {(020), (100), (001)} // J. Mol. Spectrosc. 87, 219-232 (1981).
- 157. V.D. Gupta, High-resolution rotation-vibration spectra of D₂O in the region of the v₁ and v₃ bands // J. Phys. B: At. Mol. Phys. 14, 1761-1770 (1981).
- 158. S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Tennyson, T. Parekunnel, P.F. Bernath, Analysis of hot D₂O emission using spectroscopically determined potentials // J. Chem. Phys. 120, 206-210 (2004).
- 159. A.D. Bykov, V.S. Makarov, N.I. Moskalenko, O.V. Naumenko, O.N. Ulenikov, O.V. Zotov, Analysis of the D₂O absorption spectrum near 2.5 μm // J. Mol. Spectrosc. 123, 126-134 (1987).
- 160. Sheng-gui He, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, Xiang-huai Wang, Shui-ming Hu, Hai Lin, Qing-shi Zhu, High–resolution Fourier transform spectrum of the D₂O molecule in region of the second triad of interacting vibrational states // J. Mol. Spectrosc. 200, 34-39 (2000).
- 161. A. Bykov, O. Naumenko, L. Sinitsa, B. Voronin, B.P. Winnewisser, The $3v_2$ band of $D_2^{16}O$ // J. Mol. Spectrosc. 199, 158-165 (2000).
- 162. X.-H. Wang, O.N. Ulenikov, G.A. Onopenko, E.S. Bekhtereva, S.-G. He, S.-M. Hu, H. Lin, Q.-S. Zhu, High-resolution study of the first hexad of D₂O // J. Mol. Spectrosc. 200, 25-33 (2000).
- 163. T. Ohshima, H. Sasada, 1.5-μm DFB semiconductor laser spectroscopy of deuterated water // J. Mol. Sspectrosc. 136, 250-263 (1989).
- 164. P.S. Ormsby, K. Narahari Rao, M. Winnewisser, B.P. Winnewisser, A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, The $3v_2+v_3$, $v_1+v_2+v_3$, v_1+3v_2 , $2v_1+v_2$, and v_2+2v_3 bands of D_2^{16} O: The second hexade of interacting states // J. Mol. Spectrosc. 158, 109-130 (1993).

- 165. A.D. Bykov, O.V. Naumenko, L.N. Sinitsa, B.P. Winnewisser, M. Winnewisser, P.S. Ormby, K. Narahari Rao, The hot band $v_1+2v_2+v_3-v_2$ of $D_2^{16}O$ // J. Mol. Spectrosc. 166, 169-175 (1994).
- 166. Y. Cohen, I. Bar, S. Rosenwaks, Spectroscopy of D₂O (2,0,1) // J. Mol. Spectrosc. 180, 298-304 (1996).
- 167. O.N. Ulenikov, S.-G. He, G.A. Onopenko, E.S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, Q.-S. Zhu, High-resolution study of the $(v_1+v_2+v_3 = 3)$ polyad of strongly interacting vibrational bands of D₂O // J. Mol. Spectrosc. 204, 216-225 (2000).
- 168. O.V. Naumenko, O. Leshchishina, S. Shirin, A. Jenouvrier, S. Fally, A.C. Vandaele, E. Bertseva, A. Campargue, Combined analysis of the high sensitivity Fourier transform and ICLAS-VeCSEL absorption spectra of D₂O between 8800 and 9520 cm⁻¹ // J. Mol. Spectrosc. 238, 79-90 (2006).
- 169. A.D. Bykov, V.P. Lopasov, Yu.S. Makushkin, L.N. Sinitsa, O.N. Ulenikov, V.E. Zuev, Rotation-vibration of deuterated vapor in the 9160-9390 cm⁻¹ region // J. Mol. Spectrosc. 94, 1-27 (1982).
- 170. O.N. Ulenikov, S.M. Hu, E.S. Bekhtereva, G.A. Onopenko, S.G. He, X.H. Wang, J.J. Zheng, Q.S. Zhu, High-resolution Fourier transform spectrum of D₂O in the region near 0.97 μm // J. Mol. Spectrosc. 210, 18-27 (2001).
- 171. O.V. Naumenko, F. Mazzotti, O.M. Leshchishina, J. Tennyson, A. Campargue, Intracavity laser absorption spectroscopy of D₂O between 11400 and 11900 cm⁻¹ // J. Mol. Spectrosc. 242, 1-9 (2007).
- 172. S.M. Hu, O.N. Ulenikov, E.S. Bekhtereva, G.A. Onopenko, S.G. He, H. Lin, J.X. Cheng, Q.S. Zhu, High-resolution Fourier-transform intracavity laser absorption spectroscopy of D_2O in the region of the $4v_1+v_3$ band // J. Mol. Spectrosc. 212, 89-95 (2002).
- 173. A. Campargue, F. Mazzotti, S. Beguier, O.L. Polyansky, I.A. Vasilenko, O.V. Naumenko, High sensitivity ICLAS of D₂O between 12450 and 12850 cm⁻¹ // J. Mol. Spectrosc. 245, 89-99 (2007).
- 174. O.V. Naumenko, O.M. Leshchishina, S. Berguier, A. Campargue, Intracavity laser absorption spectroscopy of D₂O between 12850 and 13380 cm⁻¹ // J. Mol. Spectrosc. 252, 52-59 (2008).
- 175. W. Quapp, M. Hirsch, G.Ch. Mellau, S. Klee, M. Winnewisser, A. Maki, Climbing the bending vibrational ladder in D¹³C¹⁵N by hot gas emission spectroscopy // J. Mol. Spectrosc. 195, 284-298 (1999).
- 176. A. Maki, G.Ch. Mellau, S. Klee, M. Winnewisser, W. Quapp, High temperature infrared measurements in the region of the bending fundamental of H¹²C¹⁴N, H¹²C¹⁵N and H¹³C¹⁴N // J. Mol. Spectrosc. 202, 67-82 (2000).

- 177. R. Paso, V.M. Horneman, High-resolution rotational absorption spectra of $H_2^{16}O$, $HD^{16}O$, and $D_2^{16}O$ between 110 and 500 cm⁻¹ // J. Opt. Soc. Am. B12, 1813-1837 (1995).
- 178. R.A. Toth, $D_2^{16}O$ and $D_2^{18}O$ transition frequencies and strengths in the v₂ bands // J. Mol. Spectrosc. 162, 41-54 (1993).
- 179. C. Camy-Peyret, J.M. Flaud. A. Mahmoudi, G. Guelachvili, J.W.C. Johns, Line positions and intensities in the v_2 band of D_2O improved pumped D_2O laser frequencies // Int. J. IR and MM Waves 6, 199-233 (1985).
- 180. W.S. Benedict, S.A. Clough, L. Frenkel, T.E. Sullivan, Microwave spectrum and rotational constants for the ground state of D_2O // J. Chem. Phys. 53, 2565-2570 (1970).
- 181. G. Steenbeckeliers, J. Bellet, Application of Watson's centrifugal distortion theory to water and light asymmetric tops. General methods. Analysis of the ground state and the v_2 state of $D_2^{16}O$ // J. Mol. Spectrosc. 45, 10-44 (1973).
- 182. J.K. Messer, F.C. De Lucia, P. Helminger, Submillimeter spectroscopy of the major isotopes of water // J. Mol. Spectrosc. 105, 139-155 (1984).
- 183. J.W.C. Johns, High-resolution far-infrared (20-350 cm⁻¹) spectra of several isotopic species of H₂O // J. Opt. Soc. Am. B2, 1340-1354 (1985).
- 184. F. Matsushima, M. Matsunaga, G.Y. Qian, Y. Ohtaki, R.L. Wang, K. Takagi, Frequency measurement of pure rotational transitions of D₂O from 0.5 to 5 Thz // J. Mol. Spectrosc. 206, 41-45 (2001).
- 185. E.A. Michael, C.J. Keoshian, S.K. Anderson, R.J. Saykally, Rotational transitions in excited vibrational states of D₂O // J. Mol. Spectrosc. 208, 219-223 (2001).
- 186. O.I. Baskakov, V.A. Alekseev, E.A. Alekseev, B.I. Polevoy, New submillimeter lines of water and its isotopes // Optics and Spectroscopy 63, 1016-1018 (1987).
- 187. N. Papineau, PhD Dissertation, Orsay (1980).
- 188. D.A. Stephenson, R.G. Strauch, Water vapour spectrum near 600 GHz // J. Mol. Spectrosc. 35, 494-495 (1970).
- 189. S. Mikhailenko, Vl.G. Tyuterev, G.Ch. Mellau, Rotational transitions in hot emission HDO spectrum in the 400-850 cm⁻¹ region and high-*J*, K_a energy levels of the (000) and (010) States // XVI Colloquium on High Resolution Molecular Spectroscopy. Dijon, September 6-10, 1999 (Poster J20).
- 190. S.N. Mikhailenko, VI.G. Tyuterev, and G. Mellau, (000) and (010) states of H₂¹⁸O: analysis of rotational transitions in hot emission spectrum in the 400-850 cm⁻¹ region // J. Mol. Spectrosc. 217, 195-211 (2003).

- 191. S. Brunken, H.S.P. Muller, G. Endres, F. Lewen, T. Giesen, B. Drouin, J.C. Pearson, H. Mader, High resolution rotational spectroscopy on D₂O up to 2.7 THz in its ground and first excited vibrational bending states // Phys. Chem. Chem. Phys. 9, 2103-2112 (2007).
- 192. S.N. Mikhailenko, G.Ch. Mellau, E.N. Starikova, S.A. Tashkun, Vl.G. Tyuterev, Analysis of the first triad of interacting states (020), (100), and (001) of $D_2^{16}O$ from hot emission spectra // J. Mol. Spectrosc. 233, 32-59 (2005).
- 193. S.N. Mikhailenko, G.Ch. Mellau, E.N. Starikova, Vl.G. Tyuterev, Rotational analysis of the second triad of interacting states of $D_2^{16}O$ from hot temperature emission spectra in the 320 860 and 1750 4300 cm⁻¹ spectral ranges // Nineteenth Colloquium on High Resolution Molecular Spectroscopy, Salamanca, September 11-16, 2005 (Poster F10).
- 194. С.Н. Михайленко, G.Ch. Mellau, Е.Н. Старикова, В.Г. Тютерев, Исследование эмиссионных спектров молекулы D₂O в диапазонах 320 -860 и 1750 - 4330 см⁻¹. Сборник тезисов XXIII Съезда по спектроскопии, Звенигород, 17 – 21 октября 2005 (стр. 248-249).
- 195. E.N. Starikova, S.N. Mikhailenko, G.Ch. Mellau, Vl.G. Tyuterev, Analysis of (030), (110), and (011) interacting states of D₂¹⁶O from hot temperature emission spectra // XV Symposium on High Resolution Molecular Spectroscopy. Nizhniy Novgorod, July 18-21, 2006 (Poster D12).
- 196. E.N. Starikova, S.N. Mikhailenko, G.Ch. Mellau, Vl.G. Tyuterev, Analysis of (030), (110), and (011) interacting states of D₂¹⁶O from hot temperature emission spectra // Proceedings of SPIE, 6580, 658008 (8 pages) (2006).
- 197. A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, Vl.G. Tyuterev, M. Carleer, A.C. Vandaele, S. Mikhailenko, S. Fally, Fourier transform measurements in the 4200-6600 cm⁻¹ region // JQSRT 105, 326-355 (2007).
- 198. N.F. Zobov, R.I. Ovsannikov, S.V. Shirin, O.L. Polyansky, J. Tennyson, A. Janka, P.F. Bernath, Infrared emission spectra of hot D₂O //J. Mol. Spectrosc. 240, 112-119 (2006).
- 199. E.N. Starikova, S.N. Mikhailenko, G.Ch. Mellau, A. Jenouvrier, L. Daumont, VI.G. Tyuterev, Rotation-vibration spectra of D₂O: Confirmation of assignment for the middle IR hot emission spectra by transitions observed in long path near IR absorption // 20th International Conference on High Resolution Molecular Spectroscopy, Prague, Czech Republic, September 2-6, 2008 (Poster D3).
- 200. S. Mikhailenko, S. Tashkun, T. Putilova, E. Starikova, A. Jenouvrier, L. Daumont, S. Fally, M. Carleer, C. Hermans, A.C. Vandaele, Critical evaluation of rotation-vibration transitions and an experimental dataset of energy levels of HD¹⁸O // JQSRT 110, 597-608 (2009).

- 201. С.В. Иванов, В.Я. Панченко, Инфракрасная и микроволновая спектроскопия озона: исторический аспект // Успехи физических наук, 164, №7, 725-742 (1994).
- 202. J.-M. Flaud, C. Camy-Peyret, A. Barbe, C. Secroun, P. Jouve, Line positions and intensities for the $2v_3$, $v_1 + v_3$, and $2v_1$ bands of ozone // J. Mol. Spectrosc. 80, 185-199 (1980).
- 203. C. Camy-Peyret, J.-M. Flaud, M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, J.J. Plateaux, A. Barbe, The 3.3-μm bands of ozone: Line positions and intensities // J. Mol. Spectrosc. 141, 134-144 (1990).
- 204. J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, Atlas of ozone line parameters from microwave to medium infrared. Academic Press, Boston, 1990.
- 205. A. Barbe, S.N. Mikhailenko, Vl.G. Tyuterev, A. Hamdouni, J.J. Plateaux, Analysis of the $2v_1 + 2v_2 + v_3$ Band of Ozone // J. Mol. Spectrosc. 171, 583-588 (1995).
- 206. S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, L. Régalia, J.J. Plateaux, Line Positions and Intensities of the v_1 + v_2 + $3v_3$, v_2 + $4v_3$, and $3v_1$ + $2v_2$ Bands of Ozone // J. Mol. Spectrosc. 180, 227-235 (1996).
- 207. A. Barbe, J.J. Plateaux, S.N. Mikhailenko, Vl.G. Tyuterev, Infrared Spectrum of Ozone in the 4600 and 5300 cm⁻¹ Regions: High Order Accidental Resonances through the Analysis of v_1 + $2v_2$ + $3v_3$ v_2 , v_1 + $2v_2$ + $3v_3$, and $4v_1$ + v_3 Bands // J. Mol. Spectrosc. 185, 408-416 (1997).
- 208. A. Barbe, A. Chichery, Vl.G. Tyuterev, S.A. Tashkun, S.N. Mikhailenko, Infrared high-resolution spectra of ozone in the region 5500-5570 cm⁻¹: Analysis of v_2+5v_3 and $v_1+v_2+4v_3$ bands // Journal of Physics, B31, 1-11 (1998).
- 209. J.I. Steinfeld, S.M. Adler-Golden, J.W. Gallagher, Critical Survey on the Spectroscopy and Kinetics of Ozone in the Mesosphere and Thermosphere // J. Phys. Chem. Ref. Data 16, 911 (1987).
- 210. C.P. Rinsland, J.-M. Flaud, A. Perrin, M. Birk, G. Wagner, A. Goldman, A. Barbe, M.R. De Backer-Barilly, S.N. Mikhailenko, Vl.G. Tyuterev, M.A.H. Smith, V. Malathy Devi, D.C. Benner, F. Schreier, K.V. Chance, J. Orphal, T.M. Stephen, Spectroscopic parameters for ozone and its isotopes: recent measurements, outstanding issues, and prospects for improvements to HITRAN // JQSRT 82, 207-218 (2003).
- 211. C. Camy-Peyret, J.-M. Flaud, A. Perrin, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, The hybrid-type bands v_1 and v_3 of ${}^{16}O^{16}O^{18}O$: Line positions and intensities // J. Mol. Spectrosc. 118, 345-354 (1986).

- 212. A. Perrin, A.M. Vasserot, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, The v₂ bands of ¹⁸O₃, ¹⁸O¹⁶O¹⁸O, and ¹⁶O¹⁸O¹⁸O: Line positions and intensities // J. Mol. Spectrosc. 143, 311-317 (1990).
- 213. D. Consalvo, A. Perrin, J.-M. Flaud, C. Camy-Peyret, A. Valentin, Ch. Chardonnet, The 10-μm Bands of the ¹⁷O₃ Isotopic Species of Ozone // J. Mol. Spectrosc. 168, 92-98 (1994).
- 214. A. Chichery, A. Barbe, Vl.G. Tyuterev, M.-T. Bourgeois, Analysis of High-Resolution Spectra of ¹⁸O₃: 1. Spectral Range 1300-3100 cm⁻¹ // J. Mol. Spectrosc. 206, 1-13 (2001).
- 215. A. Chichery, A. Barbe, Vl.G. Tyuterev, Analysis of High-Resolution Spectra of ¹⁸O₃: 2. Spectral Range 3100-4900 cm⁻¹ // J. Mol. Spectrosc. 206, 14-26 (2001).
- 216. M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, Infrared spectrum of ¹⁶O¹⁸O¹⁶O in the 5 μm range. Positions, intensities, and atmospheric applications // Atmos. Ocean. Opt. 16, 183-188 (2003).
- 217. M.-R. De Backer-Barilly, A. Barbe, VI.G. Tyuterev, M.-T. Bourgeois, Highresolution infrared spectra of ¹⁸O¹⁶O¹⁸O ozone isotopomer in the range 900– 5000 cm⁻¹: line positions // J. Mol. Spectrosc. 221, 174-185 (2003).
- 219. A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, S.A. Tashkun, New observations of infrared bands of asymmetrical ozone isotopologues of ¹⁶O¹⁶O¹⁸O and ¹⁶O¹⁸O¹⁸O // Applied optics 42, 5136-5139 (2003).
- 220. Y.Q. Gao, R.A. Marcus, Strange and Unconventional Isotope Effects in Ozone Formation // Science 293, 259-263 (2001).
- 221. Ch. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky, Kinetic origin of the ozone isotope effect: a critical analysis of enrichments and rate coefficients // Phys. Chem. Chem. Phys. 3, 4718 (2001).
- 222. A. Miklavc, S.D. Peyerimhoff, Rates of formation of ozone isotopomers: a theoretical interpretation // Chem. Phys. Lett. 359, 55-62 (2002).
- 223. R. Hernandez-Lamoneda, M.R. Salazar, R.T Pack, Does ozone have a barrier to dissociation and recombination? // Chem. Phys. Lett. 355, 478-482 (2002).
- 224. M. Lopez-Puertas, B. Funke, S. Gil-Lopez, M.A. Lopez-Valverde, Thomas von Clarmann, H. Fischer, H. Oelhaf, G. Stiller, M. Kaufmann, M.E. Koukouli, J.-M. Flaud, Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) // C. R. Physique 6, 848 (2005).

- 225. H. Wenz, W. Demtroder, J.-M. Flaud, Highly Sensitive Absorption Spectroscopy of the Ozone Molecule around 1.5 μ m // J. Mol. Spectrosc. 209, 267-277 (2001).
- 226. M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, D. Romanini, B. Moeskops, A. Campargue, Fourier transform and high sensitivity cw-cavity ringdown absorption spectroscopies of ozone in the 6030–6130 cm⁻¹ region. First observation and analysis of the $3v_1+3v_3$ and $2v_2+5v_3$ bands // J. Mol. Struct. 780-781, 225-233 (2006).
- 227. A. Campargue, S. Kassi, D. Romanini, A. Barbe, M.-R. De Backer-Barilly, VI.G. Tyuterev, CW-cavity ring down spectroscopy of the ozone molecule in the 6625–6830 cm⁻¹ region // J. Mol. Spectrosc. 240, 1-13 (2006).
- 228. A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue, D. Romanini, S. Kassi, CW-Cavity Ring Down Spectroscopy of the ozone molecule in the 5980–6220 cm⁻¹ region // J. Mol. Spectrosc. 242, 156-175 (2007).
- 229. S. Kassi, A. Campargue, M.-R. De Backer-Barilly, A. Barbe, The $v_1 + 3v_2 + 3v_3$ and $4v_1 + v_2 + v_3$ bands of ozone by CW-cavity ring down spectroscopy between 5900 and 5960 cm⁻¹ // J. Mol. Spectrosc. 244, 122-129 (2007).
- 230. A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev, S. Kassi, A. Campargue, CW-cavity ring down spectroscopy of the ozone molecule in the 6220–6400 cm⁻¹ region // J. Mol. Spectrosc. 246, 22-38 (2007).
- 231. A. Campargue, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, S. Kassi, The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm⁻¹: new observations and exhaustive review // Phys. Chem. Chem. Phys. 10, 2925 (2008).
- 232. R. Schinke, P. Fleurat-Lessard, The transition-state region of the O(³P) + $O_2({}^3\Sigma \overline{g})$ potential energy surface // J. Chem. Phys. 121, 5789-5793 (2004).
- 233. D. Babikov, B.K. Kendrick, R.B. Walker, R.T Pack, P. Fleurat-Lesard, R. Schinke, Formation of ozone: Metastable states and anomalous isotope effect // J. Chem. Phys. 119, 2577 (2003).
- 234. S.Yu. Grebenshchikov, R. Schinke, P. Fleurat-Lessard, M. Joyeux, Van der Waals states in ozone and their influence on the threshold spectrum of O₃(X¹A₁). I. Bound states // J. Chem. Phys. 119, 6512 (2003).
- 235. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, et al., The HITRAN 2004 molecular spectroscopic database // JQSRT 96, 139-204 (2005).

- 236. B.V. Perevalov, S. Kassi, V.I. Perevalov, S.A. Tashkun, A. Campargue, High sensitivity CW-CRDS spectroscopy of ¹²C¹⁶O₂, ¹⁶O¹²C¹⁷O and ¹⁶O¹²C¹⁸O between 5851 and 7045 cm⁻¹: Line positions analysis and critical review of the current databases // J. Mol. Spectrosc. 252, 143-159 (2008).
- 237. M.E. Kellman, Algebraic resonance dynamics of the normal/local transition from experimental spectra of ABA triatomics // J. Chem. Phys. 83, 3843-3858 (1985).
- 238. A. Chichery, Thesis, Univ. Reims (2000).
- 239. J.J. Plateaux, L. Régalia, C. Boussin, A. Barbe, Multispectrum fitting technique for data recorded by Fourier transform spectrometer: application on N₂O and CH₃D // JQSRT 68, 507-520 (2001).
- 240. http://ozone.iao.ru
- 241. E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, S. Kassi, A. Campargue, A.W. Liu, S. Kassi, CRDS Spectroscopy of ¹⁸O₃. Part 2: Analysis of six interacting bands between 5930 and 6080 cm⁻¹ // J. Mol. Spectrosc. 255, 144-156 (2009).
- 242. E. Starikova, M-R De Backer-Barilly, VI.G. Tyuterev, A.Barbe, A. Campargue, A. Liu, S. Kassi, S.A. Tashkun, CW-CRDS infrared spectra of 18O3 in the 5900-7000 cm-1 region: Analyses, isotopic effect for band centres and rotational constants // The 8th Atmospheric Spectroscopy Applications meeting, august 27-30, 2008, Reims (Poster 1-2), (ASA proceedings, p. 22-25).
- 243. A. Campargue, A. Liu, S. Kassi, D. Romanini, M-R. De-Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, CW-Cavity Ring Down spectroscopy of ¹⁸O₃. Part 1: Experiment and analysis of the 6200-6400 cm⁻¹ spectral region // J. Mol. Spectrosc. 255, 75-87 (2009).
- 244. E. Starikova, A.Barbe, VI.G. Tyuterev, M-R De Backer-Barilly, S. Kassi, A. Campargue, CW-Cavity Ring Down spectroscopy of ¹⁸O₃. Part 3: Analysis of the 6490-6900 cm⁻¹ region and overview comparison with the ¹⁶O₃ main isotopologue// J. Mol. Spectrosc, (2009) doi:10.1016 (in press).

Freq	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"	Freq d	lF v'	J'	Ka'	Kc'	v"	J" K	Ka" Kc"
321.9611	5	000	16	8	9	000	15	7	8	349.2729	5 00)0 1'	79	8	000	16	8 9
321.9966	15	010	17	7	11	010	16	б	10	349.9977 2	20 00	0 14	ł 12	2	000	13	11 3
322.6946	10	000	20	б	14	000	20	3	17	350.3822	5 00	0 15	5 4	11	000	14	3 12
322.8571	5	000	16	8	8	000	15	7	9	350.4546	5 00	0 19	8	12	000	18	7 11
323.1886	15	000	17	7	10	000	16	б	11	351.2296	5 00	00 10	5 10	7	000	15	96
323.2373	5	010	14	4	10	010	13	3	11	351.2339	5 00	00 10	5 10	6	000	15	9 7
324.2281	10	010	15	8	8	010	14	7	7	351.3439	5 01	10 13	3 5	9	010	12	2 10
324.4822	10 10	010	10	10	/	010	14	/	8	351.3998	5 00	0 1	$\rightarrow \perp \perp$	5	000	⊥4 1 2	10 4
324.7001	10	000	15	12 Q	7	000	11	Δ Δ	1 6	351.51/0	5 01	0 10	5 12 5 9	2	010	15	2 - 2 -
325 7634	10	000	15	9	6	000	14	8	7	351,5817	5 01	0 16	5 9	7	010	15	8 8
326.4376	5	000	25	8	17	000	25	5	20	353.3028	5 01	0 14	i 11	3	010	13	10 4
327.3076	10	010	23	7	17	010	22	6	16	353.3992	5 01	0 1	5 10	6	010	14	9 5
327.3503	5	010	18	7	12	010	17	6	11	353.7209	5 00	0 12	2 6	7	000	11	3 8
327.6014	10	010	14	9	5	010	13	8	6	354.6310	5 01	.0 13	3 4	10	010	12	1 11
327.8751	10	010	12	4	9	010	11	1	10	355.0144	5 00	0 14	ł 5	10	000	13	2 11
328.1090	10	010	12	11	1	010	11	10	2	356.3421	5 00	00 19	8	12	000	19	5 15
328.7308	10	010	13	10	4	010	12	9	3	356.3912	5 00	0 13	3 2	11	000	12	1 12
329.1680	5	010	22	./	16	010	21	6	15	356.4537	5 01	10 18	3 8	11	010	17	7 10
330.4290	5	010	19	/ 7	15 1 F	010	18	6	14	356.9039	5 00	0 10 10	5 6	⊥∠ 1 2	000	10	5 L.
330.7731	5 10	010	21 17	6	11	010	∠0 16	5	14 12	350.9044	5 00	0 20	ס נ ד ג	12	000	18	6 1 3
331 4109	5	010	20	7	14	010	19	6	13	357.0200	5 01	0 1	54	11	010	14	3 12
332.1131	8	000	26	10	16	000	26	7	19	358.2179	5 00	10 - 10	5 8	19	000	25	7 18
332.5200	5	000	17	8	10	000	16	7	9	358.7068	10 01	0 1	7 7	11	010	17	4 14
333.0699	5	010	20	б	14	010	20	3	17	358.7428	5 00	0 19	8	11	000	18	7 12
333.7174	5	010	12	5	8	010	11	2	9	359.5084	5 01	.0 18	8 8	10	010	17	7 11
333.8239	5	000	18	5	13	000	18	2	16	359.8831	5 00	00 14	ł 13	1	000	13	12 2
334.1380	5	000	19	9	10	000	19	6	13	360.3281	5 00	0 25	5 8	18	000	24	7 1
334.2843	5	010	17	7	10	010	16	6	11	360.3548	5 00	10 18	3 9	10	000	17	8 9
334.5531	10	000	17	8	9	000	16	7	10	360.7687	5 00	10 18	5 9 5 C	9	000	10	8 I(
335.5645	TO	010	10 12	8	10	010	15 12	/	8	360.9035	5 00	0 1.	5 0 5 1 2	8	000	⊥∠ 1 2	10 (
335.9445	10	010	16	2	8	010	15	2 7	9	361 3321	5 00	10 1	8	14	010	⊥∠ 20	7 13
337.2395	5	010	17	6	11	010	16	5	12	361,6960	5 01	0 18	3 6	12^{11}	010	17	5 13
337.3946	10	000	13	12	2	000	12	11	1	362.2009	5 00	00 19	7	13	000	19	4 16
337.5192	5	000	16	5	11	000	15	4	12	362.3745	5 00	0 24	1 8	17	000	23	7 10
337.5440	5	000	16	9	8	000	15	8	7	362.5012	5 00	0 15	5 12	4	000	14	11 3
337.6064	5	000	16	9	7	000	15	8	8	363.1206	5 00	00 1	7 10	8	000	16	9 7
338.7368	10	010	12	12	0	010	11	11	1	363.1305	5 00	00 1	7 10	7	000	16	98
338.8798	5	000	18	7	11	000	17	6	12	363.1915	5 01	.0 1	79	9	010	16	8 8
339.0402	10	000	14	11	3	000	13	10	4	363.3034	5 01	10 T.	/ 9	8	010	16 21	8 9
339.1/54	TO	000	15	10	6	000	14	9	5	363.4/45	5 00	10 Zz	2 8 5 1 1	T2	000	∠⊥ 1 ⊑	10 4
339.0027	5	010	15	9	6	010	14	o g	0 7	363 6469	5 00	10 2°	2 2 2 2	5 16	000	15 22	10 C
339,6938	10	000	23	7	16	000	23	4	19	364,2051	5 01	0 14	12	2	010	13	11 3
340.2715	5	010	12	2	10	010	11	1	11	365.4260	5 01	0 19	8	12	010	18	7 12
340.4553	5	000	25	10	15	000	25	7	18	365.5171	5 01	.0 19	7	12	010	18	6 13
340.7550	5	010	13	11	3	010	12	10	2	365.5239	5 01	.0 10	5 10	6	010	15	9 7
341.1283	5	010	14	10	4	010	13	9	5	365.7357	5 01	.0 15	5 11	5	010	14	10 4
342.1549	5	000	18	8	11	000	17	7	10	366.7228	5 00	00 14	4 4	11	000	13	1 12
342.1959	5	010	16	5	11	010	15	4	12	367.0596	5 00	0 20) 8	13	000	20	5 10
345.0516	5	000	18	7	12	000	18	4	15	368.6136	5 01	.0 10) 5	5	010	9	2 8
345.5571	5	000	18	9	9	000	18	6	12	368.7148	5 00	$10 \ 14$	± ⊥4	0	000	13	13 1
340.3867	5	010	1°/	8	10 10	010	⊥6 17	/ 7	9 11	369.5464	5 00	ο 1. Ο 1.	1 5 1 5	11 11	000	⊥6 1 ⊃	4 L
340.4108 347 1/20	D F	000	⊥ŏ 1 2	0 12	1 I I	000	エノ 1つ	/ 10	Δ⊥⊥	3/U.114U 370 7174 7	5 UJ 15 OC	10 74	1 J	⊥⊥ 17	000	⊥3 24	
347 8312	5	010	17	د ـ م	d T	010	⊥⊿ 16	⊥⊿ 7	10	370 7258	15 OC)0 24)0 14	1 /	ر بر م	000	⊿+± 1 २	3 10
348.8968	5	010	18	7	11	010	17	6	12	371.1807	5 00	0 19	9	11	000	18	8 10
349.1051	5	000	17	9	9	000	16	8	8	371.4422	5 01	.0 19	8	11	010	18	7 12

Приложение 2.1 Новые переходы молекулы D_2^{16} О, проидентифицированные впервые при анализе горячих эмиссионных спектров

Приложение 2.1 (продолжение)	

Freq	dF	v'	J,	Ka'	Kc'	v"	J"	Ka"	Kc"	Freq	dF	v'	J,	Ka'	Kc'	v"	J"	Ka"	Kc"
371.9393	5	010	14	5	10	010	13	2	11	 394.9834	5	010	15	5	11	010	14	2	12
371.9608	5	000	20	8	12	000	19	7	13	395.0643	5	010	14	6	9	010	13	3	10
372.1306	5	000	19	9	10	000	18	8	11	395.2969	5	010	15	14	2	010	14	13	1
372.4191	5	010	13	2	11	010	12	1	12	396.0764	5	010	20	9	12	010	19	8	11
372.5229	5	000	15	13	3	000	14	12	2	397.4400	5	010	20	12	Γ	010	19	12	12
3/2.8823	5	010	∠0 1⊿	8 12	⊥3 1	010	12	12	⊥∠ 2	397.4551	5	010	1/ 21	т 2 0	5 13	010	20	12 7	1/1
374 2004	5	010	17	13 5	12	010	16	12 4	13	397 5201	5	000	20	10	11	000	19	9	10
374.5614	5	010	18	9	10	010	17	8	9	397.7058	5	000	20	10	10	000	19	9	11
374.8204	5	000	18	10	9	000	17	9	8	397.7907	5	000	20	10	10	000	20	7	13
374.8380	5	010	18	9	9	010	17	8	10	398.9676	5	000	22	9	14	000	21	8	13
374.8488	5	000	18	10	8	000	17	9	9	399.2253	5	010	16	13	3	010	15	12	4
374.8866	5	000	16	12	4	000	15	11	5	399.2551	5	000	18	12	6	000	17	11	7
374.9860	5	010	13	3	11	010	12	0	12	399.4232	5	000	19	11	9	000	18	10	8
375.7258	5	000	17		10	000	16	10	6 1 F	400.0269	5	000	16	6	11 15	000	15	3	10
376 7846	5	010	22 15	10 12	1 Z 4	010	22 14	11	7 Z	400.1085	5	010	20 19	10	10	010	20 18	2 Q	10 10
377,4800	5	010	17	10	8	010	16	9	7	400.8523	5	010	19	10	9	010	18	9	10
377.4866	5	010	17	10	7	010	16	9	8	401.5662	5	010	17	12	6	010	16	11	5
378.0378	5	010	16	11	5	010	15	10	6	401.9557	5	000	23	9	15	000	23	б	18
378.2100	5	000	20	7	13	000	19	6	14	402.1952	5	010	18	11	7	010	17	10	8
378.2944	20	000	19	9	11	000	19	6	14	402.2635	5	000	16	15	1	000	15	14	2
378.3858	5	000	15	5	11	000	14	2	12	402.6688	5	000	21	7	14	000	20	6	15
378.4038	5	010	21	8	14	010	20	7	13	402.7978	5	000	18	5	13	000	17	4	14
379.8494	5	010	25	8	18	010	24	./	T./	402.8620	5	010	15	15	10	010	14	14	10
380.9666	5	010	⊥∠ 20	6	10	010	10	3	8 11	403.3303	5	000	10 22	2	17	000	15 21	27	15
381.4127	5	000	20 15	14	2	000	14	13	1	403.3773	5	010	14	2	12	010	۲۲ 13	, 1	13
381.7153	5	010	22	8	15	010	21	7	14	405.5337	5	000	23	9	15	000	22	8	14
382.0175	5	010	24	8	17	010	23	7	16	405.9026	5	010	21	9	13	010	20	8	12
382.4246	5	010	14	14	0	010	13	13	1	406.0002	5	000	12	6	6	000	11	3	9
382.5602	5	010	14	4	11	010	13	1	12	406.3238	5	010	15	6	10	010	14	3	11
382.8174	5	010	23	8	16	010	22	7	15	406.5531	5	000	22	9	13	000	21	8	14
383.4351	5	000	20	9	11	000	19	8	12	406.7148	5	000	17	14	4	000	16	13	3
383.6/48	5	000	10	4	10	000	14	3	⊥3 11	407.2084	5	010	∠⊥ 10	/	14 12	010	20	6	15 14
383.7507	5	010	20	8	12	010	19	3 7	13	408 0504	5	010	16	14	2	010	15	13	1 1
384.7970	5	010	20	7	13	010	19	6	14	408.4164	5	000	21	10	12	000	20	- 9	11
385.0509	5	000	16	13	3	000	15	12	4	408.6493	5	010	21	9	12	010	20	8	13
385.5651	5	010	19	9	11	010	18	8	10	408.8425	5	000	21	10	11	000	20	9	12
385.9120	5	000	19	6	13	000	18	5	14	409.3634	5	000	16	16	0	000	15	15	1
386.2011	5	010	19	9	10	010	18	8	11	409.7228	5	000	18	13	5	000	17	12	6
386.2632	5	000	21	10	13	000	21	6	16	410.1177	5	000	24	9 11	16	000	23	10	15
386.3004	5	000	19	10	T 0	000	18 19	9	9 10	410.9920	5	000	20 20	⊥⊥ 11	0 10	000	10	10	10
386,6194	5	010	15	13	3	010	14	12	2	411.2118	5	000	19	12^{11}	8	000	18	11	10
386.6280	5	000	21	8	13	000	20	7	14	411.2666	5	010	15	4	12	010	14	1	13
386.8609	5	010	13	6	8	010	12	3	9	411.7002	5	010	17	13	5	010	16	12	4
387.0101	5	000	14	3	12	000	13	0	13	412.1123	5	010	20	10	11	010	19	9	10
387.1422	5	000	17	12	6	000	16	11	5	412.2302	5	010	20	10	10	010	19	9	11
387.6619	5	000	18	11	7	000	17	10	8	412.4352	5	000	23	8	16	000	23	5	19
388.1539	5	000	22	6	16	000	22	3	19	412.5183	5	000	25	9	17	000	24	8	16
388.4261 200 2421	5	010	19	8 1 2	1	010	15	5 11	15 15	412.0298	5	010	22	8	14 10	010	2T 2E	0	17
389 2492	5	010	18	10	9	010	17	9	8	413 7415	5	010	18	12	6	010	17	11	1/ 7
389.2673	5	010	18	10	8	010	17	9	9	414.0163	5	010	19	11	9	010	18	10	8
389.3237	5	000	15	3	12	000	14	2	13	414.7732	5	010	22	9	14	010	21	8	13
389.4439	5	000	15	15	1	000	14	14	0	414.9598	5	000	17	15	3	000	16	14	2
389.5029	5	010	19	6	13	010	18	5	14	415.4998	5	000	15	2	13	000	14	1	14
390.1969	5	010	17	11	7	010	16	10	6	415.7717	5	010	16	15	1	010	15	14	2
390.7912	5	000	21	9	13	000	20	8	12	415.9650	5	000	15	3	13	000	14	0	14
392.3582	5 F	010	⊥6 10	4	12 17	010	10	3 2	⊥3 17	416.2673	5	000	⊥ / 21	4 10	⊥3 10	000	⊥6 21	3 7	⊥4 1⊑
394.0055	כ 5	000	19 16	о 14	⊥4 2	000	15 15	د ۲2	⊥/ २	417 2792	5 5	000	⊿⊥ 2∩	т0 К	⊥⊿ 14	000	⊿⊥ 19	/ 5	⊥⊃ 15
394.5039	5	000	15	4	12	000	14^{-1}	1	13	417.6947	5	000	19	10	10	000	19	7	13
394.8311	5	000	21	9	12	000	20	8	13	418.8994	5	000	22	10	13	000	21	9	12

Приложение 2.1 (прод	должение)
----------------------	-----------

Freq	dF	v'	J,	Ka'	Kc'	v"	J"	Ka"	Kc"	Fre	q	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"
418.9457	5	000	23	9	14	000	22	8	15	 437.	5963	5	010	20	12	8	010	19	11	9
419.1293	5	000	18	14	4	000	17	13	5	437.	8470	5	000	12	7	5	000	11	4	8
419.1984	5	000	17	6	12	000	16	3	13	437.	9966	5	000	24	10	15	000	23	9	14
419.5800	5	000	16 22	3	⊥3 14	000	15	2	14 17	438.	1281	5	010	⊥/ 13	6	12	010	⊥6 1 2	3	⊥3 11
419.7104	5	000	22 22	10	14 12	000	23 21	9	13	439.	9403	5	000	19	15	5	000	18	14	4
419.9200	5	010	16	5	12	010	15	2	13	440.	4331	5	010	16	4	13	010	15	1	14
419.9902	5	010	22	9	13	010	21	8	14	440.	7211	5	000	18	6	13	000	17	3	14
420.1853	5	010	20	6	14	010	19	5	15	440.	7477	5	000	17	7	11	000	16	4	12
420.6747	15	010	17	14	4	010	16	13	3	441.	1748	5	010	17	17	1	010	16	16	0
420.9344	5	010	10 10	6 13	$\perp \perp$ 7	010	19 19	3 10	12	441. //1	184/	5	010	18	15 17	3 1	010	17	14	4
422.2181	5	000	17	16	2	000	16	15	1	441.	5653	5	000	24	10	14	000	23	9	15
422.3406	5	010	23	9	15	010	22	8	14	442.	7665	5	010	19	5	14	010	18	4	15
422.3493	5	000	21	11	11	000	20	10	10	443.	5183	5	000	20	14	6	000	19	13	7
422.3828	5	000	21	11	10	000	20	10	11	443.	9827	5	010	23	10	14	010	22	9	13
422.4283	5	010	16	16	0	010	15	15	1	444.	1637	5	010	24	9	15	010	23	8	16
422.4803	5	000	15 16	4	/ 13	000	12 15	4 1	8 14	444.	5017	5 5	000	∠3 23	11	⊥3 12	000	22	10	⊥∠ 13
422.7948	5	000	23	8	15	000	22	7	16	444.	6127	10	000	16	2	14	000	15	1	15
423.0008	5	000	20	12	8	000	19	11	9	444.	8556	5	000	16	3	14	000	15	0	15
423.1281	5	010	21	10	12	010	20	9	11	445.	1714	5	010	23	10	13	010	22	9	14
423.3978	5	010	21	10	11	010	20	9	12	445.	2493	5	000	24	8	16	000	23	7	17
424.0322	5	010	18	13	5	010	17	12	6	445.	4888	5	010	19	14	6	010	18	13	5
424.0025	15	000	11 14	7	4 8	000	13	4 4	7 Q	445.	0173	5 5	000	∠⊥ 22	⊥3 12	9 11	000	∠0 21	11	8 10
425.6435	5	010	20	, 11	10	010	19	10	9	446.	0232	5	000	22	12	10	000	21	11	11
425.6505	5	010	20	11	9	010	19	10	10	446.	1268	5	000	25	10	16	000	24	9	15
425.7560	5	010	19	12	8	010	18	11	7	446.	2331	5	010	17	5	13	010	16	2	14
425.8820	5	010	12	5	7	010	11	2	10	446.	9164	5	000	18	18	0	000	17	17	1
426.0056	5	000	25	9	17	000	25	6	20	447.	5040	5	000	19 25	16	4	000	74 78	15	3
427.5216	5	000	18	15	13 3	000	17	14	4	447.	7541	5	000	18	4	14	000	17	3	15
428.2168	5	010	24	9	16	010	23	8	15	447.	9636	5	000	23	7	17	000	23	4	20
428.3441	20	000	25	10	16	000	25	7	19	448.	1675	5	010	18	16	2	010	17	15	3
428.5104	5	000	17	17	1	000	16	16	0	448.	2257	10	010	20	13	7	010	19	12	8
428.5495	5	010	17	15	3	010	16	14	2	448.	2454	5	010	22	11	12	010	21	10	11
428.7462	5	000	15 23	10	9 14	000	14 22	4 9	13	440.	0900	5	010	22 17	тт ТТ	14	010	21 16	10	15
429.3681	5	000	17	5	13	000	16	2	14	449.	2511	5	010	21	12	10	010	20	11	9
429.9365	5	010	23	8	15	010	22	7	16	449.	9501	5	010	24	8	16	010	23	7	17
430.2289	5	000	22	7	15	000	21	6	16	450.	1291	5	000	21	6	15	000	20	5	16
430.6845	5	000	23	10	13	000	22	9	14	450.	8042	5	000	17	4	14	000	16	1	15
431.4009	5	000	73 73	14 9	6 14	000	18 22	13 8	5 15	451. 451	6883	5 25	000	18 25	/ 8	12	000	⊥/ 25	4	⊥3 21
432.0685	5	010	25	9	17	010	24	8	16	452.	1806	8	000	13	7	6	000	12	4	21
432.4634	5	000	24	9	15	000	23	8	16	452.	2060	5	000	20	15	5	000	19	14	6
432.8796	5	010	22	7	15	010	21	6	16	452.	6380	5	000	25	10	15	000	24	9	16
433.0962	5	010	12	6	6	010	11	3	9	452.	8687	5	000	26	10	17	000	25	9	16
433.1574	5	010	18	14	4 12	010	17	13	5	453.	0015 5715	5	010	21	6 10	15	010	20	5	16
433.4000	5	000	16	11 7	10	000	⊿⊥ 15	10 4	11	453.	6542	5	000	14	10 6	8	000	23 13	3	11
433.5504	5	000	22	11	11	000	21	10	12	453.	6675	5	010	19	15	5	010	18	14	4
433.7835	5	010	22	10	13	010	21	9	12	454.	1245	5	000	19	17	3	000	18	16	2
433.8060	5	000	20	13	7	000	19	12	8	454.	1450	5	010	18	17	1	010	17	16	2
434.3669	5	010	22	10	12	010	21	9	13	454.	6178	5	010	13	6	7	010	12	3	10
434.6069	5	000	∠⊥ 1 פ	12 16	с ТО	000	∠U 17	⊥⊥ 1⊑	y 2	454. 455	844⊥ 2426	5 5	000	∠4 24	⊥⊥ 11	⊥4 13	000	∠3 22	10	⊥3 14
435.1118	5	010	15^{+0}	2	13	010	14	1 1	14	455.	4732	5	000	21	14^{-1}	8	000	20	13	7
435.3713	5	010	17	16	2	010	16	15	1	455.	8728	5	010	24	10	14	010	23	9	15
435.6158	5	010	16	3	13	010	15	2	14	456.	1037	5	000	18	5	14	000	17	2	15
435.8956	5	010	15	3	13	010	14	0	14	456.	5923	5	010	13	7	7	010	12	4	8
436.2110	5	010	19	13	7	010	18	12	6	457.	2153	5	000	22	13	9 12	000	21	12	10
430.3055	5 5	000	19 21	5 11	⊥4± 11	000	⊥8 2∩	4 1∩	10 10	457. 457	∠⊥9∠ 2221	כ 5	000	∠ 3 2 २	⊥∠ 1	⊥⊿ 11	000	∠∠ 22	⊥⊥ 11	⊥⊥ 1
437.0798	5	010	21	11	10	010	20	10	11^{-10}	457.	6594	5	010	20	14	6	010	19	13	7

dF v' J' Ka' Kc' v" J" Ka" Kc" dF v' J' Ka' Kc' v" J" Ka" Kc" Freq Freq 457.7760 5 010 25 9 16 010 24 8 17 478.8591 5 000 23 14 10 000 22 13 459.1047 010 14 7 010 13 478.9202 5 000 25 12 14 000 24 11 13 5 8 4 9 010 18 18 0 478.9929 5 000 18 000 17 459.1472 5 010 17 17 1 4 15 459.1725 5 010 23 11 13 010 22 10 12 478.9970 5 000 25 12 13 000 24 459.2480 5 010 18 6 13 010 17 3 14 479.0986 5 000 21 17 5 000 20 010 22 10 479.3138 5 010 14 8 010 13 459.2828 5 010 23 11 12 13 6 459.8244 5 000 19 18 2 000 18 17 1 479.5890 5 010 20 17 3 010 19 459.9194 5 000 20 16 4 000 19 15 5 479.8109 5 000 14 5 9 000 13 5 010 21 13 9 010 20 12 8 479.8649 5 000 24 13 000 23 12 460.0639 11 15 460.3524 5 000 23 7 000 480.1054 30 010 25 11 010 24 16 22 6 17 010 18 5 010 17 480.5762 5 010 25 11 14 010 24 10 15 460.5226 4 14 3 15 460.7089 5 010 22 12 10 010 21 11 11 481.3410 10 000 20 7 14 000 19 460.8067 5 010 19 16 4 010 18 15 3 481.4804 5 010 22 14 8 010 21 13 5 010 15 9 461.4788 7 010 14 4 10 481.6450 5 000 20 20 0 000 19 19 481.9307 461.5557 5 010 23 7 16 010 22 б 17 5 010 19 6 14 010 18 462.3613 5 010 25 10 16 010 24 9 15 482.6260 5 000 12 8 4 000 11 464.0290 5 000 19 000 18 482.9716 010 24 12 13 010 23 11 12 14 3 15 5 6 464.1644 5 000 26 10 16 482.9855 000 25 9 17 5 010 24 12 12 010 23 11 13 464.3110 5 000 21 15 7 000 20 14 6 483.1050 5 000 15 6 9 000 14 464.6178 5 000 19 19 1 000 18 18 0 483.1782 5 010 23 13 010 22 11 464.6654 5 000 19 7 000 18 4 483.2258 5 000 19 5 15 000 18 13 14 7 10 5 000 22 000 21 5 11 483.5262 6 16 464.7668 010 16 010 15 4 464.9782 5 000 25 11 15 000 24 10 14 484.2528 5 000 22 16 6 000 21 15 465.0602 5 000 26 9 17 000 25 8 18 484.9527 5 010 20 18 2 010 19 17 465.7934 5 000 25 11 14 000 24 10 15 5 000 21 18 4 000 20 485.1283 465.9387 485.5819 5 010 16 2 14 010 15 1 15 5 010 21 16 6 010 20 486.1949 5 000 15 8 465.9887 5 010 20 15 5 010 19 14 6 7 000 14 466.3658 7 010 15 0 15 487.0749 010 22 010 16 3 14 5 6 16 010 21 466.6361 5 010 25 10 15 010 24 9 16 487.8468 000 13 000 12 5 8 6 466.6954 000 22 14 5 000 20 17 3 000 19 16 4 488.0050 5 000 23 15 9 466.9529 5 010 19 17 3 010 18 16 2 488.6099 5 000 20 б 15 000 19 466.9622 5 010 17 3 14 010 16 2 15 489.2524 5 010 19 7 13 010 18 467.2568 5 000 22 14 000 21 13 9 489.3733 5 000 26 12 15 000 25 11 14 8 468.1351 5 000 14 7 7 000 13 4 10 489.3999 5 010 20 19 1 010 19 18 468.1933 5 000 24 12 13 $000\ 23\ 11\ 12$ 489.5395 5 000 26 12 14 000 25 11 15 000 24 12 12 000 23 11 13 490.1129 5 010 22 15 468.2262 5 7 010 21 14 468,6403 5 000 23 13 11 000 22 12 10 490.2731 5 000 24 14 10 000 23 5 490.2849 5 000 21 19 000 20 18 469.2285 000 20 5 15 000 19 4 16 3 010 20 13 469.6556 5 010 21 14 7 490.8809 5 000 25 13 13 000 24 12 8 469.7343 10 000 11 8 4 000 10 5 5 491.3284 5 000 22 17 000 21 16 5 5 5 469.8067 5 010 24 11 14 010 23 10 13 492.0471 010 21 17 010 20 16 5 469.8236 5 010 17 4 14 010 16 1 15 492.2750 000 24 7 17 000 23 7 469.9934 5 010 17 7 11 010 16 4 12 492.6704 5 010 24 17 010 23 010 19 470.0431 5 010 24 11 13 010 23 10 14 492.9287 5 4 15 010 18 470.7701 5 000 25 492.9459 010 20 20 010 19 19 8 17 000 24 7 18 5 0 5 5 471.7151 010 22 13 9 $010\ 21\ 12\ 10$ 493.1161 010 23 14 10 010 22 13 471.9522 5 010 23 12 12 010 22 11 11 493.7506 5 010 25 12 14 010 24 11 13 471.9579 5 010 23 010 22 493.7802 5 010 25 12 13 010 24 12 11 11 12 472.1406 5 010 19 18 2 010 18 17 1 494.0603 5 000 14 8 7 000 13 472.1726 5 000 21 16 000 20 15 5 494.2318 5 000 13 8 5 000 12 6 472.5638 5 000 20 18 2 000 19 17 3 494.4073 5 010 24 13 11 010 23 12 12 494.4286 17 7 18 5 472.9701 5 010 25 8 010 24 010 24 13 12 010 23 12 473.2808 5 010 20 16 4 010 19 15 5 494.5843 5 000 21 20 2 000 20 473.4839 5 010 18 5 14 010 17 2 15 496.1580 5 000 23 16 8 000 22 15 5 496.7693 010 17 473.5173 000 17 2 15 000 16 1 16 5 3 15 010 16 473.6428 5 000 17 000 16 497.5130 000 21 17 3 15 0 16 5 000 22 18 4 5 000 26 11 16 000 25 10 15 5 010 21 18 4 010 20 17 474.6118 497.5779 476.2004 5 000 26 11 15 000 25 10 16 497.5995 5 010 18 3 15 010 17 476.2460 5 000 22 7 000 21 497.7028 5 010 22 16 010 21 15 15 14 8 6 000 21 476.3912 5 010 19 19 010 18 18 498.0304 5 21 000 20 20 1 0 1

9

1 16

3 11

2 12

12

14

9

1

4 15

3 12

17

7

3

3

17

7

8

2

8

2

6

4

1

9

14

11

5

3

7

0

12

12 10

2 16

5

17

15 5

> 4 11

5

5

3 16

4 14

13 11

> 6 18

б 18

11

5 8

5 8

19 1 7

> 0 16

2 16

5 9

1 16

14 10

7 19

4 10

5 10

000 14

000 25

010 17

000 23

010 13

000 15

3 16

3 15 5 7

4

11 14

16 4

16

10

Приложение 2.1 (продолжение)

477.4455

477.5438

477.9977

478.0348

478.0841

478.1398

5

5

5

5

5

5

010 20

010 18

000 19

000 18

000 20 19

010 21 15

5 15

4 15

7

7

3 15

1

12

010 19

010 17

000 18

000 17

000 19 18

010 20 14

4 16

4 13

2 16

3 16

2

6

498.1499

499.0350

499.5800

499.6192

500.4909

499.2705 10

5

5

5

5

5

000 15

000 26

010 18

010 14

000 16

000 24 15

8 8

4 15

7 7

8 9

8 18

9

Приложение	2.1	(продолжение)
I · · · ·		(I = / 1 = /

Freq	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"	Freq	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"
500.5990	5	000	21	7	15	000	20	4	16	521.8812	5	000	22	7	16	000	21	4	17
500.9899	10	010	14	5	9	010	13	2	12	522.1542	5	000	26	15	11	000	25	14	12
501.0276	5	000	21	5	16	000	20	4	17	522.2451	5	010	23	18	6	010	22	17	5
501.3085	5	010	19	5	15	010	18	2	16	523.7036	5	000	23	21	3	000	22	20	2
501.4913	5	000	25	⊥4 1 2	14	000	24	⊥3 1 2	⊥⊥ 1 2	524.1396 524.1590	5	010	22	22	16	010	21 10	21	⊥ 17
501.6727	5	000	20 26	13	⊥4 13	000	⊿⊃ 25	12	13 14	524.1580	5	010	20 25	15	11	010	24	14	10
501.8633	5	000	17	8	10	000	16	5	11	525.1309	5	000	25	- 5	18	000	24	6	19
501.9001	5	010	23	15	9	010	22	14	8	525.4687	5	010	25	7	18	010	24	6	19
502.2105	5	010	21	19	3	010	20	18	2	526.7535	5	000	23	22	2	000	22	21	1
502.2455	5	000	18	2	16	000	17	1	17	526.9162	30	000	25	17	9	000	24	16	8
502.3097	5	000	18	3	16	000	17	0	17	526.9581	5	010	18	2	16	010	17	1	17
502.8366	5	000	22	19	3	000	21	T8	4	527.0828	TO	010	18	3	16	010	17	10	Τ./
503.2010 503 3782	5 5	000	73 79	8 17	11 7	000	⊥/ 22	5 16	12	527.2150	20 C	010	23 24	19 19	5	010	22	18	4
503.3782	5	010	20	1/ 7	14	000	19	10	15	527 6953	5	010	19	د ⊥ ۲	16	010	18	2	17
504.3205	5	010	22	17	5	010	21	16	6	527.9700	10	000	12	9	4	000	11	6	5
504.5497	5	010	24	14	10	010	23	13	11	528.2041	5	000	12	9	3	000	11	6	6
504.5562	5	010	24	14	11	010	23	13	10	528.2506	5	000	22	8	15	000	21	5	16
505.2411	5	010	25	13	12	010	24	12	13	528.6597	5	010	19	4	16	010	18	1	17
505.4721	5	010	25	13	13	010	24	12	12	529.4313	5	010	20	5	16	010	19	2	17
505.7430	5	000	19	8	12	000	18	5	13	530.6505	5	000	17	7	10	000	16	4	13
505.9648	5	010	21	20	2	010	20	19	1	530.7524	5	000	26	16	10	000	25	15	11
506.0745	15 5	000	14 20	8	0 15	000	10	5	9 16	530.8104 530 8443	5	000	10	2	17	000	18	T U	18 19
506 5493	5	010	20 19	ט א	16	010	18	2	17	531 3454	5	010	19 23	20	4	010	22	19	10 10
506.8619	5	000	16	7	9	000	15	4	12	531.6780	5	010	21	6	16	010	20	3	17
507.0797	5	000	19	4	16	000	18	1	17	531.8812	5	000	16	8	8	000	15	5	11
507.3211	5	000	22	20	2	000	21	19	3	532.1763	5	000	24	20	4	000	23	19	5
507.4143	5	000	20	4	16	000	19	3	17	532.8719	5	010	25	16	10	010	24	15	9
507.7240	5	010	15	6	9	010	14	3	12	533.5340	50	000	25	18	8	000	24	17	7
507.8800	5	000	24	16	8	000	23	15	9	534.6568	5	010	23	21	3	010	22	20	10
508.8500	5	010	∠⊥ 23	21 16	⊥ Q	010	20 22	∠0 15	07	534.7214	50	000	20 20	3 1	17	000	10	2	10 10
509.0350	5	000	23	18	6	010	22	17	5	535.0140	5	000	20	4	17	000	20	⊥ 3	18
510.0106	5	010	22	18	4	010	21	17	5	536.2065	5	000	24	21	3	000	23	20	4
510.2939	5	000	20	8	13	000	19	5	14	536.5986	15	010	16	7	9	010	15	4	12
510.5042	5	000	20	5	16	000	19	2	17	537.1587	5	010	23	22	2	010	22	21	1
510.9647	5	000	25	15	11	000	24	14	10	537.7745	5	000	21	5	17	000	20	2	18
510.9773	5	000	22	21	1	000	21	20	2	538.3957	5	000	26	17	9	000	25	16	10
511.3283	ΤÜ	010	21	5 14	10 10	010	20	4 1 2	17 12	538.8453	5	010	23	23	1 7	010	22	22	0
513 4952	5	010	20 24	14	12 9	000	20 23	13 14	10	539.5100	5	010	2.4	19	5	010	23	18	6
513.8050	5	000	22	22	Ő	000	21	21	1	539.4608	5	000	24	22	2	000	23	21	3
514.0353	5	000	21	6	16	000	20	3	17	539.9588	5	000	22	6	17	000	21	3	18
514.8170	10	010	22	19	3	010	21	18	4	539.9919	5	010	25	17	9	010	24	16	8
515.1946	5	000	23	19	5	000	22	18	4	540.3556	20	010	16	6	10	010	15	3	13
515.2431	5	000	24	17	7	000	23	16	8	540.7890	5	010	17	8	10	010	16	5	11
515.7898	5	010	25	14 14		010	24	⊥3 1 2	12 11	541.2254	5	010	22	./	16 11	010	21	4	17
515.8088	כ 5	010	∠5 11	⊥4 0	⊥∠ 3	010	24 10	13 6	11 1	541.3058 541 9406	5 5	010	18 24	23	1	010	⊥/ 23	2 22	⊥∠ 2
516.4047	5	010	23	17	7	010	22	16	- 6	541.9894	5	000	23	8	16	000	22	5	17
516.5995	5	000	23	6	, 17	000	22	5	18	543.6446	50	000	24	24	0	000	23	23	1
516.9264	5	010	15	7	8	010	14	4	11	543.7025	5	010	24	20	4	010	23	19	5
516.9661	5	000	16	6	10	000	15	3	13	543.9723	5	010	22	5	17	010	21	4	18
517.6716	5	000	21	8	14	000	20	5	15	544.2836	5	000	25	20	6	000	24	19	5
518.4913	5	000	15	8	7	000	14	5	10	544.6579	5	000	23	7	17	000	22	4	18
518.7662	5	010	22	20	2	010	21	19	3	544.7431 EAE 1401	⊥5 ⊑	010	20	8 10	×7	010	75 75	5	⊥4
510.9525 510 /121	5 5	010	⊥⊿ 2⊑	8 16	4 10	010	⊥⊥ 21	5 15	/ 0	545.1481 516 1020	כ ב	000	⊿0 25	⊥ŏ 1 ₽	o g	000	∠⊃ 21	エ/ 1ワ	צ ר
519.8528	5	000	23	2.0	<u>+</u> 0 4	000	22	19 19	י ר	547 2017	5	010	2.4	21	3	010	27	2.0	4
521.2836	5	010	21	- 7	15	010	20	4	16	548.4865	5	000	25	21	5	000	24	20	4
521.3665	5	010	24	16	8	010	23	15	9	548.6844	5	000	24	6	18	000	23	5	19
521.5029	5	010	23	б	17	010	22	5	18	549.4524	5	010	21	8	14	010	20	5	15
521.7203	5	000	24	18	6	000	23	17	7	549.8411	5	000	14	9	6	000	13	6	7
521.8737	5	010	22	21	1	010	21	20	2	549.9181	5	010	24	22	2	010	23	21	3

Приложение 2.1 (прод	должение)
----------------------	-----------

Freq	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"	Freq	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"
551.0708	5	000	26	19	7	000	25	18	8	584.9625	5	010	18	7	11	010	17	4	14
551.3772	5	010	25	19	7	010	24	18	6	585.7952	5	010	22	5	18	010	21	2	19
551.3946	15	000	14	9	5	000	13	6	8	586.3221	5	010	24	7	18	010	23	4	19
551.8529	5	010	24	23	1	010	23	22	2	586.6872	10	010	21	3	18	010	20	2	19
551.9283	20	000	25	22	4	000	24	21	3	587.0032.	10 5	010	21	4	18 19	010	20	1	19 10
554 3892	30 10	010	24 21	24 4	0 17	010	20 20	∠ <i>3</i>	⊥ 18	587 3845	5	010	20	∠ 3	18	010	19	1 0	19
554.5201	5	010	15	8	7	010	14	5	10	587.4805	5	000	21	2	19	000	20	1	20
554.6226	5	000	25	23	3	000	24	22	2	587.4895	5	000	21	3	19	000	20	0	20
555.4313	5	000	17	6	11	000	16	3	14	588.3592	5	010	25	6	19	010	24	5	20
555.4748	5	010	24	6	18	010	23	5	19	589.6339	5	000	19	7	12	000	18	4	15
555.8337	5	010	25	20	6	010	24	19	5	590.2257	5	000	22	3	19	000	21	2	20
556 5726	20 20	000	∠0 25	∠0 24	о 2	000	25 24	19 23	1	590.3139 591 2766	5 5	000	22 23	4	19 19	000	∠⊥ 22	⊥ २	20 20
557.2897	5	010	19	24	17	010	18	25	18	591.5227	5	000	25	9	17	000	24	6	18
557.3666	20	010	20	3	17	010	19	2	18	591.8973	5	000	23	5	19	000	22	2	20
557.6425	10	010	21	5	17	010	20	2	18	592.3101	5	000	24	6	19	000	23	3	20
557.7811	30	000	25	25	1	000	24	24	0	592.9268	25	000	25	7	19	000	24	4	20
557.8636	5	010	22	6	17	010	21	3	18	594.9235	5	000	14	10	4	000	13	7	7
557.9191	5	010	20	4	17	010	19	1	18	597.2353	5	010	18	8	10	010	17	5	13
558.0556	5 15	000	∠6 1 g	7	19 11	000	25 17	6 1	∠0 1⊿	597.8996 :	50	000	∠0 1 8	8	19 12	000	∠5 17	2	∠0 15
558.5196	5	000	24	8	17	000	23	5	18	598.6121	5	010	25	8	18	010	24	5	19
559.1112	5	010	17	7	10	010	16	4	13	601.9052	5	000	26	9	18	000	25	6	19
559.1859	5	000	15	9	7	000	14	6	8	604.0920	5	000	20	8	12	000	19	5	15
559.2216	5	000	20	2	18	000	19	1	19	605.2575	5	010	24	5	19	010	23	4	20
559.2390	5	000	20	3	18	000	19	0	19	606.4222	5	000	15	10	6	000	14	7	7
559.5101	30	010	25	21	5	010	24	20	4	608.7731	5	000	26	6	20	000	25	5	21
560.5423	5	000	20 23	21 5	כ 18	000	∠5 22	20 2	0 1 Q	610 5207	5	000	19 25	9 7	10 19	010	18 24	0 4	13 20
562,4196	5	010	25	22	4	010	24	21	3	611.2513	5	010	24	6	19	010	23	3	20
562.7646	5	000	21	4	18	000	20	1	19	612.5906	10	010	23	4	19	010	22	3	20
563.0704	5	010	23	7	17	010	22	4	18	613.7892	5	010	23	5	19	010	22	2	20
563.3370	5	000	18	8	10	000	17	5	13	614.4326	5	010	17	9	9	010	16	6	10
563.8608	5	000	22	4	18	000	21	3	19	614.6262	5	010	19	7	12	010	18	4	15
564.1568	5	000	26	22	4	000	25	21	5	615 4540 ·	5 15	010	19 16	87	10	010	15	5	14 12
564.9289	5	000	22	23 5	18	000	21	22	19	615.5883	15	000	22	2	20	000	21	1	21
565.9905	5	010	25	24	2	010	24	23	1	615.5943	15	000	22	3	20	000	21	0	21
566.1155	5	000	23	6	18	000	22	3	19	615.7020	5	010	22	3	19	010	21	2	20
566.6278	5	010	25	25	1	010	24	24	0	616.3618	5	000	25	5	20	000	24	4	21
566.9091	5	000	16	9	8	000	15	6	9	617.3413	10	010	21	2	19	010	20	1	20
567.0374	5	000	26	23	3	000	25	22	4	617.3610	5	010	21	3	19	010	20	0	20
567 9811	5	010	10 23	8	8 16	010	15 22	5	17	617.4093 617.6018	5 5	000	10 23	т0 Т	20	000	15 22	2	8 21
568.4687	5	000	24	7	18	000	23	4	19	617.6533	30	000	23	4	20	000	22	1	21
569.2128	5	000	26	24	2	000	25	23	3	617.7603	5	000	26	7	20	000	25	4	21
570.6517	5	000	26	25	1	000	25	24	2	618.1623	5	000	16	10	6	000	15	7	9
571.3376	5	000	26	26	0	000	25	25	1	618.2764	5	000	24	4	20	000	23	3	21
572.6006	5	000	17	9	9	000	16	6	10	618.4064	5	000	25	6	20	000	24	3	21
5/3.6/53	5	000	10 22	9	/ 10	000	15 22	6	10	619.3465 . 619.8132	10 10	010	⊥8 23	6 Q	15	010	⊥/ 22	3	16
576.0896	5	000	23 18	9	10	000	17	4 6	11	619.9284	5	010	22	9	14	010	21	6	15
577.3338	5	000	25	8	18	000	24	5	19	620.8173	5	010	21	9	13	010	20	6	14
577.6042	5	000	21	9	13	000	20	6	14	621.1035	5	010	19	9	11	010	18	б	12
577.6155	5	000	19	9	11	000	18	б	12	621.3833	15	010	24	9	16	010	23	б	17
577.8166	15	000	20	9	12	000	19	6	13	621.5131	5	010	20	9	12	010	19	6	13
577.9772	15	000	22	9	14	000	21	6	15	622.4889	20	000	20	9	⊥⊥ 1 7	000	19 19	6	⊥4 10
579.42/8 579 9162	5 5	000	⊿5 ງຈ	6 0	15 15	000	⊿4 2つ	5 6	⊿∪ 16	043,305/ . 675 560/	10 5	000	⊿⊃ 2∩	ש ד	⊥/ 1२	000	⊿4 10	ю Л	⊥8 16
581.5499	5	010	17	8	- 9	010	16	5	12	627.5454	5	000	17	, 10	8	000	16	- 7	<u> </u>
582.3182	10	000	19	8	11	000	18	5	14	629.1395	5	000	21	8	13	000	20	5	16
583.8125	5	010	22	4	18	010	21	3	19	634.1406	5	010	25	5	20	010	24	4	21
584.2530	20	000	24	9	16	000	23	6	17	635.1004	10	010	20	8	12	010	19	5	15
584.4704	5	010	23	6	18	010	22	3	19	635.5758	5	010	18	9	9	010	17	6	12

Freq	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"	Freq	dF	v'	J'	Ka'	Kc'	v"	J"	Ka"	Kc"
636.5188	5	000	18	10	9	000	17	7	10	698.5906	15	010	21	10	12	010	20	7	13
637.6324	20	000	21	9	12	000	20	6	15	698.9902	5	000	25	2	23	000	24	1	24
638.0206	5	010	25	6	20	010	24	3	21	698.9902	5	000	25	3	23	000	24	0	24
639.9909	15	000	18	10	8	000	17	7	11	699.7537	5	010	24	10	15	010	23	7	16
640.8350	5	010	24	4	20	010	23	3	21	700.8826	15	010	22	10	13	010	21	7	14
641.5569	10	010	24	5	20	010	23	2	21	701.0932	5	010	25	3	22	010	24	2	23
643.0628	5	000	26	5	21	000	25	4	22	701.1067	5	010	23	10	14	010	22	7	15
643.0933	5	000	12	12	0	000	11	9	3	701.1255	5	010	25	4	22	010	24	1	23
643.5479	20	000	23	3	21	000	22	0	22	702.8205	5	000	20	11	10	000	19	8	11
643.9389	5	000	19	10	10	000	18	7	11	702.9051	5	010	20	10	10	010	19	7	13
644.3112	5	000	26	6	21	000	25	3	22	703.0836	5	000	19	8	12	000	18	3	15
644.5523	5	010	23	4	20	010	22	1	21	704.4880	5	000	20	11	9	000	19	8	12
644.7388	5	000	24	3	21	000	23	2	22	706.5398	5	010	24	3	22	010	23	0	23
644.7654	5	000	24	4	21	000	23	1	22	709.2732	5	000	24	10	14	000	23	7	17
644.9108	5	000	25	4	21	000	24	3	22	709.8602	20	000	22	7	15	000	21	4	18
645.1195	5	000	25	5	21	000	24	2	22	710.7357	10	010	18	2	16	000	19	5	15
647.2038	5	010	22	2	20	010	21	1	21	711.5466	5	000	21	11	11	000	20	8	12
647.2144	10	010	22	3	20	010	21	0	21	714.8327	20	000	21	11	10	000	20	8	13
647.4748	5	010	19	9	10	010	18	6	13	718.8390	5	000	22	11	12	000	21	8	13
648.4939	15	010	20	7	13	010	19	4	16	724.3441	5	000	23	11	13	000	22	8	14
649.4134	20	000	20	10	11	000	19	7	12	724.4107	5	010	22	10	12	010	21	7	15
650.1071	5	000	26	10	17	000	25	7	18	724.4755	5	000	25	10	15	000	24	7	18
650.5590	5	000	25	10	16	000	24	7	17	724.9137	20	000	22	11	11	000	21	8	14
650.5733	5	000	19	10	9	000	18	7	12	727.1957	5	010	15	1	15	000	16	2	14
651.9650	5	000	24	10	15	000	23	7	16	727.6894	5	000	24	8	16	000	23	5	19
652.6960	5	000	21	10	12	000	20	7	13	727.7577	10	000	24	11	14	000	23	8	15
653.3601	10	000	23	10	14	000	22	7	15	728.3178	20	000	26	11	16	000	25	8	17
653.8609	5	000	22	10	13	000	21	7	14	729.0018	20	000	25	11	15	000	24	8	16
654.7638	5	000	22	9	13	000	21	6	16	729.1360	5	010	22	7	15	010	21	4	18
656.6152	20	000	13	12	2	000	12	9	3	733.1308	5	000	19	12	8	000	18	9	9
657.9082	15	000	22	8	14	000	21	5	17	734.1768	5	010	16	2	15	000	17	3	14
659.2685	15	000	16	11	5	000	15	8	8	734.8885	5	000	23	11	12	000	22	8	15
661.1583	5	000	20	10	10	000	19	7	13	735.9328	20	010	23	10	13	010	22	.7	16
667.0006	5	010	17	1	17	000	18	2	16	738.4286	5	010	18	3	15	000	19	6	14
668.6138	5	010	25	4	21	010	24	3	22	741.6898	5	000	26	10	16	000	25	.7	19
669.0586	5	010	25	5	21	010	24	2	22	744.9606	20	000	24		13	000	23	8	16
669.5461	5	010	17	10	8	010	16	7	9	/48.3//6	5	010	24	TO	14	010	23	1	1/
669.9855	10	000	14	12	2	000	13	9	5	/51.653/	5	000	26	9	1/	000	25	6	20
6/1.0305	15	000	1/	ΤŢ	/	000	16	8	8	/55.3/85	5	000	25		14	000	24	8	1/
671.2093	5	000	26	4	22	000	25 25	3	23	/55.6609	5	000		ΤZ	10	000	20 1 F	9	12
671.3286	5	000	26	5	22	000	25	2	23	756.9789	5	010	14	1	14 14	000	15	3	13
671.6529	5	000	25	3	22	000	24	2	23	760.9579	5	010	10	1 1	14 14	000	17	4	13
671.0004	5	000	∠5 01	10	22 11	000	24	1 7	∠3 14	703.7003	5	010	10	2	14	000	10	2 2	10
672 0007	5	000	21	2 10	⊥⊥ 21	000	∠∪ วว	2	14 22	765.9925	5	010	72	⊥ 1 0	14 11	000	10 21	3	10
672.0907) 1 E	010	24	د ۸	⊿⊥ 21	010	∠ ⊃ つ ⊃	∠ 1	22	766 4222	5	000	22	⊥∠ 11	1 5	000	21	9	10
674 2105	15	010	24	-	∠⊥ 1 0	010	20	L C	22 1 E	766 7701	5	000	20	12	10	000	20	0	10 12
674.3105	10	010	∠⊥ 22	9	⊥∠ 1 /	010	∠0 22	6	17	770 0540	5	000	22	⊥∠ 11	12	000	21	9	11
675 2622	ΤŪ	000	10	9	19 19	000	10	0	1 /	770.9349	5	010	23	10	10	010	22	0	1 2
675.3022) 1 E	010	10	1 2	17 17	000	10	4	16	777 1062	10	000	∠ ⊃ つ つ	12	⊥∠ 11	000	22	9	11
676 0256	10	010	10 10	2	⊥ / ⊃1	000	19	3 1	70 70	770 E426	70 TU	000	23 25	⊥∠ 11	1 E	000	22	9	14
676.9350	10	010	23	2	⊿⊥ 01	010	22	T T	22	770.3420	20	010	20 25	тт 0	10	010	24	0	17
676.9416	10	010	∠3 10	10	∠⊥	010	17	0	22 11	790 6290	20 10	010	20	12	10	000	20	10	10
601.7020	T 2	010	10	11	0	010	17	0	TT 0	700.0300	τU	000	20	10	10	000	エラ つつ	10	14
682 6070	с 20	000	10 10	⊥⊥ 11	0 7	000	⊥/ 17	0	ッ 10	704.1330 707 7100	<u>כ</u>	000	⊿4 วว	12 7	17	000	∠3 24	9	⊥4 1 ⊆
683 1750	⊿∪ ⊑	000	⊥0 1⊑	エエ 1つ	/ Л	000	⊥/ 1Л	0	τU	707.1194 707 0601	5	010	⊿ ⊃ 1 ⊃	1	⊥/ 12	000	24 11	0 2	エロ 1つ
683 1000	5 E	000	20 T D	⊥⊿ 1∩	10	000	⊥± 21	ע ר	5 1 E	707.0024 700 2075	5 1 E	010	1 21	⊥ 11	13	010	14 22	∠ 0	⊥⊿ 16
681 5160	5	010	<u>م</u> ح 22	0 T U	11	010	⊿⊥ 21	/ ⊑	17	780.32/3	т.) Т.)	010	24 15	1 1 2	12 12	000	د ک ۱ ۲	5	10 10
600 7201	5	010	⊿⊿ ລາ	ð	⊥4± 1⊑	010	⊿⊥ ວາ	5 F	⊥/ 10	700.220U 700 0617	5	010	1 /	⊿ 1	12	000	15 15	C A	⊥⊿ 1 つ
692 0007	<u>ר</u>	000	∠⊃ 10	0 11	0	000	22 10	0	10 10	709.201/ 701 /1/0	2	010	<u> ユ ユ</u> クロ	エ 1つ	11	000	2 A	ч 0	15
602 7007	5 E	000	10	⊥⊥ 11	ע ס	000	10 10	0	11	701 000F	ن 1 ه	000	⊿⊃ 21	۲ ک ح	14 16	000	24	צ ר	15 15
695 7057	<u>כ</u>	000	エゴ つつ	⊥⊥ 1∩	0 1 2	000	⊥0 20	0 7	⊥⊥ 16	700 7005	т.Э Т.Э	000	⊿⊥ 21	12	т0 Т0	000	∠∠ 2∩	10	10
696 7060	יב ב	000	⊿ ⊃ 2 ⁄1	т 0	15 15	000	22 22	, 6	10 18	792./095 792 NES1	5	010	⊿⊥ 25	τς Γ	ح 17	000	∠0 26	10	16

Приложение 2.1 (продолжение)

697.5876 20 698.3347 5

010 25 10 16 000 26 4 23

794.4739 5

794.7666 5

010 14 2 13

010 19 5 15

000 15

000 20

3 12

6 14

010 24 7 17 000 25 1 24

Freq	dF	v'	J'	Ka'	'Kc'	v"	J"	Ka"	Kc"	Freq d	lF v'	J,	Ka'	Kc'	v"	J"	Ka"	Kc"
795.7730	5	010	25	10	16	000	26	11	15	825.1491 3	30 010	24	8	16	000	25	9	17
796.6370	5	000	25	12	13	000	24	9	16	825.2524 1	10 010	24	15	9	000	25	16	10
797.8237	5	010	15	3	12	000	16	6	11	825.6991 1	10 010	25	17	9	000	26	18	8
799.4821	5	010	17	4	14	000	18	5	13	826.4676 1	10 010	23	13	11	000	24	14	10
804.4594	5	000	22	13	9	000	21	10	12	827.3107 1	10 010	22	9	14	000	23	10	13
806.0220	5	000	26	12	14	000	25	9	17	828.3311 1	15 010	21	7	15	000	22	8	14
806.5416	20	010	24	10	15	000	25	11	14	828.3985	5 010	22	10	12	000	23	11	13
807.0953	20	010	24	10	14	000	25	11	15	828.6305	5 010	22	9	13	000	23	10	14
808.4876	20	010	24	11	13	000	25	12	14	829.2784 1	15 010	23	8	15	000	24	9	16
809.0231	15	010	25	14	12	000	26	15	11	830.3604 1	10 010	22	11	12	000	23	12	11
809.2008	5	010	15	3	13	000	16	4	12	830.3661 1	10 010	22	11	11	000	23	12	12
809.4638	5	010	22	7	16	000	23	8	15	830.8550 1	10 010	24	16	8	000	25	17	9
809.6116	5	010	24	9	15	000	25	10	16	831.1691 1	10 010	23	14	10	000	24	15	9
811.4502	5	010	24	12	12	000	25	13	13	831.8461	5 010	16	4	13	000	17	5	12
811.5756	20	010	23	8	16	000	24	9	15	833.5610	5 010	22	12	10	000	23	13	11
812.1718	5	010	14	3	11	000	15	6	10	835.4246 1	10 010	22	8	14	000	23	9	15
812.6155	5	000	26	8	18	000	25	5	21	836.4052 1	10 010	23	15	9	000	24	16	8
813.4562	5	010	14	2	12	000	15	5	11	837.4672 1	10 010	21	8	14	000	22	9	13
814.1891	20	010	25	15	11	000	26	16	10	837.6347 1	10 010	22	13	9	000	23	14	10
815.6021	5	000	23	13	11	000	22	10	12	838.3492 1	10 010	21	9	13	000	22	10	12
816.1985	10	010	23	9	15	000	24	10	14	839.2943 1	10 010	21	10	12	000	22	11	11
817.3695	10	010	23	10	14	000	24	11	13	839.3462 1	10 010	21	10	11	000	22	11	12
817.6390	10	010	23	10	13	000	24	11	14	841.4922 1	15 010	21	11	11	000	22	12	10
818.7735	30	010	23	9	14	000	24	10	15	842.1497 1	15 010	19	6	14	000	20	7	13
819.3456	10	010	23	11	13	000	24	12	12	842.3842 1	15 010	22	14	8	000	23	15	9
819.3650	10	010	23	11	12	000	24	12	13	844.7790 1	15 010	21	12	10	000	22	13	9
819.7246	10	010	25	16	10	000	26	17	9	848.9082 1	15 010	21	13	9	000	22	14	8
820.0496	10	010	24	14	10	000	25	15	11	850.4305 2	20 010	20	10	11	000	21	11	10
821.2376	10	000	17	16	2	000	16	13	3	850.4547 1	10 010	20	10	10	000	21	11	11
822.4541	20	010	23	12	12	000	24	13	11	852.7412 2	20 010	20	11	9	000	21	12	10
824.8216	10	010	14	1	14	000	14	4	11	856.1019 2	20 010	20	12	8	000	21	13	9
825.1064	10	000	21	14	8	000	20	11	9	860.5760 2	20 010	19	9	11	000	20	10	10

Приложение 2.1 (продолжение)

Примечания:

Freq – Частота перехода (см⁻¹),

dF – Ошибка определения частоты перехода (10⁻⁴ см⁻¹),

v', J', Ka', Kc' – Верхние колебательные и вращательные квантовые числа, v'', J'', Ka'', Kc'' – Нижние колебательные и вращательные квантовые числа.

J	Ka	Kc	${ m E_{obs}}{ m cm^{-1}}$	dE 10 ⁻⁵ cm ⁻¹	E_{calc} cm ⁻¹	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} h^{-1} cm^{-1}	Obs-Calc 10^{-3} cm ⁻¹
0	0	0					1178.37926	16	1178.3791	0.15
1	0	1	12.11702	2 13	12.1171	-0.08	1190.50601	15	1190.5061	-0.14
1	1	1	20.25917	7 14	20.2590	0.20	1199.79321	15	1199.7933	-0.11
1	1	0	22.68428	3 14	22.6843	-0.06	1202.33806	14	1202.3382	-0.10
2	0	2	35.87817	7 12	35.8782	-0.07	1214.29745	13	1214.2974	0.04
2	1	2	42.06931	11	42.0694	-0.08	1221.50515	12	1221.5054	-0.21
2	1	1	49.33958	3 12	49.3396	-0.03	1229.13362	13	1229.1334	0.27
2	2	1	73.67630) 11	73.6763	-0.02	1256.85455	12	1256.8547	-0.19
2	2	0	74.14216	5 12	74.1420	0.21	1257.30951	13	1257.3095	0.01
3	0	3	70.44751	10	70.4479	-0.37	1248.92339	11	1248.9236	-0.21
3	1	3	74.50653	3 10	74.5065	0.08	1253.79933	11	1253.7995	-0.12
3	1	2	88.97136	5 10	88.9718	-0.43	1268.98396	11	1268.9838	0.14
3	2	2	110.03426	5 10	110.0342	0.11	1293.24917	11	1293.2489	0.30
3	2	1	112.25150) 10	112.2517	-0.23	1295.42649	11	1295.4264	0.07
3	3	1	156.60567	/ 10	156.6053	0.33	1345.58514	11	1345.5852	-0.09
3	5	0	150.00295	D 10	120.002/	0.20	1345.03094	ΤT	1345.03/4	-0.41
4	0	4	114.98679	9	114.9870	-0.19	1293.51282	10	1293.5131	-0.24
4	1	4	117.31217	79	117.3124	-0.24	1296.41717	9	1296.4176	-0.39
4	1	3	141.08723	3 9	141.0876	-0.35	1321.41375	10	1321.4134	0.39
4	2	3	158.11105	5 9 1 0	158.1113	-0.24	1341.38197	10	1341.3819	0.07
4 1	∠ 2	∠ 2	205 88626	£ 9 5 0	205 8863	-0.12	120/ 01//5	0 T U	1347.3930 1307.0177	-0.21
4	2	∠ 1	205.88020	7 7 9	205.8803	-0.08	1395 27012	10	1395 2699	-0.21
4	4	1	269 37543	3 9	269 3752	0.24	1466 15414	10	1466 1548	-0.64
4	4	0	269.38136	5 9	269.3811	0.27	1466.15939	10	1466.1598	-0.39
5	0	5	169 03855	7 8	169 0390	-0 48	1347 54087	9	1347 5414	-0 58
5	1	5	170 24343	3 9	170 2435	-0.03	1349 10938	9	1349 1097	-0.33
5	1	4	204.93774	1 8	204.9383	-0.60	1385.70087	9	1385.7007	0.14
5	2	4	217.58588	3 9	217.5859	-0.05	1400.93718	9	1400.9368	0.39
5	2	3	229.99222	2 8	229.9926	-0.39	1413.35670	9	1413.3560	0.66
5	3	3	267.53083	39	267.5307	0.12	1456.63152	9	1456.6311	0.43
5	3	2	269.01029	8	269.0104	-0.10	1457.98597	9	1457.9856	0.34
5	4	2	331.07224	19	331.0719	0.35	1527.91706	9	1527.9173	-0.19
5	4	1	331.12365	5 8	331.1236	0.04	1527.96076	9	1527.9611	-0.33
5	5	1	411.54191	9	411.5416	0.30	1617.84341	10	1617.8438	-0.34
5	5	0	411.54224	£9	411.5422	0.07	1617.84339	ΤT	161/.8442	-0.80
б	0	6	232.52219	8	232.5223	-0.12	1410.87814	9	1410.8786	-0.47
б	1	6	233.10585	5 7	233.1063	-0.43	1411.67092	9	1411.6715	-0.57
6	1	5	279.56517	7 8	279.5655	-0.29	1460.90345	9	1460.9031	0.36
6	2	5	288.09405	5 7	288.0943	-0.25	1471.55201	8	1471.5520	0.04
6	2	4	309.26555	x 8	309.2659	-0.35	1492.95132	9	1492.9504	0.90
6	3	4	341.38880		341.3891	-0.31	1530.60166	8	1530.6014	0.31
6	3 1	3	345.44/12	2 Q	345.44/2	-0.08	1602 20220	9 Q	1534.3550 1602.2026	-0.18
6	ч 4	2	405 53200) R	405 5210	0.03	1602.20239	o Q	1602.2020	0.10
б	- 5	2	485 59391	, 0	485 5940	-0 10	1691 99660	9 9	1691 9971	-0 54
6	5	1	485.59996	5 8	485.5999	0.02	1692.00180	9	1692.0018	-0.04
6	6	1	582.40870) 9	582.4088	-0.05	1799.65532	11	1799.6553	0.05
6	6	0	582.40899) 9	582.4088	0.19	1799.65542	10	1799.6553	0.11
7	0	7	305.49517	7 7	305.4955	-0.35	1483.57119	8	1483.5722	-0.99
, 7	1	7	305.76735	5 8	305.7674	-0.01	1483.95665	8	1483.9570	-0.31

Приложение 2.2 Экспериментальные и вычисленные значения вращательных уровней энергии для состояний (000) и (010) молекулы ${\rm D_2}^{16}{\rm O}$

Приложение 2.2 (продолжение)

J	Ka	Kc	${{E_{obs}}\atop{cm^{-1}}}$	dE 10 ⁻⁵ cm ⁻¹	${ m E_{calc}}{ m cm}^{-1}$	Obs-Calc 10^{-3} cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} cm^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
7	1	6	364.04680	7	364.0475	-0.66	1546.05484	8	1546.0549	-0.11
7	2	6	369.26667	8	369.2666	0.02	1552.85445	8	1552.8540	0.44
7	2	5	401.26233	7	401.2631	-0.77	1585.48206	8	1585.4816	0.47
7	3	5	427.19905	7	427.1991	-0.04	1616.58162	8	1616.5810	0.61
7	3	4	436.06027	7	436.0607	-0.43	1624.90217	8	1624.9015	0.68
.7	4	4	492.02192	8	492.0218	0.10	1689.02999	8	1689.0297	0.33
.7	4	3	492.88031	. 7	492.8806	-0.28	1689.76319	8	1689.7631	0.08
/ 7	5	3	5/2.13064	: 8 . 0	572.1305	0.18	1770 66440	9	1/8.03/5	0.04
7	5	∠ 2	5/2.10402	. O 8	572.1040	-0.01	1886 24691	10	1886 2467	-0.19
7	6	2 1	668 85202	. 0 9	668 8523	-0.24	1886 24695	10	1886 2472	-0.24
, 7	7	1	781 17224	. 9	781 1723	-0.03	2010 48542	11	2010 4851	0.21
7	7	0	781.17184	15	781.1723	-0.43	2010.48542	22	2010.4851	0.35
8	0	8	388.01909	7	388.0192	-0.08	1565.68893	9	1565.6893	-0.36
8	1	8	388.14219	0 7	388.1426	-0.44	1565.87089	8	1565.8715	-0.58
8	1	./	457.82338	· 7	457.8235	-0.17	1640.48544	8	1640.4855	-0.02
8	2	l c	460./6552	· /	460.7660	-0.50	1644.4942/	/	1644.4944	-0.16
0	∠ 2	6	505.04912	. /	505.0494	-0.28	1714 22277	0 7	1090.0490 1714 2227	0.52
o Q	2	5	540 88196	, , . 7	540 8820	-0.33	1729 77875	7 8	1729 7780	0.12
8	4	5	591 21838	, , . 7	591 2186	-0.19	1788 34653	8	1788 3463	0.72
8	4	4	593.58707	, 7	593.5870	0.10	1790.38675	8	1790.3865	0.25
8	5	4	671.19510	, 7	671.1952	-0.10	1877.80554	9	1877.8058	-0.27
8	5	3	671.33580	7	671.3357	0.10	1877.91770	8	1877.9176	0.06
8	6	3	767.71666	9	767.7167	-0.09	1985.26379	11	1985.2637	0.13
8	6	2	767.72095	8	767.7209	0.01	1985.26629	9	1985.2668	-0.49
8	7	2	880.05462	10	880.0549	-0.32	2109.57362	17	2109.5737	-0.12
8	7	1	880.05509	9	880.0550	0.09	2109.57418	9	2109.5738	0.40
8	8	1	1006.96180	18	1006.9624	-0.61	2249.18108	22	2249.1806	0.45
8	8	0	1006.96213	9	1006.9624	-0.28	2249.18108	11	2249.1806	0.45
9	0	9	480.12516	7	480.1254	-0.22	1657.27075	8	1657.2713	-0.53
9	1	9	480.18066	5 7	480.1807	0.00	1657.35632	8	1657.3563	-0.01
9	1	8	560.75416	6	560.7547	-0.53	1743.95377	7	1743.9541	-0.36
9	2	8	562.31721	. 7	562.3173	-0.09	1746.17983	8	1746.1798	0.05
9	2	7	619.56166	6	619.5621	-0.40	1805.60935	7	1805.6094	-0.04
9	3	7	633.21678		633.2167	0.03	1823.16531	7	1823.1649	0.41
9	3	6	059.41/39	0 	659.41/6	-0.22	1000 00522	/	1000 0040	0.26
9	4 1	5	702.70240	י י ר י	702.7023	-0.24	1900.00523	o Q	1900.0049	0.32
9	4 5	5	700.17007	י ריי	782 8089	-0.24	1009.52/21	o Q	1904.7790	0.03
9	5	4	783 26872	, 7	783 2687	0.09	1989 89143	8	1989.3242	-0.18
9	6	4	879 02829	, , , 7	879 0281	0.00	2096 72359	8	2096 7236	0.10
9	6	3	879.04779	8	879.0479	-0.14	2096.73821	9	2096.7384	-0.15
9	7	3	991.29686	8	991.2967	0.14	2221.02604	9	2221.0258	0.22
9	7	2	991.29700	9	991.2972	-0.20	2221.02604	12	2221.0262	-0.12
9	8	2	1118.33630	9	1118.3365	-0.16	2360.82685	10	2360.8267	0.12
9	8	1	1118.33643	14	1118.3365	-0.04	2360.82685	20	2360.8267	0.12
9	9	1	1258.86984	. 11	1258.8701	-0.29	2514.57777	11	2514.5776	0.22
9	9	0	1258.86984	22	1258.8701	-0.29	2514.57777	22	2514.5776	0.22
10	0	10	581.82405	5 7	581.8237	0.37	1758.33491	8	1758.3348	0.09
10	1	10	581.84840	8	581.8483	0.15	1758.37419	9	1758.3743	-0.07
10	1	9	672.92043	7	672.9204	0.01	1856.50043	8	1856.5004	0.05
10	2	9	673.71741	. 7	673.7177	-0.25	1857.68613	8	1857.6861	-0.01
10	2	8	743.80339	7	743.8034	-0.03	1931.11188	8	1931.1120	-0.14

Приложение 2.2 (продолжение)

J	Ka	Kc	${E_{obs}}{cm^{-1}}$	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	$\frac{\text{Obs-Calc}}{10^{-3} \text{ cm}^{-1}}$	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} cm^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
10	3	8	752.61068	5 7	752.6109	-0.18	1942.96193	7	1942.9620	-0.02
10	3	7	790.82064	. 7	790.8204	0.21	1980.64630	8	1980.6461	0.17
10	4	7	826.19624	. 7	826.1963	-0.10	2023.75526	7	2023.7554	-0.12
10	4	6	837.05115	5 7	837.0509	0.24	2033.41471	8	2033.4147	0.03
10	5	6	906.94463	7	906.9448	-0.20	2113.77501	8	2113.7752	-0.16
10	5	5	908.21138	7	908.2111	0.24	2114.79360	8	2114.7935	0.08
10	6	5	1002.80642	8	1002.8063	0.13	2220.64081	9	2220.6408	0.00
10	6	4	1002.88069	7	1002.8805	0.19	2220.69643	8	2220.6963	0.10
10	7	4	1114.89534	. 11	1114.8954	-0.02	2344.83191	10	2344.8317	0.23
10	7	3	1114.89789	8	1114.8979	-0.01	2344.83339	8	2344.8335	-0.09
10	8	3	1242.00613	14	1242.0061	0.03	2484.77284	19	2484.7729	-0.07
10	8	2	1242.00602	9	1242.0061	-0.13	2484.77313	9	2484.7729	0.19
10	9	2	1382.78773	18	1382.7877	0.05	2638.84027	28	2638.8404	-0.18
10	9	1	1382.78756	11	1382.7877	-0.12	2638.84027	14	2638.8404	-0.18
10	10	1	1535.96791	. 28	1535.9679	0.01	2805.52534	36	2805.5254	-0.03
10	10	0	1535.96791	. 14	1535.9679	0.01	2805.52534	18	2805.5254	-0.03
11	0	11	693.11027	9	693.1101	0.13	1868.88089	9	1868.8808	0.09
11	1	11	693.12106	8	693.1210	0.02	1868.89939	9	1868.8991	0.34
11	1	10	794.43286	7	794.4330	-0.12	1978.24102	8	1978.2413	-0.33
11	2	10	794.82954	- 7	794.8294	0.16	1978.85660	8	1978.8565	0.08
11	2	9	877.11593	7	877.1159	0.05	2065.75724	9	2065.7577	-0.47
11	3	9	882.41148	5 7	882.4114	0.10	2073.23206	8	2073.2319	0.16
11	3	8	934.05177	7	934.0517	0.02	2124.88027	8	2124.8806	-0.33
11	4	8	961.33843	7	961.3383	0.17	2159.25892	8	2159.2589	0.02
11	4	7	980.25714	. 7	980.2570	0.18	2176.47233	8	2176.4728	-0.44
11	5	7	1043.50424	. 7	1043.5041	0.09	2250.47904	8	2250.4791	-0.09
11	5	6	1046.52983	7	1046.5297	0.12	2252.93678	8	2252.9371	-0.31
11	6	6	1139.06031	. 8	1139.0601	0.22	2357.02056	8	2357.0205	0.09
11	6	5	1139.29357	8	1139.2934	0.18	2357.19549	9	2357.1955	-0.04
11	7	5	1250.84753	9	1250.8474	0.17	2480.98019	9	2480.9799	0.32
11	7	4	1250.85833	11	1250.8580	0.30	2480.98740	11	2480.9874	0.00
11	8	4	1377.94585	9	1377.9459	-0.09	2620.98645	10	2620.9862	0.26
11	8	3	1377.94639	13	1377.9462	0.15	2620.98693	16	2620.9864	0.53
11	9	3	1518.93389	10	1518.9340	-0.14	2775.33571	12	2775.3358	-0.06
11	9	2	1518.93357	25	1518.9340	-0.46	2775.33571	24	2775.3358	-0.06
11	10	2	1672.48046	14	1672.4806	-0.16	2942.46218	15	2942.4626	-0.44
11	10	1	1672.48046	28	1672.4806	-0.16	2942.46218	30	2942.4626	-0.44
11	11	1	1837.32669	20	1837.3263	0.41	3120.90583	22	3120.9054	0.40
11	11	0	1837.32669	40	1837.3263	0.41	3120.90583	44	3120.9054	0.40
12	0	12	813.97372	8	813.9733	0.43	1988.90172	9	1988.9010	0.71
12	1	12	813.97830	10	813.9781	0.16	1988.90969	11	1988.9095	0.20
12	1	11	925.36941	. 8	925.3693	0.11	2109.27324	8	2109.2732	0.07
12	2	11	925.56333	8	925.5633	0.05	2109.58725	9	2109.5871	0.10
12	2	10	1019.28238	7	1019.2824	0.01	2209.17041	8	2209.1708	-0.34
12	3	10	1022.29792	8	1022.2979	0.02	2213.63200	9	2213.6321	-0.15
12	3	9	1087.98301	. 8	1087.9826	0.43	2280.21172	9	2280.2121	-0.34
12	4	9	1107.71423	8	1107.7142	0.03	2306.11603	8	2306.1165	-0.47
12	4	8	1137.30077	- 7	1137.3002	0.58	2333.64932	9	2333.6498	-0.43
12	5	8	1192 29783	, 8	1192.2978	0 00	2399 47488	9	2399, 4752	-0 33
12	5	7	1198.67842	8	1198.6780	0.41	2404 73818	8	2404.7385	-0.34
12	6	7	1287.77325	9	1287 7733	-0.01	2505 84729	9	2505 8478	-0.48
12	6	, 6	1288 41154	. 7	1288.4111	0 39	2506 32841	Ŕ	2506 3286	-0 19
12	7	6	1399 14661	, 10	1399 1466	_0 04	2629 45547	11	2629 4562	-0 70
12	, 7	5	1399 18444	. <u>1</u> 0	1399 1840	0 41	2629 48276	× ± 8	2629 4826	0 19
12	, 8	5	1526 12818	16	1526.1284	-0 22	2769 43163	16	2769,4307	0 89

Приложение 2.2 (продолжение)

J	Ka	Kc	${ m E_{obs}}{ m cm^{-1}}$	dE 10 ⁻⁵ cm ⁻	E_{calc} cm ⁻¹	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cn	E_{calc} n^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
12	8	4	1526.12995	9	1526.1298	0.13	2769.43196	10	2769.4317	0.27
12	9	4	1667.26396	14	1667.2641	-0.15	2924.01095	24	2924.0106	0.31
12	9	3	1667.26407	12	1667.2641	-0.08	2924.01095	12	2924.0107	0.29
12	10	3	1821.14925	28	1821.1497	-0.47	3091.55695	32	3091.5579	-0.91
12	10	2	1821.14925	14	1821.1497	-0.47	3091.55695	16	3091.5579	-0.91
12	11	2	1986.48436	34	1986.4845	-0.16	3270.57145	38	3270.5719	-0.49
12	11	1	1986.48436	17	1986.4845	-0.16	3270.57145	19	3270.5719	-0.49
12	12	1	2162.02743	44	2162.0266	0.82	3459.64226	52	3459.6423	0.00
12	12	0	2162.02743	22	2162.0266	0.82	3459.64226	26	3459.6423	0.00
13	0	13	944.39761	. 10	944.3973	0.32	2118.38229	15	2118.3820	0.28
13	1	13	944.39995	9	944.3995	0.50	2118.38653	10	2118.3860	0.56
13	1	12	1065.76745	10	1065.7673	0.14	2249.65210	10	2249.6521	0.01
13	2	12	1065.86147	8	1065.8614	0.09	2249.81115	9	2249.8109	0.25
13	2	11	1170.36983	9	1170.3696	0.21	2361.32886	9	2361.3292	-0.29
13	3	11	1172.02271	. 8	1172.0226	0.16	2363.88777	8	2363.8877	0.09
13	3	10	1251.55287	9	1251.5525	0.33	2445.53163	10	2445.5319	-0.22
13	4	10	1264.89865	8	1264.8984	0.23	2463.90473	8	2463.9050	-0.27
13	4	9	1307.30456	9	1307.3040	0.53	2504.20182	10	2504.2025	-0.71
13	5	9	1353.04458	8	1353.0444	0.21	2560.51435	8	2560.5145	-0.12
13	5	8	1365.03944	. 9	1365.0389	0.52	2570.61960	10	2570.6202	-0.59
13	6	8	1448.88685	8	1448.8866	0.27	2667.07303	9	2667.0733	-0.22
13	6	7	1450.43738	10	1450.4372	0.22	2668.24962		2668.2504	-0.78
13	7	7	1559.78131	. 9	1559.7811	0.26	2790.24156	9	2790.2412	0.37
13	7	6	1559.89473	12	1559.8947	-0.02	2790.32125	11	2790.3216	-0.38
13	8	6	1686.52476	10	1686.5238	0.91	2930.06969	14	2930.0680	1.67
13	8	5	1686.52910	14	1686.5293	-0.21	2930.07177	14	2930.0717	0.09
13	9	5	1827.73008	12	1827.7298	0.30	3084.80850	15	3084.8085	-0.03
13	9	4	1827.73008	24	1827.7300	0.12	3084.80850	30	3084.8086	-0.15
13	10	4	1981.91351	17	1981.9130	0.54	3252.74151	16	3252.7407	0.76
13	10	3	1981.91351	34	1981.9130	0.54	3252.74151	32	3252.7407	0.76
13	11	3	2147.71880	16	2147.7193	-0.45	3432.31236	18	3432.3133	-0.94
13	11	2	2147 71880	32	2147 7193	-0.45	3432 31236	36	3432 3133	-0.94
13	12	2	2323 87910	17	2323 8786	0 47	3622 08928	30	3622 0896	-0 27
13	12	1	2323 87910	34	2323 8786	0 47	3622 08928	60	3622 0896	-0.27
13	13	1	2509 17024	31	2509 1703	-0.04	3820 71023	32	3820 7100	0 27
13	13	0	2509.17024	62	2509.1703	-0.04	3820.71023	64	3820.7100	0.27
14	0	14	1084.36413	10	1084.3634	0.69	2257.30824	12	2257.3070	1.20
14	1	14	1084.36476	13	1084.3644	0.35	2257.30938	15	2257.3089	0.47
14	1	13	1215.63796	10	1215.6379	0.02	2399.40302	11	2399.4029	0.16
14	2	13	1215.68334	12	1215.6834	-0.04	2399.48289	13	2399.4829	0.00
14	2	12	1330.52384	. 9	1330.5236	0.21	2522.36518	9	2522.3651	0.03
14	3	12	1331.40690	10	1331.4070	-0.11	2523.79333	10	2523.7933	0.00
14	3	11	1424.00295	9	1424.0027	0.26	2619.92507	9	2619.9252	-0.08
14	4	11	1432.49029	10	1432.4901	0.15	2632.21269	10	2632.2127	-0.04
14	4	10	1489.18742	10	1489.1870	0.38	2687.12485	10	2687.1254	-0.53
14	5	10	1525.38431	. 10	1525.3845	-0.22	2733.26780	10	2733.2680	-0.22
14	5	9	1545.67230	9	1545.6720	0.31	2750.80143	10	2750.8023	-0.84
14	б	9	1622.27924	12	1622.2789	0.33	2840.59575	12	2840.5960	-0.20
14	6	8	1625.67620	9	1625.6758	0.36	2843.20203	10	2843.2027	-0.64
14	7	8	1732.72603	14	1732.7259	0.13	2963.30548	13	2963.3057	-0.24
14	7	7	1733.03379	10	1733.0334	0.38	2963.52394	9	2963.5240	-0.03
14	8	7	1859.10031	. 15	1859.1003	0.06	3102.85714	21	3102.8567	0.45
14	8	6	1859.11884	11	1859.1184	0.42	3102.86912	16	3102.8689	0.26
14	9	6	2000.27846	18	2000.2802	-1.70	3257.67109	28	3257.6697	1.43
14	9	5	2000.28093	13	2000.2809	0.02	3257.67109	14	3257.6701	0.95

Приложение 2.2 (продолжение)

J	Ka	Kc	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10^{-3} cm ⁻¹	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cn	E_{calc} n^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
14	10	5	2154.70446	30	2154.7046	-0.18	3425.93702	38	3425.9370	-0.03
14	10	4	2154.70446	15	2154.7047	-0.20	3425.93702	19	3425.9371	-0.04
14	11	4	2320.95372	38	2320.9529	0.83	3606.04405	50	3606.0435	0.51
14	11	3	2320.95372	19	2320.9529	0.83	3606.04405	25	3606.0435	0.51
14	12	3	2497.71633	38	2497.7182	-1.89	3796.51748	74	3796.5183	-0.85
14	12	2	2497.71633	19	2497.7182	-1.89	3796.51748	37	3796.5183	-0.85
14	13	2	2683.76283	56	2683.7615	1.33	3995.98534	88	3995.9856	-0.26
14	13	1	2683.76283	28	2683.7615	1.33	3995.98534	44	3995.9856	-0.26
14	14	1	2877.88508	94	2877.8850	0.03	4203.13484	98	4203.1350	-0.12
14	14	0	2877.88508	47	2877.8850	0.03	4203.13484	49	4203.1350	-0.12
15	0	15	1233.85126	16	1233.8509	0.34	2405.65744	17	2405.6570	0.44
15	1	15	1233.85187	13	1233.8514	0.51	2405.65833	13	2405.6579	0.43
15	1	14	1374.97571	14	1374.9759	-0.18	2558.53002	14	2558.5301	-0.05
15	2	14	1374.99766	11	1374.9978	-0.18	2558.57032	12	2558.5704	-0.11
15	2	13	1499.86464	13	1499.8645	0.10	2692.42115	13	2692.4210	0.15
15	3	13	1500.32917	11	1500.3291	0.09	2693.20474	10	2693.2046	0.12
15	3	12	1605.00722	13	1605.0070	0.27	2802.85721	12	2802.8573	-0.10
15	4	12	1610.14141	10	1610.1414	-0.04	2810.66909	10	2810.6690	0.11
15	4	11	1681.78864	13	1681.7890	-0.33	2881.29188	13	2881.2918	0.10
15	5	11	1708.90944	10	1708.9094	0.04	2917.34892	10	2917.3487	0.19
15	5	10	1740.15666	16	1740.1568	-0.12	2945.09524	13	2945.0955	-0.23
15	6	10	1807.75366	11	1807.7533	0.36	3026.24874	9	3026.2488	-0.09
15	6	9	1814.51156	15	1814.5117	-0.11	3031.51652	13	3031.5174	-0.90
15	7	9	1917.93377	10	1917.9337	0.07	3148.60307	11	3148.6031	-0.02
15	7	8	1918.68514	13	1918.6859	-0.74	3149.13893	17	3149.1395	-0.58
15	8	8	2043.82210	12	2043.8221	0.03	3287.75181	11	3287.7520	-0.18
15	8	.7	2043.87610	16	2043.8757	0.40	3287.78765	15	3287.7879	-0.28
15	9	.7	2184.86200	13	2184.8620	0.04	3442.53186	16	3442.5313	0.58
15	9	6	2184.86431	19	2184.8647	-0.34	3442.53369	23	3442.5330	0.69
15	10	6	2339.45609	15	2339.4559	0.18	3611.07021	21 40	3611.0690	1.20
15 1 F	10 11	5	2339.45609	30	2339.4560	0.08	3611.07021	42	3611.0691	1.14
15	11	2	2506.10377	20	2506.1044	-0.61	3791.67202	20	3791.0729	-0.84
15	1 D	4	2500.103//	5∠ 22	2500.1044	-0.61 1.25	3/91.0/202	52	3/91.0/29	-0.84
15	12 12	4	2003.45517	23 16	2003.4539	1.25	3982.82883	44	3982.8284	0.25
15	⊥∠ 1 2	2 2	2003.4551/	40	2003.4539	1.25	JY02.0200J	00 E 2	JY02.0204	0.25
15	10 10	с С	2070.23919	57	2070.2410	-1.65	4103.13091	23 106	4103.1370 1102 1270	-0.65
15	11	2	2070.23919	26	2065 2575	-1.05	4103.13091	100 50	4201 2021	-0.85
15	14	1	3065 25924	30 72	3065 2575	1 70	4391 28221	116	4391 2821	0.12
15	15	1	3267 32902	63	3267 3292	-0 21	4605 99685	64	4605 9964	0.12
15	15	0	3267.32902	126	3267.3292	-0.21	4605.99685	128	4605.9964	0.47
16	0	16	1392.83743	14	1392.8371	0.35	2563.41114	14	2563.4109	0.20
16	1	16	1392.83702	22	1392.8373	-0.26	2563.41106	20	2563.4114	-0.32
16	1	15	1543.76602	13	1543.7664	-0.33	2727.02596	13	2727.0262	-0.27
16	2	15	1543.77631	17	1543.7770	-0.68	2727.04664	17	2727.0467	-0.04
16	2	14	1678.46419	12	1678.4642	0.02	2871.59743	12	2871.5973	0.13
16	3	14	1678.70642	15	1678.7061	0.29	2872.02374	18	2872.0229	0.80
16	3	13	1794.57746	12	1794.5773	0.13	2994.18696	12	2994.1865	0.44
16	4	13	1797.57168	16	1797.5719	-0.24	2998.96354	14	2998.9628	0.71
16	4	12	1884.00428	12	1884.0046	-0.33	3085.56323	12	3085.5628	0.46
16	5	12	1903.19470	14	1903.1944	0.34	3112.34111	17	3112.3407	0.45
16	5	11	1947.66067	12	1947.6608	-0.13	3152.86496	13	3152.8650	0.00
16	б	11	2005.03384	14	2005.0339	-0.02	3223.79141	17	3223.7918	-0.36
16	б	10	2017.29512	13	2017.2953	-0.19	3233.56002	13	3233.5597	0.32
16	7	10	2115.31970	18	2115.3207	-0.97	3346.05879	17	3346.0585	0.30

Приложение 2.2 (продолжение)

J	Ka	Kc	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} cm^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
16	7	9	2117.00351	14	2117.0038	-0.26	3347.26718	13	3347.2675	-0.29
16	8	9	2240.64716	18	2240.6475	-0.32	3484.70340	32	3484.7039	-0.55
16	8	8	2240.79083	12	2240.7906	0.20	3484.79997	12	3484.8001	-0.10
16	9	8	2381.42039	25	2381.4197	0.68	3639.32758	24	3639.3280	-0.38
16	9	7	2381.42881	13	2381.4283	0.53	3639.33340	15	3639.3334	-0.02
16	10	7	2536.09417	21	2536.0953	-1.09	3808.05574	50	3808.0557	0.01
16	10	6	2536.09621	15	2536.0956	0.58	3808.05574	25	3808.0560	-0.22
16	11	6	2703.08998	42	2703.0895	0.45	3989.10799	80	3989.1080	-0.05
16	11	5	2703.08998	21	2703.0895	0.44	3989.10799	40	3989.1081	-0.06
16	12	5	2880.99034	88	2880.9910	-0.69	4180.91516	88	4180.9160	-0.85
16	12	4	2880.99034	44	2880.9910	-0.69	4180.91516	44	4180.9160	-0.85
16	13	4	3068.50538	80	3068.5048	0.60	4382.05392	120	4382.0532	0.73
16	13	3	3068.50538	40	3068.5048	0.60	4382.05392	60	4382.0532	0.73
16	14	3	3264.40576	104	3264.4075	-1.77	4591.18735	134	4591.1879	-0.58
16	14	2	3264.40576	52	3264.4075	-1.77	4591.18735	67	4591.1879	-0.58
16	15	2	3467.52346	86	3467.5212	2.25	4807.05389	142	4807.0533	0.57
16	15	1	3467.52346	43	3467.5212	2.25	4807.05389	71	4807.0533	0.57
16	16	1	3676.69247	150	3676.6940	-1.57	5028.42515	154	5028.4247	0.46
16	16	0	3676.69247	75	3676.6940	-1.57	5028.42515	77	5028.4247	0.46
17	0	17	1561.29744	26	1561.2976	-0.18	2730.54602	26	2730.5463	-0.24
17	1	17	1561.29765	17	1561.2977	-0.07	2730.54614	18	2730.5465	-0.35
17	1	16	1721.98803	19	1721.9888	-0.80	2904.87656	21	2904.8767	-0.10
17	2	16	1721.99326	15	1721.9940	-0.75	2904.88665	15	2904.8871	-0.47
17	2	15	1866.35485	20	1866.3548	0.02	3059.95078	20	3059.9505	0.28
17	3	15	1866.47996	14	1866.4803	-0.30	3060.18038	14	3060.1806	-0.23
17	3	14	1992.86642	19	1992.8660	0.38	3194.00877	18	3194.0083	0.44
17	4	14	1994.56952	13	1994.5695	0.06	3196.84971	14	3196.8496	0.13
17	4	13	2094.97390	20	2094.9743	-0.44	3298.93404	19	3298.9331	0.93
17	5	13	2107.83183	13	2107.8320	-0.21	3317.83070	14	3317.8302	0.54
17	5	12	2167.11718	18	2167.1167	0.49	3373.16396	21	3373.1637	0.21
17	6	12	2213.77579	16	2213.7759	-0.14	3432.91580	15	3432.9154	0.41
17	6	11	2234.13795	19	2234.1378	0.12	3449.58100	21	3449.5804	0.57
17	7	11	2324.75243	16	2324.7524	0.02	3555.55669	15	3555.5567	0.03
17	7	10	2328.22258	20	2328.2233	-0.70	3558.07545	21	3558.0763	-0.89
17	8	10	2449.52398	16	2449.5234	0.54	3693.65402	16	3693.6541	-0.12
17	8	9	2449.87295	29	2449.8734	-0.42	3693.89051	25	3693.8898	0.70
17	9	9	2589.89559	14	2589.8955	0.06	3847.99189	18	3847.9916	0.28
17	9	8	2589.92040	28	2589.9201	0.25	3848.00681	45	3848.0073	-0.50
17	10	8	2744.54897	16	2744.5489	0.10	4016.81335	23	4016.8136	-0.22
17	10	7	2744.55090	35	2744.5502	0.75	4016.81416	34	4016.8144	-0.20
17	11	7	2911.82168	25	2911.8215	0.21	4198.25269	44	4198.2529	-0.18
17	11	6	2911.82168	50	2911.8215	0.16	4198.25269	88	4198.2529	-0.21
17	12	6	3090.23221	40	3090.2320	0.20	4390.67421	56	4390.6745	-0.28
17	12	5	3090.23221	80	3090.2320	0.20	4390.67421	112	4390.6745	-0.28
17	13	5	3278.44543	60	3278.4458	-0.38	4592.61531	60	4592.6157	-0.40
17	13	4	3278.44543	120	3278.4458	-0.38	4592.61531	120	4592.6157	-0.40
17	14	4	3475.22021	53	3475.2194	0.82	4802.72862	73	4802.7273	1.32
17	14	3	3475.22021	106	3475.2194	0.82	4802.72862	146	4802.7273	1.32
17	15	3	3679.36553	66	3679.3672	-1.64	5019.73689	79	5019.7371	-0.24
17	15	2	3679.36553	132	3679.3672	-1.64	5019.73689	158	5019.7371	-0.24
17	16	2	3889.74227	48	3889.7395	2.73	5242.42516	83	5242.4246	0.52
17	16	1	3889.74227	96	3889.7395	2.73	5242.42516	166	5242.4246	0.52
17	17	1	4105.20291	86	4105.2048	-1.90	5469.59996	88	5469.5996	0.33
17	17	0	4105.20291	172	4105.2048	-1.90	5469.59996	176	5469.5996	0.33
18	0	18	1739.20635	18	1739.2066	-0.28	2907.03851	19	2907.0389	-0.36

Приложение 2.2 (продолжение)

J	Ka	Kc	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10^{-3} cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} cm^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
18	1	18	1739.20680	30	1739.2067	0.12	2907.03818	34	2907.0390	-0.82
18	1	17	1909.61866	18	1909.6191	-0.45	3092.06215	18	3092.0622	-0.04
18	2	17	1909.62096	29	1909.6217	-0.69	3092.06727	24	3092.0676	-0.35
18	2	16	2063.54274	17	2063.5425	0.20	3257.50438	17	3257.5044	-0.04
18	3	16	2063.60704	24	2063.6075	-0.46	3257.62866	23	3257.6288	-0.12
18	3	15	2200.02762	16	2200.0277	-0.05	3402.48602	17	3402.4867	-0.63
18	4	15	2200.98105	21	2200.9810	0.05	3404.14691	22	3404.1464	0.46
18	4	14	2314.23374	17	2314.2340	-0.29	3520.70271	16	3520.7029	-0.15
18	5	14	2322.45870	23	2322.4584	0.28	3533.43410	25	3533.4329	1.21
18	5	13	2397.36735	16	2397.3676	-0.24	3604.89228	17	3604.8918	0.48
18	6	13	2433.58745	23	2433.5875	-0.06	3653.25642	24	3653.2558	0.58
18	6	12	2464.73574	16	2464.7362	-0.46	3679.52685	19	3679.5260	0.81
18	7	12	2546.03258	24	2546.0328	-0.18	3776.93135	25	3776.9306	0.71
18	7	11	2552.65544	17	2552.6561	-0.71	3781.81246	19	3781.8124	0.01
18	8	11	2670.37830	25	2670.3780	0.27	3914.52959	26	3914.5303	-0.68
18	8	10	2671.16938	18	2671.1690	0.34	3915.06551	20	3915.0655	-0.02
18	9	10	2810.22793	26	2810.2282	-0.29	4068.45188	38	4068.4511	0.76
18	9	9	2810.29299	19	2810.2929	0.05	4068.49193	23	4068.4924	-0.51
18	10	9	2964.74108	30	2964.7410	0.10	4237.25606	52	4237.2566	-0.50
18	10	8	2964.74394	20	2964.7449	-0.98	4237.25888	24	4237.2590	-0.09
18	11	8	3132.21043	38	3132.2110	-0.58	4419.00857	84	4419.0085	0.09
18	11	7	3132.21136	21	3132.2112	0.16	4419.00857	42	4419.0086	-0.02
18	12	7	3311.07677	92	3311.0769	-0.10	4611.99415	120	4611.9944	-0.28
18	12	6	3311.07677	46	3311.0769	-0.11	4611.99415	60	4611.9944	-0.29
18	13	б	3499.95505	116	3499.9548	0.20	4814.70641	140	4814.7067	-0.25
18	13	5	3499.95505	58	3499.9548	0.20	4814.70641	70	4814.7067	-0.25
18	14	5	3697.57472	146	3697.5753	-0.58	5025.77267	148	5025.7728	-0.18
18	14	4	3697.57472	73	3697.5753	-0.58	5025.77267	74	5025.7728	-0.18
18	15	4	3902.74184	134	3902.7411	0.73	5243.91332	170	5243.9119	1.45
18	15	3	3902.74184	67	3902.7411	0.73	5243.91332	85	5243.9119	1.45
18	16	3	4114.29930	158	4114.3017	-2.38	5467.90442	180	5467.9045	-0.05
18	16	2	4114.29930	79	4114.3017	-2.38	5467.90442	90	5467.9045	-0.05
18	17	2	4331.13557	122	4331.1333	2.22	5696.57018	190	5696.5703	-0.16
18	17	1	4331.13557	61	4331.1333	2.22	5696.57018	95	5696.5703	-0.16
18	18	1	4552.11934	192	4552.1214	-2.01	5928.74719	194	5928.7476	-0.39
18	18	0	4552.11934	96	4552.1214	-2.01	5928.74719	97	5928.7476	-0.39
19	0	19	1926.53640	41	1926.5367	-0.31	3092.86348	37	3092.8633	0.19
19	1	19	1926.53655	20	1926.5367	-0.18	3092.86284	22	3092.8634	-0.53
19	2	18	2106.63028	22	2106.6303	0.85	3288.55896	33	3288.5606	-1.67
19	1	18	2106.63118	43	2106.6316	-1.31	3288.56191	21	3288.5635	-1.63
19	2	17	2270.01721	27	2270.0170	0.18	3464.26179	35	3464.2615	0.29
19	3	17	2270.05054	18	2270.0507	-0.19	3464.32904	20	3464.3290	0.07
19	3	16	2416.17018	29	2416.1700	0.20	3619.76224	26	3619.7624	-0.19
19	4	16	2416.69809	19	2416.6982	-0.13	3620.72116	20	3620.7214	-0.21
19	4	15	2541.69116	29	2541.6917	-0.49	3750.55731	26	3750.5575	-0.20
19	5	15	2546.76835	18	2546.7686	-0.22	3758.81302	19	3758.8132	-0.14
19	5	14	2637.28649	26	2637.2868	-0.28	3846.91322	30	3846.9128	0.37
19	6	14	2664.05662	17	2664.0569	-0.26	3884.41690	22	3884.4171	-0.20
19	6	13	2708.37130	27	2708.3710	0.30	3922.93665	31	3922.9356	1.04
19	7	13	2778.89907	18	2778.8999	-0.86	4009.95575	21	4009.9549	0.84
19	7	12	2790.61588	25	2790.6164	-0.48	4018.77350	27	4018.7728	0.70
19	8	12	2903.11047	18	2903.1105	-0.01	4147.23855	23	4147.2387	-0.18
19	8	11	2904.77611	28	2904.7757	0.43	4148.37313	29	4148.3734	-0.23
19	9	11	3042.35095	19	3042.3512	-0.29	4300.63063	24	4300.6312	-0.58
19	9	10	3042.50919	26	3042.5086	0.57	4300.73098	30	4300.7319	-0.88

Приложение 2.2 (продолжение)

J	Ka	Kc	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cn	E_{calc} n^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
19	10	10	3196.59366	21	3196.5940	-0.38	4469.29669	31	4469.2966	0.04
19	10	9	3196.60504	30	3196.6051	-0.03	4469.30418	50	4469.3034	0.80
19	11	9	3364.16730	25	3364.1670	0.25	4651.27443	34	4651.2738	0.61
19	11	8	3364.16702	34	3364.1676	-0.62	4651.27443	68	4651.2742	0.25
19	12	8	3543.42396	26	3543.4235	0.42	4844.76459	59	4844.7642	0.40
19	12	7	3543.42396	52	3543.4236	0.40	4844.76459	118	4844.7642	0.39
19	13	7	3732.91987	62	3732.9206	-0.69	5048.20520	73	5048.2053	-0.07
19	13	б	3732.91987	124	3732.9206	-0.69	5048.20520	146	5048.2053	-0.07
19	14	6	3931.35598	72	3931.3556	0.37	5260.19519	82	5260.1954	-0.19
19	14	5	3931.35598	144	3931.3556	0.37	5260.19519	164	5260.1954	-0.19
19	15	5	4137.51498	84	4137.5155	-0.55	5479.44019	85	5479.4402	-0.03
19	15	4	4137.51498	168	4137.5155	-0.55	5479.44019	170	5479.4402	-0.03
19	16	4	4350.24587	80	4350.2453	0.55	5704.72006	94	5704.7187	1.39
19	16	3	4350.24587	160	4350.2453	0.55	5704.72006	188	5704.7187	1.39
19	17	3	4568.42376	91	4568.4263	-2.53	5934.85729	100	5934.8577	-0.45
19	17	2	4568.42376	182	4568.4263	-2.53	5934.85729	200	5934.8577	-0.45
19	18	2	4790.95997	14	4790.9576	2.42	6168.71076	106 010	6168.7111	-0.35
19	10	1	4/90.9599/	148	4/90.95/6	2.42	6168./10/6		6168./111	-0.35
19	19	T	5016.73715	105	5016.7377	-0.51	6405.1383/	107 014	6405.1388	-0.42
19	19	0	5010./3/15	210	5010./3//	-0.51	6405.1383/	214	6405.1388	-0.42
20	0	20	2123.25945	31	2123.2590	0.42	3287.99210	26	3287.9927	-0.63
20	1	20	2123.26006	46	2123.2590	1.02	3287.99204	48	3287.9928	-0.76
20	2	19	2312.99276	52	2312.9936	-0.43	3494.34769	25	3494.3476	0.08
20	1	19	2312.99318	29	2312.9942	-1.49	3494.35019	50	3494.3492	0.94
20	2	18	2485.75835	22	2485.7581	0.28	3680.21091	22	3680.2107	0.20
20	3	18	2485.77556	42	2485.7756	-0.07	3680.24800	40	3680.2476	0.35
20	3	17	2641.35229	21	2641.3522	0.08	3845.92882	22	3845.9286	0.18
20	4	17	2641.64528	44	2641.6434	1.92	3846.47806	36	3846.4795	-1.47
20	4	16	2777.46478	23	2777.4650	-0.26	3988.48715	22	3988.4889	-1.79
20	5	16	2780.52109	28	2780.5211	0.01	3993.69318	38	3993.6936	-0.38
20	5	15	2885.92678	22	2885.9272	-0.44	4098.16659	26	4098.1670	-0.43
20	6	15	2904.77988	32	2904.7808	-0.92	4125.99599	35	4125.9963	-0.29
20	6	14	2964.04695	20	2964.0476	-0.67	4178.99835	24	4178.9980	0.36
20	/ 7	14 12	3023.03218	3∠ 10	3023.0325	-0.29	4254.34/36	33	4254.3459	1.49
20	/	⊥3 1 2	3042.20054	19	3042.2669	-0.37	4269.214//	24	4269.2141	0.63
20	0	10	3147.50030	∠o 21	3147.5004	-0.07	4391.05000	22	4391.0557	0.34
20 20	0	12 12	2206 10054	2⊥ 20	3130.0003 2206 1001	-0.49	4393.91307	24	4393.9129	0.13
20	9 Q	⊥∠ 11	3286 54538	30 21	3286 5459	-0.52	4544.44954	22	4544.4502	-0.00
20	10	11	3440 02945	30	3440 0286	0.50	4712 84321	20	4712 8439	-0 69
20	10	10	3440 05732	21	3440 0571	0.20	4712 86102	27	4712 8613	-0.30
20	11	10	3607.59677	34	3607.5969	-0.09	4894.94770	56	4894,9460	1.66
20	11	- 0	3607.59847	25	3607.5986	-0.16	4894.94749	35	4894,9471	0.41
20	$12^{}$	9	3787.16800	62	3787.1682	-0.15	5088.86995	82	5088.8702	-0.27
20	12	8	3787.16800	31	3787.1682	-0.24	5088.86995	41	5088.8703	-0.32
20	13	8	3977.23099	60	3977.2299	1.09	5292.99033	148	5292.9890	1.33
20	13	7	3977.23099	30	3977.2299	1.08	5292.99033	74	5292.9890	1.32
20	14	7	4176.43815	150	4176.4391	-0.98	5505.86458	168	5505.8643	0.28
20	14	6	4176.43815	75	4176.4391	-0.98	5505.86458	84	5505.8643	0.28
20	15	6	4383.56199	166	4383.5617	0.31	5726.18385	184	5726.1839	-0.03
20	15	5	4383.56199	83	4383.5617	0.31	5726.18385	92	5726.1839	-0.03
20	16	5	4597.43437	188	4597.4345	-0.11	5952.72097	188	5952.7213	-0.35
20	16	4	4597.43437	94	4597.4345	-0.11	5952.72097	94	5952.7213	-0.35
20	17	4	4816.94130	182	4816.9406	0.65	6184.30907	206	6184.3081	1.00
20	17	3	4816.94130	91	4816.9406	0.65	6184.30907	103	6184.3081	1.00

Приложение 2.2 (продолжение)

J	Ka	Kc	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cn	E_{calc} n^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
20	18	3	5040.98752	204	5040.9900	-2.44	6419.81002	220	6419.8109	-0.87
20	18	2	5040.98752	102	5040.9900	-2.44	6419.81002	110	6419.8109	-0.87
20	19	2	5268.50375	172	5268.5008	2.93	6658.11071	230	6658.1112	-0.53
20	19	1	5268.50375	86	5268.5008	2.93	6658.11071	115	6658.1112	-0.53
20	20	1	5498.38216	228	5498.3812	0.95	6898.08423	230	6898.0846	-0.34
20	20	0	5498.38216	114	5498.3812	0.95	6898.08423	115	6898.0846	-0.34
21	0	21	2329.34314	52	2329.3436	-0.47	3492.40113	58	3492.3993	1.83
21	1	21	2329.34331	37	2329.3436	-0.31	3492.40045	40	3492.3994	1.09
21	1	20	2528.67760	77	2528.6785	-0.89	3709.39730	88	3709.3970	0.30
21	2	20	2528.67903	36	2528.6788	0.21	3709.39730	44	3709.3980	-0.70
21	2	19	2710.74066	45	2710.7393	1.38	3905.33339	53	3905.3325	0.91
21	3	19	2710.74913	35	2710.7485	0.64	3905.35257	26	3905.3530	-0.47
21	3	18	2875.59708	51	2875.5973	-0.26	4081.03752	56	4081.0349	2.63
21	4	18	2875.75754	27	2875.7575	0.03	4081.35081	25	4081.3510	-0.18
21	4	17	3021.72443	42	3021.7241	0.35	4234.63720	41	4234.6373	-0.08
21	5	1/	3023.53238	24 42	3023.5329	-0.51	4237.85353	27	4237.8551	-1.62
21	5	10	3142.67296	43	3142.6712	1.77	435/.80639	43	4357.8094	-2.99
21	6	10	3155.38804	21	3155.3883	-0.24	4377.60715	20	43/7.60/3	-0.17
∠⊥ 21	0 7	15	3230.05029	33	3230.0501	0.17	4440.094/4	40	4440.0949	-0.17
∠⊥ 21	/ 7	11 11	32/8.00309	23 27	32/8.0043	-0.63	4509.//121	20 40	4509.7705	0.71
∠⊥ 21	0	⊥4 1 /	2/02 500/0	27	2402 5000	-0.15	4555.20490	42 27	4555.2040	0.90
∠⊥ 21	0	12 12	2403.59848	23	2402.5990	-0.40	4047.01091	27	4047.0100	1 96
∠⊥ 21	0 0	12	25/1 6511/	ンム つつ	3409.0002	-0.56	4031.03024	20	4051.0405	_0 81
∠⊥ 21	9	10 10	3541.05114	22	3541.0517	-0.50	4/99.01000	20	4/99.0104	-0.81
21 21	10	12	3694 96191	22	3694 9626	-0 73	4967 80557	33	4967 8063	-0.10
21	10	11	3695 03147	23	3695 0315	0.73	4967 84714	41	4967 8483	_1 18
21	11	11	3862 40644	25	3862 4064	0.02	5149 92129	34	5149 9208	0 48
21	11	10	3862 41266	32	3862 4113	1 39	5149 92296	46	5149 9237	-0 70
21	12	10	4042.20586	2.8	4042.2054	0.44	5344.19926	42	5344.1975	1.78
21	12^{-1}	9	4042.20586	56	4042.2057	0.16	5344.19926	84	5344.1976	1.63
21	13	9	4232.76766	33	4232.7684	-0.73	5548.93348	50	5548.9339	-0.47
21	13	8	4232.76766	66	4232.7684	-0.74	5548.93348	100	5548.9340	-0.47
21	14	8	4432.70454	37	4432.7034	1.10	5762.64590	85	5762.6479	-1.96
21	14	7	4432.70454	74	4432.7034	1.10	5762.64590	170	5762.6479	-1.96
21	15	7	4640.74910	85	4640.7499	-0.77	5984.00437	95	5984.0039	0.51
21	15	6	4640.74910	170	4640.7499	-0.77	5984.00437	190	5984.0039	0.51
21	16	б	4855.73457	93	4855.7326	1.96	6211.76578	101	6211.7664	-0.61
21	16	5	4855.73457	186	4855.7326	1.96	6211.76578	202	6211.7664	-0.61
21	17	5	5076.53298	104	5076.5333	-0.33	6444.76803	103	6444.7682	-0.21
21	17	4	5076.53298	208	5076.5333	-0.33	6444.76803	206	6444.7682	-0.21
21	18	4	5302.06963	101	5302.0692	0.39	6681.88695	112	6681.8865	0.49
21	18	3	5302.06963	202	5302.0692	0.39	6681.88695	224	6681.8865	0.49
21	19	3	5531.27237	112	5531.2751	-2.68	6922.02052	118	6922.0213	-0.79
21	19	2	5531.27237	224	5531.2751	-2.68	6922.02052	236	6922.0213	-0.79
21	20	2	5763.08802	97	5763.0847	3.29	7164.07552	123	7164.0758	-0.31
21	20	1	5763.08802	194	5763.0847	3.29	7164.07552	246	7164.0758	-0.31
21	21	1	5996.41254	122	5996.4119	0.64	7406.93425	124	7406.9344	-0.17
21	21	0	5996.41254	244	5996.4119	0.64	7406.93425	248	7406.9344	-0.17
22	0	22	2544.76070	42	2544.7597	0.99	3706.05419	53	3706.0542	0.03
22	1	22	2544.76070	84	2544.7597	0.99	3706.05401	64	3706.0542	-0.22
22	1	21	2753.65118	42	2753.6534	-2.25	*3933.66760	110	3933.6812	-13.63
22	2	∠⊥ 2.2	2/53.65277	86	2/53.6536	-0.83	* 3933.66760	220	3933.6819	-14.32
22	2	20	2944.93150	34	2944.9304	1.10	4139.60429	53	4139.6016	2.69
22	3	20	2944.93/21	49	2944.9353	1.93	4139.61557	71	4139.6134	2.19

Приложение 2.2 (продолжение)

J	Ka	ı Kc	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} cm^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
22	3	19	3118.90480	31	3118.9043	0.55	4325.09932	58	4325.0989	0.41
22	4	19	3118.99152	72	3118.9925	-0.94			4325.2809	
22	4	18	3274.61013	33	3274.6095	0.67	4489.16528	30	4489.1657	-0.41
22	5	18	3275.66968	44	3275.6687	1.01	4491.12862	57	4491.1307	-2.09
22	5	17	3407.27473	32	3407.2736	1.16	4625.32269	30	4625.3238	-1.06
22	6	17	3415.55592	47	3415.5569	-0.97	4638.90125	60	4638.8998	1.48
22	6	16	3507.05883	29	3507.0589	-0.03	4724.92808	32	4724.9305	-2.42
22	7	16	3543.60575	39	3543,6060	-0.26	4775.86264	42	4775.8617	0.97
22	7	15	3585.61745	23	3585.6160	1.41	4810,48623	29	4810,4866	-0.36
22	8	15	3670.92364	40	3670.9240	-0.41	4914.92030	48	4914.9195	0.80
2.2	8	14	3681,44065	2.4	3681.4413	-0.68	4922,40021	30	4922,4000	0.21
2.2	9	14	3808.62757	35	3808.6275	0.02	5066.62341	42	5066.6229	0.51
22	9	13	3810 15188	2.4	3810 1516	0 33	5067 60926	31	5067 6112	-1 89
22	10	13	3961 31045	39	3961 3102	0.23	5234 08809	45	5234 0889	-0.86
22	10	12	3961 46621	24	3961 4660	0 20	5234 18240	32	5234 1843	-1 86
22	11	12	4128 50017	37	4128 5006	-0.45	5416 09316	50	5416 0927	0 47
22	11	11	4128 51192	27	4128 5129	-1 00	5416 09812	<u>4</u> 1	5416 0999	-1 79
22	12	11	4308 42995	37	4308 4289	1 02	5610 63021	86	5610 6297	0 46
22	12	10	4308 42942	28	4308 4297	-0.29	5610 63021	43	5610 6302	0.10
22	12	10	1100.12012	20 68	4300.4257	0.25	5010.03021	104	5010.0302 5015 0151	-0.73
22	10 10	10	4499.42093	24	4499.4204	0.50	5015.91433 E01E 01/22	104 50	5015.9151	-0.75
22	11	9 0	4499.42093	27	4700 0251	_0.32	6030 /1/01	120	6030 4135	-0.75
22	11 11	9	4700.02479	92	4700.0251	-0.30	6020 41401	120 60	6020 4125	0.54
22	15	0	4/00.024/9	100	4700.0251	-0.30	6252 75005	100	6050.4135	1 96
22	15	0 7	4908.95054	T00	4900.9497	0.00	6252.75005	190	6252.7007	-1.00
22	15 16	/ 7	4900.95054	100	4900.9497	0.00	6401 70716	200	6401 7070	-1.00
22	16	6	5125.00193	190	5125.0027	-0.79	6401 70715	200	6401 7070	-0.79
22	17	6	5125.00193	204	5125.0027	-0.79	6716 09620	220	6716 0050	-0.79
22	⊥/ 1ワ	С Г	5347.06293	102	5347.0011	1.00	6716.08630	220 110	6716.0059	0.30
22	1 /	с 5	5347.06293	102	5347.0611	1.80	6/16.08630	110	6/16.0859	0.30
22	10	2 4	5574.04596	224 110	5574.0465	-0.52	0954.//808	220	6954.7791	-0.38
22	10	4	5574.04596		5574.0465	-0.52	0954.//808	113	0954.//91 7106 7025	-0.38
22	19	4	5804.90623	222 111	5804.9063	-0.04	7196.70392	242 101	7196.7035	0.43
22	19	ა ე	5004.90023		5604.9063	-0.04	7190.70392		7190.7035	0.43
22	20	3	6038.59349	240	6038.5963	-2.82	7440.78671	254 107	7440.7870	-0.27
22	20	2	6038.59349	120	6038.5963	-2.82	7440.78671		7440.7870	-0.27
22		2	62/4.06535	216	6274.0625	2.84	7685.94922	264	7685.9480	1.21
22	21	1	62/4.06535	T08	62/4.0625	2.84	/685.94922	132	7685.9480	1.21
22	22	Ţ	6510.21/58	252	6510.2204	-2.84	/931.0/386	264	/931.0/32	0.67
22	22	0	6510.21/58	126	6510.2204	-2.84	/931.0/386	132	/931.0/32	0.6/
23	0	23	2769.47602	40	2769.4765	-0.47	3928.92755	50	3928.9278	-0.29
23	1	23	2769.47602	40	2769.4765	-0.47	3928.92755	50	3928.9279	-0.37
23	1	22	2987.88671	68	2987.8865	0.25			4167.1715	
23	2	22	2987.88542	53	2987.8866	-1.14			4167.1720	
23	2	21			3188.2989		4382.98957	76	4382.9889	0.69
23	3	21	3188.30852	42	3188.3015	6.99	4382.99574	67	4382.9960	-0.22
23	3	20	3371.25460	83	3371.2568	-2.23			4578.1168	
23	4	20	3371.30451	36	3371.3056	-1.06	4578.21993	107	4578.2225	-2.55
23	4	19	3536.21360	47	3536.2119	1.70	4752.20619	83	4752.2023	3.90
23	5	19	3536.82870	30	3536.8283	0.36	4753.39351	66	4753.3941	-0.59
23	5	18	3679.76224	63	3679.7631	-0.85	4900.53050	300	4900.5285	2.02
23	6	18	3685.02030	29	3685.0201	0.21	4909.56973	71	4909.5704	-0.63
23	6	17	3792.26915	50	3792,2674	1.79	5012.63151	58	5012,6321	-0.63
23	7	17	3819,26815	2.8	3819,2677	0.49	5052.23591	33	5052,2374	-1.44
23	7	16	3875.90768	49	3875.9080	-0.37	5100.45707	64	5100.4556	1.44
23	8	16	3949.26417	29	3949.2632	1.01	5193.30346	34	5193.3032	0.23

Приложение 2.2 (продолжение)

J	Ka	Kc	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} 1 cm ⁻¹	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} n^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
23	8	15	3966.39987	41	3966.3996	0.22	5205.79806	49	5205.7987	-0.61
23	9	15	4086.97543	28	4086.9755	-0.05	5344.74073	35	5344.7414	-0.66
23	9	14	4089.86950	44	4089.8693	0.23	5346.63958	52	5346.6348	4.77
23	10	14	4238.97869	26	4238.9789	-0.20	5511.59217	36	5511.5927	-0.54
23	10	13	4239.31231	39	4239.3119	0.41	5511.79544	48	5511.7970	-1.59
23	11	13	4405.78400	29	4405.7831	0.91	5693.35517	38	5693.3551	0.05
23	11	12	4405.81202	43	4405.8125	-0.43	5693.37048	53	5693.3724	-1.88
23	12	12	4585.73113	34	4585.7314	-0.26	5888.05013	52	5888.0499	0.24
23	12	11	4585.73331	41	4585.7335	-0.16	5888.05101	65	5888.0511	-0.06
23	13	11	4777.06898	35	4777.0693	-0.32	6093.80861	53	6093.8064	2.21
23	13	10	4777.06898	70	4777.0694	-0.44	6093.80861	106	6093.8065	2.14
23	14	10	4978.28002	47	4978.2799	0.16	6309.03004	62	6309.0278	2.23
23	14	9	4978.28002	94	4978.2799	0.16	6309.03004	124	6309.0278	2.23
23	15	9	5188.02971	56	5188.0300	-0.34	6532.31436	69	6532.3146	-0.24
23	15	8	5188.02971	112	5188.0300	-0.34	6532.31436	138	6532.3146	-0.24
23	16	8	5405.10852	69	5405.1076	0.90	*6762.39389	100	6762.4002	-6.27
23	16	7	5405.10852	138	5405.1076	0.90	*6762.39389	200	6762.4002	-6.27
23	17	7	5628.38013	104	5628.3811	-0.95	6998.11183	109	6998.1097	2.16
23	17	б	5628.38013	208	5628.3811	-0.95	6998.11183	218	6998.1097	2.16
23	18	6	5856.77465	111	5856.7733	1.39	7238.33141	119	7238.3316	-0.18
23	18	5	5856.77465	222	5856.7733	1.39	7238.33141	238	7238.3316	-0.18
23	19	5	6089.24053	121	6089.2413	-0.73	7481.99427	121	7481.9950	-0.73
23	19	4	6089.24053	242	6089.2413	-0.73	7481.99427	242	7481.9950	-0.73
23	20	4	6324.75899	120	6324.7589	0.06	7728.04932	129	7728.0492	0.10
23	20	3	6324.75899	240	6324.7589	0.06	7728.04932	258	7728.0492	0.10
23	21	3	6562.29710	129	6562.2996	-2.46	7975.44353	135	7975.4436	-0.12
23	21	2	6562.29710	258	6562.2996	-2.46	7975.44353	270	7975.4436	-0.12
23	22	2	6800.81884	117	6800.8174	1.45	8223.10795	139	8223.1061	1.88
23	22	1	6800.81884	234	6800.8174	1.45	8223.10795	278	8223.1061	1.88
23	23	1			7039.2263		8469.91920	140	8469.9181	1.05
23	23	0			7039.2263		8469.91920	280	8469.9181	1.05
24	0	24			3003.4641				4160.9906	
24	1	24			3003.4641				4160.9907	
24	1	23			3231.3462				4409.8379	
24	2	23			3231.3462				4409.8384	
24	2	22	3440.81394	47	3440.8114	2.56			4635.4620	
24	3	22			3440.8128		4635.46750	300	4635.4666	0.87
24	3	21	3632.62425	48	3632.6300	-5.77	4840.06580	300	4840.0704	-4.57
24	4	21	3632.65214	65	3632.6571	-4.95	4840.12900	300	4840.1327	-3.71
24	4	20	3806.58485	39	3806.5783	6.59	5023.83076	78	5023.8276	3.17
24	5	20	3806.93410	71	3806.9360	-1.91	5024.54649	87	5024.5489	-2.44
24	5	19	3960.28914	44	3960.2901	-1.00	5183.47742	100	5183.4715	5.96
24	6	19	3963.56474	76	3963.5666	-1.84	5189.36600	300	5189.3671	-1.12
24	6	18	4085.51327	34	4085.5129	0.39	*5308.86831	72	5308.8551	13.19
24	7	18	4104.68180	50	4104.6801	1.67	*5338.52830	93	5338.5201	8.15
24	7	17	4177.29535	34	4177.2952	0.12	5402.24009	83	5402.2413	-1.23
24	8	17	4238.28185	54	4238.2826	-0.75	5482.47457	75	5482.4712	3.40
24	8	16	4264.51750	30	4264.5168	0.69	5502.18545	40	5502.1874	-1.92
24	9	16	4376.51852	44	4376.5176	0.95	5634.01488	58	5634.0153	-0.45
24	9	15	4381.72766	30	4381.7273	0.37	5637.46685	41	5637.4663	0.55
24	10	15	4527.86625	48	4527.8660	0.24	5800.21092	62	5800.2115	-0.62
24	10	14	4528.54128	30	4528.5412	0.10	*5800.61379	40	5800.6275	-13.75
24	11	14	4694.15707	43	4694.1560	1.10	5981.60218	59	5981.6002	1.96
24	11	13	4694.22206	31	4694.2221	-0.09	5981.63531	46	5981.6391	-3.79
24	12	13	4874.00508	46	4874.0050	0.11	6176.34209	65	6176.3399	2.17

Приложение 2.2 (продолжение)

J	Ka	Kc	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} cm^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
24	12	12	4874.00984	37	4874.0102	-0.33	6176.34074	49	6176.3429	-2.13
24	13	12	5065.59618	94	5065.5980	-1.85	6382.47958	79	6382.4812	-1.61
24	13	11	5065.59618	47	5065.5984	-2.19	*6382.45711	61	6382.4814	-24.27
24	14	11	5267.34184	96	5267.3430	-1.13	6598.35768	126	6598.3569	0.82
24	14	10	5267.34184	48	5267.3430	-1.15	6598.35768	63	6598.3569	0.81
24	15	10	5477.86035	116	5477.8597	0.64	6822.52541	142	6822.5253	0.14
24	15	9	5477.86035	58	5477.8597	0.64	6822.52541	71	6822.5253	0.14
24	16	9	5695.90948	130	5695.9100	-0.55	*7053.68082	154	7053.6972	-16.38
24	16	8	5695.90948	65	5695.9100	-0.55	*7053.68082	77	7053.6972	-16.38
24	17	8	5920.35159	166	5920.3504	1.18			7290.6885	
24	17	7	5920.35159	83	5920.3504	1.18			7290.6885	
24	18	7	6150.10040	228	6150.1018	-1.37			7532.3883	
24	18	6	6150.10040	114	6150.1018	-1.37			7532.3883	
24	19	6	6384.12914	240	6384.1277	1.40	7777.73474	254	7777.7354	-0.61
24	19	5	6384.12914	120	6384.1277	1.40	7777.73474	127	7777.7354	-0.61
24	20	5	6621.41684	258	6621.4167	0.14	8025.69672	258	8025.6973	-0.63
24	20	4	6621.41684	129	6621.4167	0.14	8025.69672	129	8025.6973	-0.63
24	21	4	6860.96552	256	6860.9651	0.44	8275.25099	272	8275.2511	-0.11
24	21	3	6860.96552	128	6860.9651	0.44	8275.25099	136	8275.2511	-0.11
24	22	3	7101.75794	272	7101.7601	-2.13	8525.36161	284	8525.3619	-0.34
24	22	2	7101.75794	136	7101.7601	-2.13	8525.36161	142	8525.3619	-0.34
24	23	2	7342.75948	252	7342.7607	-1.18	8774.96083	290	8774.9607	0.18
24	23	1	7342.75948	126	7342.7607	-1.18	8774.96083	145	8774.9607	0.18
24	24	1			7582.8754		9022.91329	296	9022.9160	-2.72
24	24	0			7582.8754		9022.91329	148	9022.9160	-2.72
25	0	25			3246.6954				4402.2129	
25	1	25			3246 6954				4402 2130	
25	1	2.4			3484 0032				4661 6497	
25	2	2.4			3484 0032				4661 6502	
25	2	23			3702.4350				4896.9861	
25	3	23			3702.4358				4896,9895	
25	3	22			3902.9941		5110,93300	300	5110,9314	1.64
25	4	22			3903 0093		0110170000	000	5110 9692	1.01
25	4	21			4085 7240		5304 08100	300	5304 0807	0 30
25	5	21	4085,93348	44	4085.9316	1.87	5304.51900	300	5304.5184	0.61
25	5	20	4249.01397	62	4249.0161	-2.10	*5474.26600	300	5474.2967	-30.67
25	6	20	4251 03069	39	4251 0337	-3 06	5478 08700	300	5478 0869	0 14
25	6	19	4386 36189	69	4386 3639	-1 97	*5612 90572	92	5612 8931	12 58
25	7	19	4399.51158	37	4399.5112	0.34	5634.35147	84	5634.3542	-2.76
25	7	18	4488.69562	69	4488.6989	-3.31	5714.83500	300	5714.8355	-0.55
25	8	18	4537.62292	41	4537.6227	0.24	5782.08948	93	5782.0903	-0.79
25	8	17	4575 45161	58	4575 4521	-0.49	5811 49836	98	5811 4977	0 62
25	9	17	4677 03620	36	4677 0346	1 58	5934 25343	45	5934 2541	-0.68
25	9	16	4685 93399	60	4685 9337	0 32	5940 25055	81	5940 2478	2 71
25	10	16	4827.85493	37	4827.8538	1.12	6099.82820	47	6099.8289	-0.70
25	10	15	4829 15706	51	4829 1569	0 18	*6100 65101	65	6100 6365	14 51
25	11	15	4993.51900	35	4993.5190	0.01	6280.71919	47	6280.7181	1.07
25	11	14	4993.65995	55	4993.6605	-0.54	*6280.78712	68	6280.8014	-14.27
25	12	14	5173 14241	36	5173 1415	0.92	6475.38588	54	6475.3810	4.90
25	12	13	5173,15480	49	5173.1538	1 04	6475 38235	67	6475 3879	-5 60
25	13		5364 89064	45	5364 8891	1 51	6681 81286	56	6681 8117	1 16
25	13	12	5364 89064	90	5364 8900	0 62	*6681 58321	73	6681 8122	-228 98
25	14	12	5567 08776	57	5567 0894	-1 66	6898 26560	68	6898 2656	-0 05
25	14	11	5567 08776	114	5567 0895	-1 72	6898 26935	87	6898 2657	3 67
25	15	 11	5778.30722	58	5778.3072	-0.03	7123.24827	70	7123.2517	-3.40

Приложение 2.2 (продолжение)

J	Ka	Kc	${ m E_{obs}}{ m cm^{-1}}$	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹	E_{obs} cm ⁻¹	dE 10 ⁻⁵ cm	E_{calc} cm^{-1} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹
25 25 25 25 25 25 25 25 25 25 25 25 25 2	15 16 17 17 18 19 20 20 21 21 22 22 23 23 23 24	10 10 9 8 8 7 7 6 6 5 5 4 4 3 2 2 1	cm 5778.30722 5997.27321 5997.27321 6222.82571 6222.82571 6453.88560 6453.88560 6453.88560 6689.41604 6689.41604 6928.41270 6928.41270 7169.90331 7169.90331 7412.89380 7412.89380 7412.89380 7656.38053 7656.38053 7899.33208	116 67 134 74 148 94 188 122 244 128 256 136 272 135 270 143 286 133 266	cm 5778.3073 5997.2729 5997.2729 6222.8269 6453.8850 6453.8850 6453.8850 6689.4145 6689.4145 6928.4151 7169.9025 7169.9025 7412.8919 7412.8919 7656.3809 7656.3809 7899.3295 7899.3295	-0.03 0.31 0.31 -1.18 -1.18 0.56 0.56 1.50 1.50 -2.41 0.85 0.85 1.91 1.91 -0.36 -0.36 2.57 2.57	cm 7123.24827 *7355.39733 *7355.39733 7593.67280 7593.67280 7836.79300 8083.76500 8083.76500 8083.76500 8333.56844 8333.56844 8585.20683 8585.20683 8585.20683 8837.67061 8837.67061 9089.94304 9089.94304 9340.95137	140 cm 140 77 154 83 166 300 300 300 300 300 300 131 262 133 266 141 282 146 292 150 300	7123.2517 7355.4528 7355.4528 7593.6713 7593.6713 7836.7939 8083.7655 8083.7655 8083.7655 8333.5687 8333.5687 8585.2041 8585.2	-3.40 -55.42 -55.42 1.46 1.46 -0.94 -0.94 -0.55 -0.55 -0.27 -0.27 2.74 2.74 2.74 -0.08 -0.08 -1.15 -1.15 -0.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 25\\ 25\\ 0\\ 1\\ 1\\ 2\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 5\\ 6\\ 6\\ 7\\ 7\\ 8\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 12\\ 13\\ 14\\ 15\\ 16\\ 16\\ 17\\ \end{array}$	$\begin{matrix} 1 \\ 0 \\ 26 \\ 25 \\ 24 \\ 23 \\ 22 \\ 21 \\ 20 \\ 19 \\ 18 \\ 17 \\ 16 \\ 15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 10 \\ \end{matrix}$	4694.70658 4809.08705 4846.91352 4898.54776 4988.26707 5002.68378 5138.80266 5141.20086 5303.76909 5304.05524 5483.03330 5483.05839 5674.82750 5674.82671 5877.39539 5877.59541 5755.66894	49 41 68 43 66 43 67 41 58 43 61 39 55 43 106 53 128 64 130 65 146	8140.6370 8140.6370 3499.1482 3499.1482 3745.8322 3745.8323 3973.1398 3973.1402 4182.3183 4182.3269 4373.6449 4373.7656 4546.0654 4547.2987 4694.6989 4703.4757 4809.0920 4846.9157 4898.5426 4988.2659 5002.6853 5138.8037 5141.2040 5303.7679 5304.0562 5483.0326 5483.0326 5483.0600 5674.8253 5674.8274 5877.3943 5877.3945 6089.2416 6309.0598 6309.0598 6309.0598	7.71 -4.92 -2.19 5.12 1.17 -1.54 -1.06 -3.12 1.20 -0.98 0.75 -1.65 2.24 -0.72 1.05 0.91 0.66 0.65 -0.34 -0.34 -0.23	9589.54113	152 304	9589.5399 9589.5399	1.22

Приложение 2.2 (продолжение)

J	Ka	Kc	E _{obs} cm ⁻¹	dE 10 ⁻⁵ cm ⁻	E_{calc} cm^{-1}	Obs-Calc 10 ⁻³ cm ⁻¹	E _{obs} cm ⁻¹	$dE \\ 10^{-5} cm^{-1}$	$E_{calc} \ cm^{-1}$	Obs-Calc 10 ⁻³ cm ⁻¹
26	17	9	6535.66894	73	6535.6692	-0.23				
26	18	9	6767.97373	158	6767.9773	-3.60				
26	18	8	6767.97373	79	6767.9773	-3.60				
26	19	8	7004.95638	200	7004.9520	4.34				
26	19	7	7004.95638	100	7004.9520	4.34				
26	20	7	7245.60134	254	7245.6014	-0.05				
26	20	б	7245.60134	127	7245.6014	-0.05				
26	21	б	7488.95502	266	7488.9569	-1.93				
26	21	5	7488.95502	133	7488.9569	-1.93				
26	22	5	7734.06014	282	7734.0579	2.27				
26	22	4	7734.06014	141	7734.0579	2.27				
26	23	4	7979.93124	278	7979.9347	-3.44				
26	23	3	7979.93124	139	7979.9347	-3.44				
26	24	3	8225.59338	294	8225.5914	1.99				
26	24	2	8225.59338	147	8225.5914	1.99				
26	25	2	8469.98374	276	8469.9850	-1.23				
26	25	1	8469.98374	138	8469.9850	-1.23				
26	26	1			8712.0006					
26	26	0			8712.0006					

Примечания: Первые три колонки соответствуют вращательным квантовым числам. Колонки 4-7 содержат экспериментальные значения вращательных уровней энергии, их неопределенности, расчетные значения уровней энергии и разницу между экспериментальными и вычисленными уровнями энергии для основного состояния. Колонки 8-11: то же самое для состояния (010).

Приложение 2.3 Новые переходы полосы v_2 молекулы $D_2^{16}O$, соответствующие высоким J и K_a , проидентифицированные впервые в спектре поглощения [155]

Freq	dF	J'	Ka'	Kc'	J"	Ka"	' Kc"	Freq	dF	J'	Ka'	Kc'	J"	Ka"	Kc"
894.7852	2 10	16	9	7	17	10	8	1048.0915	10	19	2	17	19	3	16
894.9042	2 10	16	8	8	17	9	9	1056.6478	10	18	3	16	18	4	15
896.2365	5 10	16	10	б	17	11	7	1057.4769	10	18	2	16	18	3	15
900.0541	L 10	15	5	11	16	6	10	1057.8192	10	21	4	18	21	5	17
906.4376	5 10	15	9	7	16	10	6	1067.0847	10	17	2	15	17	3	14
907.8120) 10	15	7	9	16	8	8	1080.2793	10	16	4	13	15	7	8
907.9805	5 10	15	10	6	16	11	5	1081.6880	10	18	4	15	18	5	14
915.0013	3 10	13	3	11	13	6	8	1088.2521	10	18	3	15	18	4	14
917.9932	2 10	14	8	7	15	9	6	1089.0183	10	17	4	14	17	5	13
918.0077	/ 10	14	8	6	15	9	./	1095.7689	10	16	4	13	16	5	12
918.2155	10	14	9	5	15	ΤŪ	6	1099.0347	10	17	3	⊥4 14	17	4	13
918./563	5 10	14	5	10	15	6	9	1100 5764	10	18	5	14	18	6	13
919.4299	1 1 0	14 14	/ 7	87	15	8	/	1102.5/64	10	14	8	/	14	9	6 7
919.7017	1 1 0	14 14	10	/	15	0	0 E	1102.8894	10	15	8	87	15	9	r G
919.0337	1 10	14 14	10	4	15	11 7	с 0	1102.9227	10	14	0	/ 5	14	10	0
921.9104	± 10	13	7	9	14	/ 8	0 7	1102.9007	20	11	ע ד	2 2	11	2 1 U	4
931.2210) 10	13	10	4	14	11	2	1103 2364	10	16	a a	- - 7	16	10	5
934 5955	5 10	13	11	יד 2	14	12	2	1103.2304	10	16	2	2 2	16	т 0 а	7
938 3265	5 15	13	12	2	14	13	1	1103.7586	10	17	8	10	17	9	9
940 0614	10 ± 5	15	5	10	16	6	11	1104 0551	10	17	5	13	17	6	12
946.6923	3 10	12	11	1	13	12	2	1105 0231	10	13	10	4	13	11	3
947.6396	5 10	21	1	21	22	0	22	1105.4114	10	16	±0 7	10	16	8	9
950.4712	2 15	12	12	0	13	13	1	1106.0329	10	17	7	11	17	8	10
958.6487	7 10	20	0	20	21	1	21	1106.4764	10	16	7	9	16	8	8
958.8783	3 10	11	11	1	12	12	0	1107.3073	10	16	5	12	16	6	11
963.7215	5 10	21	1	21	21	2	20	1108.1636	10	17	6	12	17	7	11
974.9993	3 10	20	0	20	20	1	19	1108.4339	20	13	11	3	13	12	2
975.5681	L 10	19	2	18	20	1	19	1108.4713	10	16	6	11	16	7	10
976.6931	L 10	14	2	12	14	5	9	1110.1843	10	16	3	13	16	4	12
977.7315	5 10	16	4	12	17	5	13	1112.8314	10	15	6	9	15	7	8
978.0974	ł 10	15	4	11	16	5	12	1116.5569	20	16	6	10	16	7	9
985.4327	7 10	18	1	17	19	2	18	1123.3349	10	18	4	14	18	5	13
986.2325	5 10	19	1	19	19	2	18	1131.8172	10	17	4	13	17	5	12
987.4540) 10	18	2	16	19	3	17	1135.5702	10	16	5	11	16	б	10
987.6111	L 10	18	3	16	19	2	17	1137.9022	10	16	4	12	16	5	11
993.0280) 10	17	3	14	18	4	15	1139.0263	10	17	5	12	17	6	11
994.2491	L 10	14	3	11	14	6	8	1140.1564	10	18	5	13	18	6	12
995.0944	± 10	13	3	10	13	6	./	1238.1991	10	11	8	4	10	9	1
996.2899) 10	13	2	1	13	5	8	1268.8608	10	16	5		16	4	12
996.3439	10 TU	17	∠ 2	15	10	3	10	1282.4642	10	1 /	6		1 /	5	11
996.6386	10	17		11	10	∠ 2	15	1200 0961	10	16	0	10 10	16	2 2	⊥⊥ 1 2
990.0222	2 10 2 10	1 /	4	⊥4 1 2	10 17	2 1	17 17	1290.9001	10	12	4 5	12	12		10
1005 2855	5 20	15	2	10	16	+ /	12	1215 2000	10	11	5	9	11	-4 5	10
1005.2055	2 10	16	2	14	17	- 2	15	1315 7233	30	14	2	9 13	14	2	14
1005.0002	5 10	16	4	13	17	2	14	1320 2602	10	16	4	13 13	16	2	14
1018 5118	3 20	19	2	18	19	2	17	1320.2002	10	18	4	14	18	2	15
1018.5418	3 2.0	19	1	18	19	2	$\frac{1}{17}$	1323 2620	10	17	5	13	17	4	14^{-1}
1027.2058	3 10	14	4	11	15	3	12	1324 4421	10	13	2	12	12	1	11
1028.4602	2 10	18	2	17	18	3	16	1328 2483	30	16	3	14	16	2	15
1028.5191	L 10	18	1	17	18	2	16	1329.9713	20	16	7	9	16	6	10
1033.3449	20	15	5	11	16	4	12	1334.2103	10	16	2	15	16	1	16
1038.5222	2 10	17	1	16	17	2	15	1345.1108	10	16	5	11	15	6	10
1038.8585	5 10	20	2	18	20	3	17	1361.0144	10	15	2	13	14	3	12
1047.6313	3 10	19	3	17	19	4	16	1369.1411	10	21	1	21	20	0	20

Freq	dF	J'	Ka'	Kc'	J"	Ka'	' Kc"		Freq	dF	J'	Ka'	Kc'	J"	Ka"	Kc"
1369.8178	10	15	8	8	15	7	9	15	54.7185	10	15	8	8	14	7	7
1370.0691	10	18	1	17	17	2	16	15	55.0624	10	15	8	7	14	7	8
1370.0797	10	18	2	17	17	1	16	15	62.8983	10	14	5	10	13	2	11
1376.7109	10	22	0	22	21	1	21	15	66.2000	10	11	б	6	10	3	7
1378.9432	10	19	2	18	18	1	17	15	66.4452	10	14	4	11	13	1	12
1384.0462	10	16	3	13	15	4	12	15	66.8661	10	16	8	8	15	7	9
1387.7175	10	20	1	19	19	2	18	15	71.7957	10	12	б	7	11	3	8
1391.0264	10	18	2	16	17	3	15	15	75.5892	10	17	5	12	16	4	13
1391.1162	10	18	5	13	17	б	12	15	77.9653	10	14	2	12	13	1	13
1391.2738	10	18	3	16	17	2	15	15	79.0903	10	13	б	8	12	3	9
1395.7397	10	17	4	13	16	5	12	15	79.2201	10	11	5	б	10	2	9
1396.4041	10	21	2	20	20	1	19	15	79.3966	10	14	3	12	13	0	13
1396.4372	10	17	3	14	16	4	13	15	83.4134	10	15	9	7	14	8	6
1398.7094	10	15	9	7	15	8	8	15	83.4334	10	15	9	6	14	8	7
1400.7866	10	19	3	17	18	2	16	15	84.9384	30	11	11	1	10	10	0
1407.9172	10	18	3	15	17	4	14	15	85.2343	10	16	4	12	15	3	13
1410.1604	30	20	2	18	19	3	17	15	86.8254	10	15	5	11	14	2	12
1411.2804	10	18	4	15	17	3	14	15	87.1736	10	15	3	12	14	2	13
1412.8707	10	18	4	14	17	5	13	15	89.0431	10	14	б	9	13	3	10
1418.7814	10	19	3	16	18	4	15	15	95.0315	10	15	4	12	14	1	13
1419.5935	30	21	3	19	20	2	18	15	95.4511	10	16	9	8	15	8	7
1420.6933	10	19	4	16	18	3	15	15	95.5113	10	16	9	7	15	8	8
1425.0108	10	13	10	4	13	9	5	15	98.0912	10	12	11	1	11	10	2
1428.0985	10	19	4	15	18	5	14	15	98.2075	10	14	10	4	13	9	5
1429.2311	10	20	3	17	19	4	16	16	02.2465	10	15	б	10	14	3	11
1430.3079	10	20	4	17	19	3	16	16	08.8416	10	15	3	13	14	0	14
1430.5495	10	16	5	12	15	4	11	16	10.7890	10	15	10	б	14	9	5
1433.8259	10	17	5	13	16	4	12	16	11.1634	10	13	11	3	12	10	2
1441.7185	10	20	4	16	19	5	15	16	19.1890	10	16	3	13	15	2	14
1444.5798	10	19	5	15	18	4	14	16	22.3159	15	12	12	0	11	11	1
1483.6352	10	16	6	11	15	5	10	16	23.1937	10	16	10	6	15	9	7
1485.2549	10	17	6	12	16	5	11	16	24.1303	10	14	11	3	13	10	4
1524.6505	10	16	6	10	15	5	11	16	36.9668	10	15	11	5	14	10	4
1531.5470	10	16	7	10	15	6	9	16	58.6829	30	13	13	1	12	12	0
1539.5136	10	16	7	9	15	6	10									

Приложение 2.3 (продолжение)

Примечания:

Freq – Частота перехода (см⁻¹), dF – Ошибка определения частоты перехода (10⁻⁴ см⁻¹), v', J', Ka', Kc' – Верхние колебательные и вращательные квантовые числа,

v", J", Ка", Кс" – Нижние колебательные и вращательные квантовые числа.

Приложение 2.4 Вращательные уровни энергии первой триады колебательных состояний (020), (100) и (001) молекулы $D_2^{16}O$

_

J	Ka	K _c	$E_{\scriptscriptstyle{ m > KCN}}\left(020 ight)$	δΕ	dE	<i>Е_{экпс}</i> (100)	δΕ	dE	$E_{\scriptscriptstyle{ m > KCN}}\left(001 ight)$	δE	dE
0	0	0	2336.8389	2	0	2671.6446	2	1	2787.7176	2	1
1	0	1	2348.9707	2	-2	2683.6047	2	4	2799.7578	2	0
1	1	1	2359.6897	2	-2	2691.6059	2	12	2807.3928	2	-3
1	1	0	2362.3474	2	-5	2694.0104	2	7	2809.8419	2	-3
2	0	2	2372.7907	2	0	2707.0520	2	6	2823.3299	1	-1
2	1	2	2381.2997	1	-5	2713.1203	1	8	2829.0286	1	-1
2	1	1	2389.2670	1	-2	2720.3286	2	4	2836.3693	2	-3
2	2	1	2421.1949	2	-9	2744.2449	1	18	2859.1939	2	-11
2	2	0	2421.6306	2	-8	2744.7094	2	17	2859.6944	1	-11
3	0	3	2407.4898	1	-4	2741.1537	1	7	2857.5512	1	-2
3	1	3	2413.4507	1	-5	2745.1156	1	12	2861.1842	1	-2
3	1	2	2429.3175	1	-3	2759.4559	1	-4	2875.7805	1	-2
3	2	2	2457.6130	1	-7	2780.1212	1	14	2895.3381	1	-9
3	2	1	2459.7098	1	-10	2782.3321	1	9	2897.7077	1	-5
3	3	1	2516.9529	2	-5	2825.9467	1	27	2939.4854	1	-17
3	3	0	2516.9983	1	-9	2826.0047	1	28	2939.5514	1	-16
4	0	4	2452.1780	1	-2	2785.0772	1	10	2901.5794	1	-1
4	1	4	2455.8879	1	-8	2787.3349	1	12	2903.5893	1	1
4	1	3	2482.0485	1	-4	2810.9004	1	-7	2927.5324	1	-1
4	2	3	2505.7913	1	-10	2827.5598	1	8	2943.0998	1	-4
4	2	2	2511.6382	1	-2	2833.6034	1	0	2949.5200	1	-3
4	3	2	2566.3030	1	-8	2874.5561	1	12	2988.5730	1	-5
4	3	1	2566.6156	1	-7	2874.9513	1	17	2989.0179	1	-10
4	4	1	2646.8429	1	2	2937.0361	1	29	3048.6225	2	-16
4	4	0	2646.8467	1	0	2937.0366	2	30	3048.6298	1	-15
5	0	5	2506.2577	1	-7	2838.3743	1	10	2955.0090	1	-1
5	1	5	2508.3593	1	-б	2839.5365	1	15	2955.9953	1	-2
5	1	4	2546.7807	1	-3	2873.9136	1	-б	2990.7812	1	0
5	2	4	2565.4238	1	-8	2886.2420	1	6	3002.1350	1	0
5	2	3	2577.6453	1	-5	2898.5861	1	-9	3015.1296	1	1
5	3	3	2628.0563	1	-4	2935.3544	1	7	3049.9536	1	-1
5	3	2	2629.2547	1	-4	2936.8556	1	3	3051.6263	1	2
5	4	2	2708.6397	1	2	2997.8927	1	10	3110.2161	1	-2
5	4	1	2708.6749	1	0	2997.8930	1	9	3110.2787	1	-2
5	5	1	2809.7233	1	17	3077.0104	2	24	3186.2216	1	-7
5	5	0	2809.7247	1	28	3077.0104	3	27	3186.2219	1	-13
6	0	6	2569.5350	1	-6	2900.9695	1	13	3017.8543	1	-6
6	1	6	2570.6500	1	-8	2901.5287	1	13	3018.2177	1	-1
6	1	5	2622.6097	1	-б	2947.5385	1	3	3064.4589	1	1
6	2	5	2636.1567	1	-7	2955.8062	1	9	3072.0619	1	3
6	2	4	2657.4557	1	-1	2976.8419	1	-11	3094.0249	1	1
6	3	4	2702.0981	1	-4	3008.1314	1	4	3123.4510	1	7
6	3	3	2705.4549	1	1	3012.3002	1	-7	3127.9739	1	3
6	4	3	2782.9550	1	1	3071.2045	1	-4	3184.2818	1	8
6	4	2	2783.1261	1	1	3071.2515	1	-1	3184.5786	1	12
6	5	2	2883.9446	1	8	3149.8698	1	3	3260.6859	1	20
6	5	1	2883.9468	1	-5	3149.8675	1	1	3260.6932	1	20
6	6	1	3004.1581	2	11	3244.8738	1	-8	3351.6501	1	1
6	6	0	3004.1581	1	11	3244.8733	1	-8	3351.6502	2	1
7	0	7	2642.0339	1	-11	2972.9218	1	9	3089.2648	1	12
7	1	7	2642.6022	1	-7	2973.1803	1	10	3090.1580	1	-6
δE $E_{_{3\kappa cn}}(001)$ $\mathrm{d}E$ $J K_a$ K_c $E_{_{3\kappa cn}}(020)$ δE $\mathrm{d}E$ $E_{3\kappa nc}$ (100) $\mathrm{d}E$ δE 7 7 1 6 2708.5517 1 -13 3030.8595 1 3 3147.7306 1 7 2 6 2717.6195 1 -6 3035.8837 1 9 3152.5052 1 1 7 2 5 2750.4354 1 -4 3067.6053 1 -9 3185.3916 1 2 7 3 5 2788.2088 1 -3 3093.5447 1 -14 3208.7707 1 1 7 3 4 2795.7685 1 3 3101.7466 1 -11 3218.4796 1 8 7 4 4 2869.8134 1 0 3156.9219 1 -13 3270.8079 1 14 7 4 3 2870.4110 1 3 3157.3875 1 -10 3271.8158 1 13 7 5 3 2970.6444 1 5 3235.0824 1 -19 3347.5108 1 28 7 2 5 2 2970.6646 1 3235.0760 1 -13 3347.5505 1 27 7 б 2 3090.8628 1 -7 3329.4566 1 -31 3434.9234 1 -36 7 б 1 3090.8628 2 -11 3329.4527 1 -28 3434.9248 1 -28 7 7 1 3228.6269 1 б 3444.3857 1 34 3544.1694 2 4 7 7 0 3228.6269 2 6 3444.3855 1 34 3544.1694 1 4 8 0 8 2723.8266 1 -5 3054.2911 1 -3 3171.2850 1 5 8 1 8 2724.1085 -8 3054.4079 1 4 3172.6788 1 -26 1 8 1 7 2803.8306 1 -8 3123.3317 1 11 3240.2195 1 6 8 2 7 2809.4565 -11 3126.1404 1 7 3243.1518 1 2 1 8 2 б 2855.7395 -6 3169.0023 1 22 3288.2035 1 -2 1 8 3 2886.0747 3189.2554 3305.5393 б б -11 1 -5 1 1 8 3 5 2900.4747 3205.1898 -б 3323.0490 4 11 1 1 1 8 4 5 2969.1789 -1 3254.8744 1 -14 3369.6955 1 16 1 8 4 4 2970.8558 1 9 3256.7162 1 -8 3372.4250 1 14 5 8 4 0 3069.8580 3332.7470 1 -22 3446.7237 1 31 1 5 8 3 2 3069.9420 3332.7499 1 -22 3446.8810 1 31 1 б 8 3426.4111 3 3189.9874 1 1 -37 3531.2271 1 -27 1 8 б 2 3189.9890 -7 3426.3899 -29 3531.2294 1 -43 1 1 7 8 2 3327.8749 2 -7 3544.0177 3641.3895 1 1 33 0 7 8 1 -8 3641.3884 -13 3327.8749 1 3544.0167 1 41 1 8 8 1 3481.6001 3 -3 3665.5436 2 -7 3762.9757 1 -1 8 8 0 3481.6001 1 -3 3665.5436 1 -7 3762.9757 2 -1 9 0 9 2814.9636 1 -5 3145.1111 1 -1 3262.4301 1 0 9 1 9 2815.1020 1 -3 3145.1619 1 -6 3262.4044 1 1 9 1 8 2908.0727 1 -6 3224.8262 1 8 3341.8326 1 10 9 2 8 2911.3608 1 -1 3226.3047 1 13 3343.8516 1 -6 9 2 7 2972.3686 1 -10 3283.2968 1 -5 3401.3281 1 -4 9 3 7 2995.3203 3296.3734 3 3413.3502 3 1 -12 1 1 9 3 3019.3639 3322.0083 7 3441.0628 4 б 1 5 1 1 9 4 3080.9315 3364.9124 -12 3480.7417 11 6 1 1 1 1 9 4 5 3084.9078 3369.7391 1 12 1 -5 3486.9169 1 12 5 9 5 3442.9538 3181.6065 1 3 1 -28 3558.3296 1 24 9 5 4 3181.8832 1 5 3443.0434 1 -17 3558.8298 1 25 9 6 4 3301.5369 1 -6 3535.8058 1 -24 3640.0964 1 -42 9 3640.1141 6 3 3301.5524 2 37 3535.7270 -31 -36 1 1 7 9 3 3439.4654 1 -3 3655.6852 3750.8667 2 -2 1 31 7 9 -9 2 3655.6743 1 23 3750.8668 1 9 8 -23 -1 2 3593.4698 1 3776.6286 1 -2 3872.8687 4 9 -2 -1 8 1 3593.4698 3 -23 3776.6286 2 3872.8687 2 -8 9 9 1 3761.5559 2 11 3913.9266 1 4007.2244 3 -11 -8 9 9 3913.9266 0 3761.5559 4 11 3 4007.2244 1 -11 10 0 10 2915.4716 -2 3245.3880 -13 3363.0365 -5 1 1 1 1 2915.5385 -7 3245.4101 -13 3363.0387 3 10 10 1 1 1 10 1 -2 3335.4293 9 3021.2434 1 1 10 3452.6345 1 8 1 10 2 9 3023.0851 1 3336.1753 1 13 3456.3788 1 -38 2 10 8 3099.2624 1 -14 3405.7662 1 2 3523.8020 1 -2 -2 10 3 8 3115.5390 1 -18 3414.1577 1 8 3531.8405 1 3 -3 10 7 3151.7935 1 2 3449.3879 1 44 3571.5687 1

J	Ka	K _c	E _{эксп} (020)	δΕ	dE	$E_{\scriptscriptstyle{ m >Knc}}$ (100)	δΕ	E dE	$E_{\scriptscriptstyle { m \tiny 3KCN}}\left(001 ight)$	δΕ	$\mathrm{d}E$
10	Δ	7	2201 8525	1	-6	2186 7027	1	_7	3603 6500	1	5
10	4		3204.0333	1	-0	2400.7927	1	- /	2003.0500	1	5
ΤU	4	6	3213.0559	T	21	3496.8139	T	5	3615.6409	1	9
10	5	6	3305.8791	1	7	3565.7006	1	-36	3682.2919	1	14
10	5	5	3306.6507	1	13	3566.2060	1	-17	3683.6420	1	15
10	б	5	3425.5225	1	25	3657.7195	1	-14	3761.4361	1	-27
10	б	4	3425.5612	1	-3	3657.5077	1	-13	3761.4955	1	-29
10	7	4	3563 3514	1	15	3779 5285	1	31	3872 6052	1	-2
10	, 7	2	3563 3728	1	1	3770 / 868	1	25	3872 6085	1	_2
10	0	2	3303.3720	1 2	20	2000 0010	2	25		1	10
10	8	3	3/1/.0344	3	-28	3899.8918	2	-0	3994.9454	1	-13
10	8	2	3717.6344	T	-28	3899.8918	T	-3	3994.9454	2	-14
10	9	2	3886.0933	3	-4	4037.1495	2	-16	4129.6673	1	5
10	9	1	3886.0933	2	-4	4037.1495	1	-16	4129.6673	2	5
10	10	1	4066.9865	4	24	4187.5925	3	12	4276.0498	1	-13
10	10	0	4066.9865	2	24	4187.5925	2	12	4276.0498	3	-13
11	0	11	3025.3584	1	3	3355.0911	1	26	3473,1216	1	-7
11	1	11	3025 3907	1	-1	3355 1282	1	-24	3473 1259	1	15
11	1	10	21/2 //06	1	17	2455 2540	1	1	2572 6207	1	21
11	1 1	10	3143.4490	1	11	2455.2549	1	-1 1 0	2572.0307	1	21
ΤΤ	2	TO	3144.4523	T		3455.61/5	T	13	35/2./181	1	6
11	2	9	3235.5013	1	-11	3537.2032	1	3	3655.1269	1	-1
11	3	9	3246.3322	1	-33	3542.2065	1	7	3660.8675	1	-14
11	3	8	3296.8597	1	56	3594.2659	1	-13	3713.4344	1	-1
11	4	8	3340.6403	1	-12	3620.1657	1	0	3738.0663	1	-5
11	4	7	3355.6434	1	-20	3637.7191	1	21	3758,4886	1	1
11	5	7	3442 6138	1	7	3700 9378	1	-41	3818 5092	1	1
11	5	6	3112.0150	1	12	3700.5370	1	1	3821 6010	1	6
11	ر ح	c	2141.4907	1	10	3702.3443	1	- T	3021.0919 2005 1000	1	14
11	0	0	3501.9330	1	2	3/92.2200	1	C	3095.1990	1	-14
ΤT	6	5	3562.0619	T	2	3/91.//83	T	4	3895.3/33	T	-18
11	./	5	3699.3951	1	34	3915.6414	1	10	4006.6039	1	-4
11	7	4	3699.5936	1	-1	3915.5039	1	13	4006.6156	1	-25
11	8	4	3854.0535	2	-12	4035.3126	1	2	4129.1924	2	2
11	8	3	3854.0535	3	-14	4035.3112	1	4	4129.1924	1	-3
11	9	3	4022.8547	2	-8	4172.4900	1	-8	4264.2327	2	9
11	9	2	4022 8547	З	-9	4172 4900	2	-8	4264 2327	1	9
11	10	2	4204 2280	2	18	4323 1907	1	_11	4411 0952	3	38
11	10	- 2	4204.2200	2	10	4323.1907	2	-11	4411 0052	1	20
11	11	1	4204.2200	2	10	4323.1907	2	-11	4411.0952	1	20
ΤT	ΤT	T	4396.2570	2	-14	4485.//3/	2	30	4568.5/51	4	-44
ΤT	ΤT	0	4396.2570	4	-14	4485.7737	3	30	4568.5751	2	-44
	~			-			~			-	_
12	0	12	3144.6195	T	2	3474.2911	2	-32	3592.6783	1	-5
12	1	12	3144.6348	1	-5	3474.2961	1	-33	3592.6796	1	-2
12	1	11	3274.8025	1	25	3584.3571	1	14	3702.1444	1	8
12	2	11	3275.3392	1	18	3584.5435	1	0	3702.1669	1	14
12	2	10	3380.5190	1	-7	3677.3740	1	10	3795.2477	1	-4
12	3	10	3387.3424	1	-25	3680.1970	1	3	3801,9546	1	-40
12	3	9	3453 4925	1	-16	3745 8742	1	-9	3865 4667	1	-7
12	4	à	3487 9181	1	-26	3764 6208	1	5	3883 6588	1	_15
10	1	0	2512 4000	1	20	2700 1100	1	17	2014 0261	1	1
12	4	8	3512.4990	1	-3	3/90.1198	1	4/	3914.8261	1	-1
12	5	8	3591.6//9	T	-13	384/.0838	T	-351	3966.8053	T	- /
12	5	7	3595.7839	1	35	3852.3615	1	32	3973.4479	1	-8
12	б	7	3710.7620	1	13	3939.3429	1	17	4063.7431	1	-3
12	б	6	3711.1066	1	-24	3938.6119	1	18	4064.1440	1	0
12	7	б	3848.8842	1	367	4041.7904	1	-1	4152.8552	1	-21
12	7	5	3848.1575	1	-36	4041.3499	1	-6	4152,9031	1	-9
12	, R	5	4002 6798	2	1	4182 8699	1	4	4275 5834	1	_7
10	0	⊿	1002.0700	1	_ E	1102.0000	1	1	1075 5054	1	_10
⊥∠ 1 0	0	4 1	1004.0/90 4171 7000	⊥ 2	- C 1 C	1210 0004	т Т	4	T4/0.0000	1	-10
12	9	4	4171./800	3	13	4319.8984	2	-6	4410.8829	Ť	/
12	9	3	4171.7800	1	13	4319.8984	1	-5	4410.8829	2	7
12	10	3	4353.6100	3	11	4470.8322	2	-11	4558.2384	1	72

J	Ka	K _c	$E_{_{\mathcal{H}Cn}}$ (020)	δΕ	dE	$E_{\scriptscriptstyle { m > Knc}} \left(100 \right)$	δΕ	dE	$E_{_{3\kappa cn}}(001)$	δΕ	dE
12	10	2	4353.6100	2	11	4470.8322	1	-11	4558.2384	3	72
12	11	2	4546.1089	3	-18	4633.9035	3	3	4716.0516	2	-34
12	11	1	4546.1089	2	-18	4633.9035	1	3	4716.0516	3	-34
12	12	1	4747.5907	4	-7	4808.3446	3	48	4883.9424	2	-13
12	12	0	4747.5907	2	-7	4808.3446	2	48	4883.9424	3	-13
13	0	13	3273.2445	1	-12	3602.8926	1	-32	3721.6908	1	-9
13	1	13	3273.2534	1	-2	3602.8935	1	-46	3721.6920	1	-2
13	1	12	3415.3830	1	39	3722.8099	1	2	3840.9403	1	7
13	2	12	3415.6687	1	43	3722.9003	1	3	3840.9599	1	12
13	2	11	3534.1511	1	75	3826.3482	1	10	3944.0360	1	19
13	3	11	3538.2649	1	-23	3827.8844	1	5	3944.2972	1	-8
13	3	10	3620.6067	1	4	3907.1345	1	-8	4026.6544	1	-7
13	4	10	3646.2768	1	-50	3919.7343	1	11	4040.3143	1	-22
13	4	9	3683.1720	1	57	3963.9751	1	60	4083.6528	1	-4
13	5	9	3752.8593	1	-57	4006.1520	1	-15	4126.9413	1	-14
13	5	8	3760.8969	1	59	4015.7315	1	51	4139.2913	1	-11
13	б	8	3871.9577	1	2	4098.9292	1	17	4224.1848	1	-11
13	6	7	3872.8057	1	-26	4098.1282	1	37	4225.2200	1	-14
13	7	7	4009.4582	1	27	4200.8161	1	14	4311.3477	1	-11
13	7	6	4009.0458	1	7	4199.8514	1	20	4311.4837	1	-14
13	8	6	4163.4646	2	4	4342.5513	1	12	4434.0972	2	-6
13	8	5				4342.5228	1	-14	4434.1053	1	-6
13	9	5	4332.7978	1	5	4479.3271	1	1	4569.5765	1	8
13	9	4	4332.7978	3	4	4479.3271	2	5	4569.5760	1	1
13	10	4	4515.0523	1	5	4630.4505	1	-6	4717.4673	2	92
13	10	3	4515.0523	3	5	4630.4505	2	-6	4717.4673	1	92
13	11	3	4707.9124	2	-55	4794.0006	1	-15	4875.5029	3	-35
13	11	2	4707.9124	3	-55	4794.0006	2	-15	4875.5029	1	-35
13	12	2	4910.2320	2	68	4969.2384	1	23	5044.0355	3	-14
13	12	1	4910.2320	3	68	4969.2384	3	23	5044.0355	2	-14
13	13	1	5116.5287	2	-76	5157.3777	2	18	5221.2929	3	4
13	13	0	5116.5287	5	-76	5157.3777	4	18	5221.2929	2	4
14	0	14	3411.2241	1	7	3740.9032	1	-33	3860.1434	1	6
14	1	14	3411.2288	3	15	3740.9050	1	-29	3860.1423	1	-б
14	1	13	3565.2336	1	40	3870.6019	1	0	3989.1056	1	-49
14	2	13	3565.3852	1	46	3870.6486	1	7	3989.1224	1	13
14	2	12	3696.4463	1	-5	3984.2734	1	14	4102.4122	1	-12
14	3	12	3698.8645	1	-20	3985.0941	1	11	4102.5282	1	6
14	3	11	3797.1645	1	-17	4077.1590	1	3	4196.4201	1	-20
14	4	11	3815.3085	1	-21	4085.1119	1	45	4208.9930	1	-21
14	4	10	3866.7384	2	-2	4142.6014	1	-13	4263.7855	1	3
14	5	10	3925.8787	1	-7	4176.4343	1	-40	4298.6724	1	-18
14	5	9	3940.1788	1	3	4191.3757	1	59	4319.2129	1	-3
14	б	9	4045.4256	1	-117	4270.7080	1	16	4396.7604	1	-19
14	б	8	4047.3343	1	23	4270.4817	1	36	4399.1771	1	-17
14	7	8	4182.4389	2	72	4372.5032	1	37	4482.0486	1	1
14	7	7	4182.2095	1	-13	4370.6570	1	31	4482.4007	1	-4
14	8	7	4336.3540	2	-25	4514.3525	1	-3	4604.7028	1	-20
14	8	6	4336.3645	1	5	4514.2725	1	-6	4604.7293	1	-17
14	9	б	4505.8422	3	7	4650.7293	2	39	4740.2668	1	-4
14	9	5	4505.8422	1	4	4650.7244	1	7	4740.2668	2	-16
14	10	5	4688.4713	2	12	4801.9775	2	-8	4888.8240	1	99
14	10	4	4688.4713	1	12	4801.9775	1	-7	4888.8240	2	99
14	11	4	4881.4712	3	-78	4965.9878	2	-9	5046.8546	1	-38
14	11	3	4881.4712	1	-78	4965.9878	1	-9	5046.8546	2	-38
14	12	3	5084.7807	3	72	5142.0409	3	-7	5216.0120	1	-19

Приложение 2.4 (продолжение)

J	Ka	K_c	<i>Е</i> _{эксп} (020)	δΕ	dE	$E_{\scriptscriptstyle{ m 3KRC}}$ (100)	δΕ	dE	$E_{\scriptscriptstyle{ m > KCN}}\left(001 ight)$	δΕ	dE
14	12	2	5084.7807	2	72	5142.0409	1	-7	5216.0120	3	-19
14	13	2	5291.2371	4	28	5331.6668	4	18	5394.0251	2	2
14	13	1	5291 2371	2	28	5331 6668	2	18	5394 0251	3	2
14	14	1	5538 8195	6	-175	5495 3705	5	-47	5579 7988	2	17
14	14	0	5538 8195	3	-175	5495 3705	3	-47	5579 7988	4	17
± 1	± 1	0	5550.0175	5	175	5175.5705	5	17	5575.7500	1	Τ,
15	0	15	3558.5349	5	-10	3888.30701	3	-45	4008.0101	1	-12
15	1	15	3558.5365	1	-13	3888.3070	2	-63	4008.0101	3	-13
15	1	14	3724.3775	2	64	4027.7344	1	5	4146.6484	1	5
15	2	14	3724.4577	1	66	4027.7604	1	-18	4146.6551	1	19
15	2	13	3867.5705	5	-15	4151.2659	1	-3	4269.6822	1	-11
15	3	13	3868.9662	1	15	4151.7089	1	-8	4269.7776	1	-13
15	3	12	3982.4167	2	-4	4255.6164	1	6	4374.1729	1	20
15	4	12	3994.6154	2	7	4260.4076	1	24	4374.6525	1	-16
15	4	11	4062.1631	1	-11	4332.4046	1	-25	4453.9985	1	0
15	5	11	4110.3672	1	33	4357.6728	1	-63	4481.8901	1	-17
15	5	10	4133.6910	2	42	4394.0469	1	-62	4512.6544	1	-1
15	б	10	4231.0513	1	-20	4454.3410	1	31	4581.3540	1	-3
15	б	9	4234.9373	2	17	4455.7385	1	26	4586.4666	1	-25
15	7	9	4367.6567	3	308	4556.7810	1	38	4664.9058	1	1
15	7	8	4367.6454	2	-157	4553.7328	1	36	4665.7239	1	4
15	8	8	4521.3053	2	18	4698.3004	1	-9	4787.3694	1	-16
15	8	7	4521.3277	3	31	4698.0807	1	9	4787.4445	1	-19
15	9	7	4690.8383	1	5	4834.0454	1	-1	4922.9044	3	-39
15	9	6	4690.8361	2	-28	4834.0401	1	5	4922.9104	1	-22
15	10	6	4873.7748	1	6	4985.3459	1	5	5072.4654	2	78
15	10	5	4873.7748	2	5	4985.3459	2	6	5072.4654	1	77
15	11	5	5066.4611	1	-71	5149.7808	1	-7	5230.0284	2	-36
15	11	4	5066.4611	2	-71	5149.7808	3	-7	5230.0284	1	-36
15	12	4	5271.1257	1	59	5326.6666	1	-19	5399.7830	3	-22
15	12	3	5271.1257	3	59	5326.6666	3	-19	5399.7830	1	-22
15	13	3	5477.6396	2	42	5517.8683	2	-5	5578.5417	3	-3
15	13	2	5477.6396	3	42	5517.8683	3	-5	5578.5417	2	-3
15	14	2	5727.1392	2	-20	5681.6142	2	12	5765.2050	3	12
15	14	1	5727.1392	4	-20	5681.6142	4	12	5765.2050	2	12
15	15	1	5950.2558	5	523	5884.7952	3	-3	5958.6558	5	10
15	15	0	5950.2558	9	523	5884.7952	б	-3	5958.6558	2	10
16	0	16	3715.1640	2	-7	4044.9298	1	194	4165.2734	3	-11
16	1	16	3715.1639	4	-19	4044.9579	2	165	4165.2734	1	-12
16	1	15	3892.8170	2	94	4194.2099	2	-36	4313.5365	1	10
16	2	15	3892.8521	3	19	4194.2620	2	-67	4313.5392	1	15
16	2	14	4047.8075	2	-216	4327.4024	1	-1	4446.1499	1	-21
16	3	14	4048.5750	3	-174	4327.6766	2	-8	4446.2071	1	-2
16	3	13	4175.9733	1	57	4442.5285	2	-19	4561.4819	1	-11
16	4	13	4183.8098	4	76	4445.3933	1	38	4561.8526	1	-12
16	4	12	4268.3243	1	26	4531.7849	1	-45	4653.2313	1	-8
16	5	12	4305.8948	6	-55	4549.4806	1	-69	4676.9911	1	-11
16	5	11	4341.0507	3	27	4596.6069	1	25	4718.7776	1	65
16	б	11	4428.5571	3	-63	4649.4870	1	-16	4777.8090	1	-11
16	б	10	4435.9448	2	36	4653.4199	1	1	4787.5832	1	-29
16	7	10	4564.9513	3	73	4753.3561	1	33	4859.8444	1	10
16	7	9	4565.4973	2	-34	4749.0616	1	31	4861.5600	1	22
16	8	9	4718.0997	1	-53	4894.4639	1	-19	4982.0520	1	-15
16	8	8	4718.3052	4	23	4893.9023	1	-20	4982.2476	1	-23
16	9	8	4887.7115	4	17	5029.2422	2	13	5117.4468	1	-16
16	9	7	4887.7142	1	11	5029.2226	1	-3	5117.4596	4	-22
16	10	7	5070.8723	2	8	5180.4817	1	4	5262.5095	1	-21

δE $E_{_{3\kappa cn}}(001)$ $\mathrm{d}E$ $J K_a$ K_c $E_{_{3\kappa cn}}(020)$ δE $\mathrm{d}E$ $E_{_{3KNC}}(100)$ $\mathrm{d}E$ δE -22 16 9 7 4887.7142 1 11 5029.2226 1 -3 5117.4596 4 16 10 7 5070.8723 2 8 5180.4817 1 4 5262.5095 1 -21 7 16 10 6 5070.8723 1 5180.4817 1 9 5262.5095 2 -24 16 11 6 5268.5889 4 -10 5345.2967 2 2 5424.9424 1 -25 16 11 5 5268.5904 1 9 5345.2967 1 2 5424.9424 2 -25 16 12 5 5469.1463 3 29 5523.0243 3 -16 5595.2558 1 -25 16 12 4 5469.1463 1 29 5523.0243 1 -16 5595.2558 2 -25 16 13 4 5715.8831 3 -21 5675.6111 3 34 5774.7396 1 -14 16 13 3 5715.8831 1 -21 5675.6111 1 34 5774.7396 3 -14 16 14 3 5927.2488 4 6 5879.4344 3 12 5962.2857 2 8 16 14 2 5927.2488 2 6 5879.4344 2 12 5962.2857 3 8 16 15 2 6151.9319 6 -62 6083.2326 4 7 6156.7725 2 12 16 15 1 6151.9319 3 -62 6083.2326 2 7 6156.7725 4 12 16 16 1 6384.0146 12 338 6290.5730 б 0 6357.0910 3 -7 16 16 0 6384.0146 6 338 6290.5730 3 0 6357.0910 6 -7 17 0 17 3881.0901 3 0 4211.1408 3 17 4331.9069 1 -11 17 1 17 3881.0901 1 -5 4211.1408 1 13 4331.9069 3 -11 17 1 16 4070.5370 2 31 4369.7646 2 98 4489.7537 1 18 4070.5627 59 4369.8198 77 4489.7504 2 -25 17 2 16 2 1 2 4236.8452 -14 4512.7413 3 87 4631.8323 -11 17 15 3 1 17 3 3 4514.0022 3 -79 4631.8598 2 -16 15 4237.2880 -85 -102 3 14 4 4638.0634 2 9 4757.0779 17 4378.0308 1 -17 -367 17 4 14 4 -33 4640.6855 2 4757.4222 -13 4382.9202 1 4 13 4739.7997 2 4860.8171 17 4484.1093 3 6 -67 1 3 5 13 -31 51 2 17 4511.0161 4 4751.4643 -82 4861.6372 1 5 12 4561.5091 5 4812.4987 2 17 -4016 4935.9749 1 17 6 12 2 2 17 4636.8323 22 4855.8207 4986.0090 1 6 -6 7 -7 6 4650.6556 -54 4885.5601 2 -17 5002.7465 17 11 1 7 17 11 4774.2855 4 81 4961.7591 1 21 5066.7635 1 18 7 2 17 10 4775.7058 -63 4956.6211 2 18 5070.0102 1 11 17 8 10 4927.0832 4 5 5103.0025 1 -29 5188.6949 1 -3 17 8 9 4927.2667 3 32 5101.6932 2 51 5189.1600 1 -19 17 9 9 5096.3782 4 3 5236.2690 1 -20 5323.8300 2 -30 9 17 8 5096.3875 3 -4 5236.2263 2 49 5323.8688 1 -23 17 10 8 5279.6678 1 12 5387.3135 1 -1 5469.5878 5 42 17 10 7 5279.6691 4 21 5387.3132 2 12 5469.5888 1 37 17 11 7 5477.0528 1 -47 5552.4475 1 5631.5110 2 -12 4 17 11 5477.0528 2 -40 5552.4475 4 5631.5110 -13 6 2 1 17 12 5678.7216 1 2 5731.0199 1 -5 5802.3352 -20 6 2 17 12 5 5678.7216 3 2 5731.0199 5802.3352 -20 2 -5 1 17 13 5 5925.6021 -26 5885.0234 2 5982.5134 3 -27 3 15 17 13 4 5925.6021 5 -26 5885.0234 3 15 5982.5134 1 -27 17 14 4 6139.0157 3 18 6088.7192 2 4 6170.9243 3 -8 17 14 3 6139.0157 5 18 6088.7192 4 4 6170.9243 2 -8 17 15 3 6365.3066 3 14 6293.1615 2 -16 6366.4399 4 8 6365.3066 17 6293.1615 6366.4399 2 15 2 6 14 3 -16 8 17 16 6598.8480 -55 6567.9516 2 5 6501.5607 3 -8 4 0 -55 17 16 -8 6567.9516 2 1 6598.8480 11 6501.5607 5 0 17 17 6837.0743 3 -7 6774.3604 7 -35 1 7 105 6714.1928 6714.1928 17 17 6837.0743 7 -7 6774.3604 3 0 15 105 -35 -7 18 0 18 4056.2902 2 -5 4386.5640 2 4507.8854 3 -5 -5 -8 18 1 18 -8 4386.5640 3 4507.8854 4056.2902 4 1 18 1 17 4257.5409 2 24 4554.8810 2 25 4675.2711 2 -19 2 3 24 18 17 4257.5544 3 32 4554.8849 12 4675.2758 1 2 2 18 16 4435.0838 2 19 4706.1656 1 -389 4826.7209 -19 3 16 -7 18 4435.3368 2 -4 4707.0670 3 42 4826.7357 1 3 15 3 76 4842.3791 2 2 18 4588.2267 13 4961.5662 -31

δE $E_{_{3\kappa cn}}(001)$ $\mathrm{d}E$ $J K_a K_c$ $E_{_{3\kappa cn}}(020)$ δE $\mathrm{d}E$ $E_{3\kappa nc}$ (100) $\mathrm{d}E$ δE -90 18 4 15 4591.2459 3 24 4842.9010 2 4961.7791 1 -17 18 4 14 4709.6695 4 -95 4955.9911 4 -27 5076.5411 2 -3 18 5 14 4728.9044 4 1 4963.2863 5 65 5077.8045 1 -19 18 5 13 4794.0896 5 3 5039.4512 2 -18 5163.3831 1 13 18 б 13 4858.8762 5 34 5072.9712 2 -35 5176.2686 1 -6 18 б 12 4879.2405 5 -20 5109.5070 2 -63 5231.5818 2 5 7 7 22 18 12 4995.4808 -7 5181.5511 3 18 5285.5489 1 7 18 11 4998.5633 3 202 5205.9972 1 49 5324.2240 1 -34 18 8 11 5147.7936 4 0 5291.0676 1 6 5407.2181 1 -3 18 8 10 5148.1964 5 70 5321.3522 1 16 5408.2371 1 -15 18 9 10 5316.7605 4 -2 5455.1071 2 -9 5542.0001 1 -34 18 9 9 5316.7873 5 3 5454.9795 1 -20 5542.0983 2 -35 18 10 9 5500.0639 3 17 5605.7705 2 11 5687.9291 1 83 18 10 8 5500.0659 4 24 5605.7637 1 -11 5687.9340 3 80 18 11 8 5697.4336 2 -85 5771.1449 3 0 5849.6473 1 3 18 11 7 5697.4331 2 -76 5771.1449 1 2 5849.6473 2 0 18 12 7 5899.7296 3 -1 5950.5562 3 4 6020.9234 1 -5 18 12 5899.7296 2 -1 5950.5562 1 4 6020.9234 2 -5 6 18 13 6 6146.9086 3 -16 6105.7552 3 10 6201.7573 1 -17 5 6146.9086 2 6105.7552 2 6201.7573 -17 18 13 -16 10 3 14 5 6309.3536 -1 6391.0049 2 18 6362.2884 -32 3 -21 11 14 4 6391.0049 3 18 6362.2884 5 -32 6309.3536 1 -1 -21 18 15 4 3 2 6590.1464 8 34 6514.4618 -15 6587.5304 -16 6587.5304 18 15 6514.4618 2 3 -16 3 6590.1464 4 34 -15 6825.2064 6723.9118 6790.2269 2 7 18 16 3 10 35 4 -25 7 6723.9118 2 4 18 16 2 6825.2064 5 35 -25 6790.2269 -5 2 5 18 17 7065.0150 15 -55 6937.8366 -19 6997.9976 2 2 5 -5 18 17 1 7065.0150 -55 6937.8366 -19 6997.9976 8 4 -58 18 18 1 7308.0347 17 22 7155.5522 6 3 7209.7520 7 18 18 0 7308.0347 9 22 7155.5522 3 3 7209.7520 -58 19 0 19 4240.7425 5 -16 4571.2737 4 -18 4693.1803 2 -7 19 1 19 4240.7425 2 -19 4571.2737 2 -19 4693.1803 3 -7 19 1 18 4453.8036 3 -22 4749.1632 2 15 4870.0741 1 20 19 2 18 4453.8084 2 -47 4749.1581 2 -53 4870.0759 2 37 19 2 17 4642.4441 3 25 4910.6502 3 9 5030.8033 1 -11 19 3 17 4642.5839 2 -32 4910.7023 1 -5 5030.8172 2 68 19 3 16 4807.0660 3 5055.6829 5175.0203 1 -17 69 4 4 19 4 16 4808.8944 2 5055.7842 -40 5175.1391 2 10 30 1 19 4 15 4941.6040 2 5180.2918 5300.4953 19 4 58 1 4 19 5 15 4955.3178 3 5184.6064 5301.5295 2 -10 12 1 -61 19 5 14 5037.5823 -72 5276.0683 5399.7752 3 2 44 1 26 19 6 14 5090.3902 3 50 5300.5634 1 -38 5407.4787 2 -40 19 6 13 5121.5137 4 -6 5348.1912 5 -64 5473.1589 1 2 20 19 7 13 5228.3661 6 16 5412.4137 1 5516.0843 2 1 7 12 19 5234.1878 -108 5438.1933 2 54 5558.6245 1 -9 6 8 12 5380.2781 5524.4110 5637.5199 2 12 19 4 212 1 6 19 5552.8025 35 5639.5793 8 11 5381.1042 8 84 3 1 -11 19 5685.7445 2 -26 9 11 5548.7723 5 -4 1 -25 5771.8904 19 9 10 5548.8372 5 -1 5685.4446 2 -14 5772.1244 1 -32 29 5835.7720 19 10 10 5731.9626 6 1 -46 5917.6610 2 80 19 10 9 5731.9654 5 22 5835.7638 3 -5 5917.6788 104 1 19 11 9 5929.4211 3 -78 6001.3001 6079.2618 2 17 1 4 19 11 8 5929.4165 2 -93 6001.3020 3 28 6079.2627 15 1 12 2 19 8 6132.0442 2 -5 6181.5361 1 25 6250.9182 2 12 7 7 2 19 6132.0454 4 6181.5361 3 25 6250.9182 1 7 2 -7 19 13 6379.6795 16 6337.6849 1 6432.3601 2 3 19 13 6337.6849 3 -7 3 6 6379.6795 3 16 6432.3601 1

δE $E_{_{3\kappa cn}}(001)$ $\mathrm{d}E$ $J K_a K_c$ $E_{_{3\kappa cn}}(020)$ δE $\mathrm{d}E$ $E_{3\kappa nc}$ (100) $\mathrm{d}E$ δE 19 14 6541.2222 6 6596.9309 4 -35 2 3 6622.4101 3 -13 19 14 5 6596.9309 7 -35 6541.2222 4 3 6622.4101 2 -13 19 15 5 6826.2903 8 -20 6747.0069 2 5 6819.9200 4 -20 6819.9200 19 15 4 6826.2903 16 -20 6747.0069 4 5 2 -20 19 16 4 7062.8545 6 47 6957.4971 2 -7 7023.7778 4 -12 -7 19 16 3 7062.8545 11 47 6957.4971 4 7023.7778 2 -12 19 17 3 7304.2920 7 52 7172.6940 2 -23 7232.8944 5 -10 19 17 2 7304.2920 15 52 7172.6940 5 -23 7232.8944 3 -10 19 18 2 7549.0658 10 -51 7391.8944 3 5 7446.1937 5 -10 -51 19 18 1 7549.0658 20 7391.8944 5 5 7446.1937 3 -10 19 19 1 7795.9254 10 -18 7614.1731 4 23 7662.5851 9 -57 19 19 0 7795.9254 19 -18 7614.1731 8 23 7662.5851 5 -57 20 0 20 4434.4253 2 -17 4765.2425 2 -39 4887.7650 4 -4 20 1 20 4434.4253 4 -20 4765.2425 4 -39 4887.7650 2 -3 20 1 19 4659.3133 3 -25 4952.6553 2 -22 5074.1226 3 11 20 2 19 4659.3145 7 -58 4952.6553 3 -30 5074.1251 2 37 20 2 18 4858.9259 4 37 5123.4382 2 -4 5244.0539 2 -14 20 3 18 4859.0049 б -13 5123.4625 3 30 5244.0560 1 -12 3 17 5034.6161 77 5277.1800 2 -136 5397.4661 -13 20 2 2 4 17 5035.7147 44 5277.6823 5397.5262 20 3 3 -19 1 -6 4 3 -19 5412.8644 2 108 2 20 16 5182.2443 5532.8601 11 5 3 2 25 20 16 5191.3746 22 5415.2339 -26 5533.5327 1 5 15 5521.3159 5644.3653 5291.7719 2 2 44 2 20 89 31 6 15 5332.5737 -29 5538.2156 2 -37 5649.1163 -45 20 3 1 6 14 5376.9035 -5 5599.6036 2 -412 2 -1 20 3 5726.2592 7 14 10 5654.0891 11 20 5472.6830 4 2 5758.2454 1 3 7 13 2 2 20 5482.9190 3 5683.5003 6 5806.7292 -11 -6 8 13 5624.3570 7 5769.3307 2 -5 5879.4605 2 -19 20 -16 8 12 2 5795.9708 47 2 20 5626.0748 259 1 5883.3170 -12 9 12 20 5792.3220 4 -13 5928.2268 3 -20 6013.4211 1 -17 9 11 20 5792.4688 4 -24 5927.5536 1 4 6013.9375 2 -53 20 10 11 5975.2608 6 13 6077.2639 2 -20 6158.7996 1 70 20 10 10 5975.2680 4 -1 6077.2325 1 -29 6158.8397 2 69 20 11 10 6172.8231 5 55 6242.8200 3 4 6320.2648 2 39 7 20 11 9 6172.8088 -23 6242.8200 1 15 6320.2657 3 16 20 12 9 6375.5428 7 -4 6423.8580 3 61 6492.2199 1 23 20 12 6375.5428 4 -3 6423.8580 2 6492.2199 2 21 8 61 20 13 6623.7828 4 45 6580.7033 3 9 6674.2071 4 8 1 20 13 7 6623.7828 2 45 6580.7033 9 6674.2071 3 4 1 20 14 7 6842.7937 -34 6784.2069 6865.0185 8 6 4 -4 1 20 14 6842.7937 -34 6784.2069 2 6865.0185 3 8 б 3 -4 20 15 6 7073.5975 11 -12 6990.6671 3 14 7063.4791 2 -12 20 15 5 7073.5975 5 -12 6990.6671 2 14 7063.4791 4 -12 20 16 5 7311.6213 20 -19 7202.1782 4 7 7268.4714 2 -19 7 20 16 4 7311.6213 -19 7202.1782 2 7268.4714 4 -19 10 20 17 7554.6721 51 7418.6253 -15 7478.9098 -11 4 14 б 2 -15 17 3 7554.6721 7 51 7418.6253 7478.9098 20 3 4 -11 18 3 7801.2383 7639.2777 -33 -2 20 18 63 5 7693.7268 3 18 7639.2777 3 -33 7693.7268 5 -2 20 2 7801.2383 9 63 19 8050.0478 3 -5 20 2 23 -52 7863.2256 6 -18 7911.8557 8050.0478 7911.8557 -5 20 19 1 -52 7863.2256 3 -18 6 12 20 20 8299.9590 21 -20 8089.4834 21 8132.2102 5 -22 1 10 20 20 0 8299.9590 -20 8089.4834 21 8132.2102 -22 11 5 10 0 21 7 74 4968.4425 -42 2 47 21 4637.3223 5 5091.6277 49 21 1 21 4637.3150 2 -2 4968.4425 2 -43 5091.6277 4 21 1 20 5165.3370 2 54 4 -41 5287.4045

δE $E_{_{3\kappa cn}}(001)$ $\mathrm{d}E$ $J K_a K_c$ $E_{_{3\kappa cn}}(020)$ δE $\mathrm{d}E$ $E_{3\kappa nc}$ (100) $\mathrm{d}E$ δE 62 21 2 20 4874.0483 2 21 5165.3390 2 -25 5287.4045 3 21 2 19 5084.4916 4 -31 5345.3124 4 -31 5466.4512 2 2 21 3 19 5084.5402 2 -40 5345.3314 2 62 5466.4519 3 22 21 3 18 5270.9406 3 49 5508.4203 3 0 5628.9058 1 -35 21 4 18 5271.6013 3 50 5508.6006 2 3 5628.9340 3 -22 5773.7891 21 4 17 5430.8555 6 -3 5654.3874 3 -26 1 -1 27 21 5 17 5436.7830 5 1 5654.9746 2 -15 5774.1830 2 21 5 16 5554.1289 4 33 5774.6274 3 118 5896.8048 1 27 21 б 16 5584.9932 2 -51 5785.5772 2 -12 5899.8542 2 -47 21 б 15 5644.0638 3 9 5989.6019 1 -15 21 7 15 5728.1391 4 -4 5906.2939 2 -14 6011.8464 2 -31 7 21 14 5744.8538 4 37 5942.7341 3 55 6068.6508 1 -2 21 8 14 5880.0203 3 682 6025.0533 1 2 6132.8956 2 33 21 8 13 5883.2309 5 578 6050.8959 3 89 6139.5415 1 -8 21 9 13 6047.3119 3 -13 6182.6764 2 -14 6266.4973 2 18 21 9 12 6047.6403 7 93 6181.2394 2 34 6267.5730 2 -11 21 10 12 6229.8587 б -10 6330.1715 1 -24 6411.3022 2 56 21 10 11 6229.8738 5 -62 6330.1017 2 -13 6411.3968 1 30 21 11 11 6427.4538 3 -54 6495.6106 1 -16 6572.5587 4 14 21 11 10 6427.4364 7 -94 6572.5679 20 1 21 12 10 6630.1082 7 46 6677.4101 40 6744.7218 3 22 2 21 12 6630.1082 15 6677.4101 4 41 6744.7218 9 48 1 16 21 13 9 6879.0854 4 79 6834.6919 6927.1884 3 1 -22 16 7 -22 21 13 8 6879.0854 79 6834.6919 6927.1884 2 15 3 21 14 7099.7290 7038.1933 2 3 8 4 -71 0 7118.7034 -12 7099.7290 7038.1933 21 14 7 7 2 -71 3 0 7118.7034 -12 21 15 7 7331.9148 4 23 7245.3137 2 -1 7318.0774 4 2 21 15 9 2 6 7331.9148 23 7245.3137 3 -1 7318.0774 2 7 21 16 7571.3589 7457.8209 2 15 7524.1716 4 1 6 -18 21 16 5 7571.3589 7457.8209 4 7524.1716 2 1 14 -18 15 21 17 5 7815.9774 7675.4894 2 5 -18 12 -21 0 7735.8980 21 17 4 7815.9774 23 -21 7675.4894 4 0 7735.8980 2 -18 21 18 4 8064.3068 8 10 7897.5666 3 -11 7952.2022 5 -6 21 18 3 8064.3068 16 10 7897.5666 5 -11 7952.2022 3 -6 21 19 3 8315.0970 11 54 8123.1435 3 -18 8172.0307 6 -11 21 19 2 8315.0970 21 54 8123.1435 6 -18 8172.0307 3 -11 21 20 2 8567.1697 13 -41 8351.2554 5 -7 8394.3313 7 12 21 20 1 8567.1697 -41 8351.2554 -7 8394.3313 12 16 11 4 21 21 8819.4390 35 8580.9012 19 8618.0092 1 11 6 12 24 21 21 8819.4390 8580.9012 8618.0092 24 0 22 35 12 19 6 22 0 22 4849.3826 3 0 5180.8415 2 -15 5304.6493 -18 4 22 1 22 4849.3826 5 -4 5180.8415 4 -15 5304.6493 2 -18 22 1 21 5097.9512 2 -41 5387.1808 2 7 22 2 21 5387.1808 5 5509.7592 2 -29 4 22 2 20 5319.2022 4 19 5576.2713 2 58 5698.0264 3 128 22 3 20 5576.2740 3 36 5697.9868 2 25 5319.2325 8 18 43 22 3 19 5748.4156 2 5869.3385 3 -30 5516.1717 3 -130 76 22 4 19 3 5869.3437 2 -3 5748.5083 4 18 5687.5113 22 2 -53 2 -112 6023.3913 3 43 5902.4541 35 5 18 -52 2 22 5691.2720 3 6023.6008 5 17 22 5824.8392 2 0 6157.0953 3 22 22 6 17 5847.2624 3 36 6159.0200 2 -16 22 6 16 5924.6324 2 703 6262.0158 3 -4 22 7 2 16 5994.3436 4 -529 6276.5311 -85 7 22 15 2 2 6019.7041 22 6343.7308 -24 22 8 15 2 57 6146.8870 4 392 6291.1265 3 -16 6397.6408 22 8 14 3 6152.5866 4 -42 6408.1340 -6

$E_{_{3\kappa cn}}(020)$ $E_{_{3\kappa nc}}(100)$ δE $E_{_{3KCN}}(001)$ $\mathrm{d}E$ $J K_a K_c$ δE $\mathrm{d}E$ $\mathrm{d}E$ δE 9 14 -91 22 6313.6194 6 6530.9983 2 88 22 9 13 6314.2793 4 44 6446.4318 4 32 6533.0935 3 41 22 10 13 6594.4467 2 -26 6675.0926 2 -31 22 10 12 6495.7226 4 215 6594.2905 2 -18 6675.3110 2 -25 22 11 12 6693.2551 5 303 6836.0496 2 -58 7 22 11 11 6693.2095 128 6759.5758 2 -16 6836.0741 3 -27 22 12 11 6895.6027 8 -21 6942.0893 4 26 7008.3201 1 9 22 12 10 6895.6050 3 б 6942.0893 2 28 7008.3206 5 -1 22 13 10 7145.4389 6 17 7099.5514 3 -14 7191.1867 2 б 22 13 9 7145.4389 3 17 7099.5514 2 -14 7191.1867 3 5 22 14 9 7367.6115 10 24 7303.0622 4 2 7383.3518 2 19 22 14 8 7367.6115 5 24 7303.0622 2 3 7383.3518 3 19 22 15 8 7601.0910 10 34 7510.8237 3 9 7583.5834 2 2 22 15 7 7601.0910 5 34 7510.8237 2 9 7583.5834 4 2 22 16 7 7841.9077 11 1 7724.2873 4 -11 7790.7369 2 3 22 16 б 7841.9077 б 1 7724.2873 2 -11 7790.7369 4 3 -21 22 17 б 8088.0540 16 7943.1432 5 -3 8003.7177 2 0 22 17 5 8088.0540 8 -21 7943.1432 2 -3 8003.7177 5 0 -20 22 18 5 8338.1013 26 8166.6109 7 23 8221.4704 3 -4 22 18 4 8338.1013 -20 8166.6109 23 8221.4704 -4 13 3 б 22 19 4 8590.8220 -6 8393.7757 7 5 8442.9604 3 -2 17 22 19 8590.8220 8393.7757 5 8442.9604 3 9 -6 4 б -2 22 20 3 8845.0701 42 8623.6946 7 25 8667.1523 23 4 -18 22 20 2 8845.0701 42 8623.6946 8667.1523 7 12 3 25 -18 22 21 2 9099.7095 8855.3817 8893.0018 27 48 17 -22 5 11 9099.7095 8855.3817 9 22 21 1 48 9 -22 8893.0018 11 14 9087.8472 7 22 22 1 16 -27 9119.4120 -13 22 22 9087.8472 0 -27 9119.4120 -13 8 13 23 0 23 5070.6094 7 5402.4104 129 5526.9150 0 48 6 2 1 23 23 5070.6094 3 44 5402.4104 3 129 5526.9150 5 0 23 1 22 5618.1316 7 -69 5741.3979 3 -112 23 2 22 5331.0127 6 2 5618.1316 4 -70 5741.3979 6 -110 23 2 21 5938.4545 2 -50 23 3 21 5563.0033 3 885 5816.2673 2 77 23 3 20 6118.0141 2 -35 23 4 20 5997.3602 3 136 6118.7417 4 7 23 4 19 6281.7213 2 -40 23 5 19 6281.8049 33 4 23 5 18 6425.6236 2 -40 23 6 18 6426.5481 3 16 23 6 17 6542.5872 2 -20 7 16 23 6630.7718 2 -26 23 8 15 6728.8025 2 501 23 9 15 6806.7752 3 202 23 9 14 6810.6101 2 122 23 10 14 5 108 6870.0574 6950.1088 4 6772.5450 3 -46 66 23 10 13 6950.5517 2 -76 23 11 13 7034.6377 -51 5 -30 2 7110.6561 23 11 12 7034.6253 -24 7110.7057 2 -35 3 23 12 12 7217.7747 -45 7171.9149 8 -111 2 -41 7282.9059 4 -38 7171.9149 7217.7747 7282.9112 23 12 11 15 -100 2 -32 4 23 13 11 7422.7063 -73 7375.1693 2 -18 7466.0894 3 1 4 -73 23 13 10 7422.7063 7 7375.1693 5 -17 7466.0894 2 -1 14 10 23 7646.2858 6 141 7578.6958 2 9 7658.8309 4 6 14 2 23 9 7646.2858 12 141 7578.6958 4 9 7658.8309 6 23 15 7 7787.0643 9 7880.9973 187 2 -1 7859.8683 4 6 23 15 7880.9973 7787.0643 -1 7859.8683 2 8 13 187 4 6

$J \quad K_a \quad K_c \quad E_{\mathfrak{s}\kappa cn} (020)$ δE dE $E_{_{3\kappa nc}}(100)$ δΕ $\mathrm{d}E$ $E_{_{3KCN}}(001)$ δE dE23 16 8 8123.1112 6 -24 8001.4485 2 -8 8068.0304 5 -11 23 16 7 8123.1112 12 -24 8001.4485 5 -8 8068.0304 3 -11 23 17 7 8370.7376 6 -3 8221.4453 2 -28 8282.2220 5 12 23 17 6 8370.7376 13 -3 8221.4453 5 -28 8282.2220 3 12 23 18 6 8622.4513 9 -12 8446.2538 4 -39 8501.3804 6 -6 23 18 5 8622.4513 18 -12 8446.2538 7 -39 8501.3804 3 -6 23 19 5 8877.0504 14 -27 8674.9716 4 37 8724.4856 7 -9 23 19 4 8877.0504 28 -27 8674.9716 8 37 8724.4856 4 -9 23 20 4 9133.4098 9 -19 8906.6387 5 10 8950.5214 7 -25 23 20 3 9133.4098 18 -19 8906.6387 9 10 8950.5214 4 -25 23 21 3 9390.3980 12 26 9140.3153 4 28 9178.4707 8 -53 23 21 2 9390.3980 24 26 9140.3153 8 28 9178.4707 4 -53 23 22 2 9647.2258 14 -33 9375.0166 9 -66 9407.3222 10 -73 23 22 1 9647.2258 28 -33 9375.0166 19 -66 9407.3222 5 -73 23 23 1 9609.7676 -70 9635.6495 15 -41 10 23 23 9609.7676 20 -70 9635.6495 7 -41 0 24 0 24 5300.9511 4 -33 5633.0589 3 -91 5758.3317 5 6 24 1 24 5300.9511 7 5633.0589 7 -92 5758.3317 3 5 -38 5 5982.1360 5 60 24 1 23 5573.1564 62 2 23 3 24 5982.1360 61 2 22 5815.5657 64 5 24 4 6065.2311 3 -214 6188.0825 -213 22 2 24 6065.2068 4 -469 6188.0825 -12 3 21 24 6376.9413 4 -444 21 24 6376.9126 2 -20 4 20 24 6548.6328 4 73 5 20 24 6548.7855 2 9 5 19 24 6701.8005 3 56 6 19 2 24 6702.5181 27 6 18 3 7 24 6830.7993 24 10 15 -87 7236.2024 4 24 10 14 7237.0978 3 -162 24 11 14 7320.6938 -24 7396.2678 3 -10 5 24 11 13 7320.6614 2 -30 7396.3757 6 -41 24 12 13 7504.3577 7 -11 7568.3752 2 -105 24 12 12 7504.3577 3 -6 7568.3908 6 -46 24 13 12 7710.7400 6 -140 7661.4404 5 -13 7751.7740 2 -61 24 13 11 7710.7400 7661.4404 2 7751.7740 3 -141 -11 4 -67 24 14 11 7935.5692 7864.9725 7945.0211 2 10 -445 -1 -10 24 14 10 7935.5692 -44 7864.9725 2 7945.0211 5 -1 4 -11 24 15 10 -79 8073.9114 8171.4283 15 4 18 8146.8023 2 19 8171.4283 -79 8073.9114 24 15 9 2 18 8146.8023 5 19 8 24 16 9 8414.8336 55 8289.1647 5 -17 8355.9205 2 15 11 24 16 8414.8336 55 8289.1647 2 -17 8355.9205 8 8 4 11 24 17 8663.8660 -52 8510.2578 5 -43 8571.2658 -3 8 17 3 -43 8571.2658 24 17 7 8663.8660 -52 8510.2578 3 -3 8 6 8917.1931 8736.3764 71 7 23 24 18 18 4 6 8791.7865 3 8917.1931 71 8791.7865 24 18 6 9 4 8736.3764 3 6 23 9173.6103 -37 24 19 6 15 -3 8966.5700 8 9016.4541 4 -8 7 24 19 5 9173.6103 -3 8966.5700 4 -37 9016.4541 -8 8 9199.9458 24 20 5 9432.0239 28 41 9 45 9244.2784 4 -19 24 20 4 9432.0239 9199.9458 45 9244.2784 -19 14 41 4 8 24 21 9691.2865 9435.5360 24 9474.2676 -34 4 29 20 11 4 24 21 3 9691.2865 9435.5360 24 14 20 6 9474.2676 8 -34 72 24 22 3 9672.4083 9 18 9705.4891 4 22 2 9672.4083 5 72 24 18 9705.4891 9 24 23 2 9909.5872 19 -139 24 23 1 9909.5872 10 -139

Γ	риложение	2.4	(продолжение))
---	-----------	-----	---------------	---

J	Ka	K _c	E _{эксп} (020)	δΕ	dE	Е _{экпс} (100)	δΕ	d <i>E</i>	<i>Е_{эксп}</i> (001)	δΕ	dE
24 24	24 24	1 0				10146.1449 10146.1449	22 11	135 135			
25 25 25 25 25 25 25 25 25 25 25 25 25	0 1 2 3 4 4 5 5 6	25 25 24 23 23 22 21 21 20 20	5540.4086 5540.4086 5824.2962	8 4 6	27 20 -51	5872.8145 5872.8145 6107.2529 6107.2529	8 4 3	73 73 47 47	5998.8682 5998.8682 6231.9175 6231.9175 6446.6999 6446.6999 6644.1375 6644.1345 6824.4106 6824.6689 6986.5635 6986.9792	3 4 5 9 5 11 3 4 2 6 3 4	3 -85 -85 81 85 -37 -29 -18 -38 55 23
25 25 25 25 25 25 25 25 25 25 25	6 7 8 11 11 12 12 13	19 18 18 17 15 14 14 13 13	8009.3901	4	-12	7801.7038 7801.7126 7958.2602	2 4 2	134 229 28	7126.4920 7235.4039 7257.7725 7327.3119 7692.7766 7693.0119 7864.6329 7864.6531	2 2 4 3 6 2 8 2	$ \begin{array}{r} 11\\ 14\\ -118\\ -47\\ -32\\ -8\\ -27\\ -50\\ \end{array} $
25 25 25 25 25 25	13 14 14 15 15 16	12 12 11 11 10 10	8009.3901 8472.2958 8472.2958 8716.8991	8 6 11 9	-14 -44 -44 59	7958.2602 8161.7762 8161.7762 8371.2311 8371.2311 8587.3047	5 2 4 2 5 3	33 -1 -1 7 7 -1	8048.1375 8241.8225 8241.8225 8444.2483 8444.2483 8654.2641	2 4 2 4 2 5	-46 225 223 -18 -18 6
25 25 25 25 25 25 25 25 25	16 17 17 18 18 19 19	9 9 8 7 7 6	8716.8991 8967.3006 8967.3006 9222.1663 9222.1663	17 8 15 7 14	59 18 18 1 1	8587.3047 8809.4374 8809.4374 9036.7972 9036.7972 9268.4371 9268.4371	5 3 5 3 6 4 7 5	-1 -71 -71 0 -54 -54	8654.2641 8870.7139 8870.7139 9092.5350 9092.5350 9318.7137 9318.7137	3 5 3 6 3 6 3 9	6 27 25 25 12 12
25 25 25 25 25 25 25 25 25 25 25 25 25 2	20 20 21 22 23 23 24 24 25 25	6 5 4 4 3 2 2 1 1 0				9503.4466 9503.4466 9740.9012 9740.9012 9979.8482 10219.3918 10219.3918 10458.5489 10458.5489 10458.5489 10696.3903	5 10 5 9 18 5 10 12 25 11 21	-40 -40 61 -34 -34 22 22 -132 -132 -18 -18	9548.2633 9548.2633 9780.2292 9780.2292	8 4 11 6	-24 -24 44 44
26 26 26 26 26 26 26 26	0 1 2 3 3 4	26 25 25 24 24 23 23	5788.9354 5788.9354	4 8	25 16	6121.5570 6121.5570	4 9	-43 -43	6248.4883 6248.4883 6490.7686 6490.7686 6714.2859 6714.2859 6920.1691 6920.1691	7 4 9 5 7 3 8 4	1 0 73 73 338 341 -28 -12

J	Ka	K _c	Е _{эксп} (020)	δΕ	E dE	Е _{экпс} (100)	δΕ	dE dE	Е _{эксп} (001)	δΕ	dE
26 26	6 7	21 20							7279.9468 7431.7624	2 3	27 -167
26	8 11	18 16				7025 4244	1	15	7645.8405	4	-19 122
20 26	11	15				7925.3150	3	23	8000.5700	2 4	258
26	12	15							8171.5501	2	21
26	12	14					-	1 4 2	8171.5990	7	15
26 26	⊥3 13	⊥4 13				8265.5257	5	143 154	8355.04/9	2 9	-23 -49
26	14	13				8468.9861	5	-22	8549.0355	2	-22
26	14	12				8468.9861	3	-21	8549.0355	4	-25
26	15	12				8678.9028	5	28	8752.0805	3	-41
26 26	15 16	⊥⊥ 11				86/8.9028	2 5	28 1	8752.0805	5 3	-41 1
26	16	10				8895.7302	3	1	8962.9266	5	1
26	17	10				9118.8495	5	-52	9180.4181	3	39
26	17	9				9118.8495	3	-52	9180.4181	6	39
26 26	18 18	9				9347.3979	6 3	∠3 23	9403.4835	3 6	43 43
26	19	8				9580.4194	7	-49	9631.1019	3	-59
26	19	7				9580.4194	3	-49	9631.1019	7	-59
26	20	7				9817.0077	9	-51			
26 26	20 21	6 6				9817.0077	4 12	-51 -40			
26	21	5				10056.2398	6	-40			
26	22	5				10297.2174	14	90			
26	22	4				10297.2174	7	90 1 F			
26 26	∠3 23	4 3				10538.9970	∠0 10	-15 -15			
26	24	3				10780.7009	11	36			
26	24	2				10780.7009	6	36			
27	0	27	6046.509	10	-3				6507.1528	4	-4
27	1	27	6046.509	5	-14				6507.1528	8	-4
27	1	26							6758.5893	6	-74
27	2	26 25							6758.5893	12	-74 46
27	3	25							6990.7288	18	48
27	3	24							7204.9945	3	-64
27	4	24							7204.9945	6	-52
27	5 10	22 18				8087.4192	3	104	/581.2144	3	128
27	10	17							8164.6988	3	-8
27	11	17				8243.9663	3	-3			
27	11 12	15 15				8243./440	4	/6	8489 1067	З	-41
27	13	15				8583.1176	3	194	8672.3970	7	95
27	13	14							8672.3994	3	21
27	14	14				8786.4794	3	-141	8866.6086	6	23
27	⊥4 1⊑	⊥3 1२				8786.4794	5 2	-⊥39 _22	8866.6086 9070 1681	3	⊥6 _22
27	15	12				8996.7919	6	-22	9070.1681	3	-23
27	16	12				9214.3122	3	18	9281.7707	6	2
27	16	11				9214.3122	5	18	9281.7707	3	2
27 27	17 17	11 10				9438.3492	3	-45 -45	9500.2369	6 2	40
⊿ / 27	18	10				9668.0365	3	- 4 5 172	9724.4816	з 7	4 0 37
27	18	9				9668.0365	7	172	9724.4816	4	37

J	Ka	K_c	$E_{\scriptscriptstyle { m > KCN}}\left(020 ight)$	δΕ	dE	$E_{\scriptscriptstyle { m 3KRC}}$ (100)	δΕ	dE	$E_{_{\mathcal{HCN}}}(001)$	δΕ	dE
27 27 27 27 27 27 27 27 27 27 27 27 27	19 19 20 21 21 22 23 23 23 24 24	9 8 7 6 6 5 5 4 4 3				9902.3710 9902.3710 10140.4722 10140.4722 10381.4196 10381.4196 10624.3191 10624.3191 10868.2870 10868.2870 11112.4022 11112.4022	4 8 4 8 5 9 7 13 7 14 10 21	$ 19 \\ -26 \\ -26 \\ -60 \\ -59 \\ -59 \\ 40 \\ 40 \\ -44 \\ -44 $	9953.4915 9953.4915	84	9 9
28 28 28 28 28 28 28 28 28 28 28 28 28	0 1 2 3 11 13 14 14	28 27 27 26 26 18 17 16 15 14	6313.1084 6313.1084	5 10	-28 -42	8573.1946 8572.7572 8910.9015 9114.1861 9114.1861	4 - 5 - 5 10	-60 247 139 36 40	6774.8214 6774.8214 7035.3965 7035.3965 7276.0940 7276.0940 8646.5400	9 5 10 5 11 6 6	-12 -12 57 56 303 304 -45
29 29 29 29 29 29 29 29	0 1 2 3 3 11	29 29 28 27 27 26 28	6588.7142 6588.7142	10 5	26 10	8912.4117	6	130	7051.4538 7051.4538 7321.0917 7321.0917 7570.2235 7570.2235 7800.8634	5 10 20 11 22 4	-7 -96 -97 -4 -29
30 30 30 30	0 1 1 2	30 30 29 29							7337.0049 7337.0049 7615.6897 7615.6897	11 6 12 6	-9 -9 52 51

Примечания: Первые три колонки соответствуют вращательным квантовым числам ($J K_a K_c$). Колонки 4-6 содержат экспериментальные значения вращательных уровней энергии ($E_{_{3ксn}}$, в см⁻¹), их неопределенности (δE , в 10⁻⁴ см⁻¹), и разницы ($dE = E_{_{3ксn}} - E_{_{6bl}}$, в 10⁻⁴ см⁻¹) между наблюдаемыми и вычисленными значениями уровней энергии для состояния (020). То же самое для состояния (100) колонки 7-9 и для (001) колонки 10-12.

Приложение 2.5 Пример сильного перемешивания всех трех колебательных состояний первой триады для уровней с $J\!=\!16$

E _{эксп}	$E_{{\scriptscriptstyle {\cal B}}{\scriptscriptstyle {\cal b}}{\scriptscriptstyle {\cal I}}{\scriptscriptstyle {\cal Y}}}$	dE	V_1V_2V	' ₃ J	Ka	K _c	%(020)	%(100)	%(001)
3715.1640	3715.1647	-7	020	16	0	16	98.95%	1.04%	0.00%
3715.1639	3715.1658	-19	020	16	1	16	98.95%	1.04%	0.00%
3892.8170	3892.8076	94	020	16	1	15	98.78%	1.22%	0.00%
3892.8521	3892.8502	19	020	16	2	15	98.78%	1.22%	0.00%
4047.8075	4047.8291	-216	020	16	2	14	93.90%	6.00%	0.11%
4048.5750	4048.5924	-174	020	16	3	14	95.66%	4.27%	0.07%
4175.9733	4175.9676	57	020	16	3	13	98.13%	1.87%	0.00%
4183.8098	4183.8022	76	020	16	4	13	97.39%	2.59%	0.01%
4268.3243	4268.3217	26	020	16	4	12	98.33%	1.67%	0.00%
4305.8948	4305.9003	-55	020	16	5	12	97.76%	2.23%	0.00%
4341.0507	4341.0480	27	020	16	5	11	98.22%	1.78%	0.00%
4428.5571	4428.5634	-63	020	16	6	11	96.88%	3.11%	0.01%
4435.9448	4435.9412	36	020	16	6	10	97.91%	2.08%	0.01%
4564.9513	4564.9440	73	020	16	7	10	96.63%	3.35%	0.02%
4565.4973	4565.5007	-34	020	16	./	9	96.76%	2.61%	0.63%
4718.0997	4718.1050	-53	020	16	8	9	78.83%	2.58%	18.59%
4718.3052	4718.3029	23	020	16	8	8	96.78%	3.21%	0.01%
4887.7115	4887.7096	11	020	16	9	8	95.60%	4.39%	0.01%
4887.7142	4887.7131	11	020	16	10	/ 7	95.60%	4.398	0.018
5070.8723	5070.8715	87	020	16	10	í E	93.058	0.036	0.126
5070.8723	50/0.8/10	10	020	16	11	6	93.058 E1 2E%	0.836	U.126 10 26%
5268 5904	5268 5895	-T0	020	10 16	11	5	51.25% 51.26%	0.49%	40.200
5469 1463	5469 1434	20	020	16	1 2	5	51.20% 78 /0%	10 202	40.23%
5469 1463	5469 1434	29	020	16	12	4	78.40%	19.09%	1 70%
5715 8831	5715 8852	-21	020	16	13	- 4	51 21%	19.09% 47 10%	1 69%
5715 8831	5715 8852	-21	020	16	13	י ג	51 21%	47 10%	1 69%
5927 2488	5927 2482	6	020	16	14	2	83 16%	16 36%	0 48%
5927.2488	5927.2482	6	020	16	14	2	83.16%	16.36%	0.48%
6151.9319	6151.9381	-62	020	16	15	2	94.66%	5.21%	0.13%
6151.9319	6151.9381	-62	020	16	15	1	94.66%	5.21%	0.13%
6384.0146	6383.9808	338	020	16	16	1	98.09%	1.88%	0.03%
6384.0146	6383.9808	338	020	16	16	0	98.09%	1.88%	0.03%
4044.9298	4044.9104	194	100	16	0	16	5.75%	92.39%	1.86%
4044.9579	4044.9414	165	100	16	1	16	3.98%	94.12%	1.90%
4194.2099	4194.2135	-36	100	16	1	15	1.56%	96.79%	1.65%
4194.2620	4194.2687	-67	100	16	2	15	2.25%	96.10%	1.64%
4327.4024	4327.4025	-1	100	16	2	14	1.46%	97.20%	1.34%
4327.6766	4327.6774	-8	100	16	3	14	1.87%	96.78%	1.36%
4442.5285	4442.5304	-19	100	16	3	13	1.59%	97.40%	1.00%
4445.3933	4445.3895	38	100	16	4	13	2.64%	96.19%	1.17%
4531.7849	4531.7894	-45	100	16	4	12	1.70%	97.49%	0.81%
4549.4806	4549.48/5	-69	100	16	5	11	2.64%	95.93%	1.43%
4596.6069	4596.6044	25 1.C	100	16	5	11 11	2.00%	92.148	5.86%
4649.4870	4649.4886	-10	100	10	6 C		1.986	94./16	3.3⊥6 40.00%
4053.4199	4053.4198	⊥ 2.2	100	16	ט ד	10	1.103	58.556 70 01%	40.286
4/33.3301 4740 0616	4/33.3348 4740 NEOF	33 21	100	16 16	ו ר	U T U	2.U26 1 110	17.016 56 600	10.9/6 11 270
4749.0010	4894 4658	_19	100	16	2 2	a	2 008	63 038	34 972
4893 9023	4893 9043	_ 2 O	100	16	о Я	و م	2.00%	66 06%	31 84%
5029 2422	5029 2409	12	100	16	q	۵ ۵	2.100	80 64%	15 80%
5029 2226	5029.2409	- 3 - 2	100	16	9	7	3.56%	80 74%	15 69%
5180,4817	5180 4813	4	100	16	10	, 7	5.74%	85.24%	9,02%
5180.4817	5180.4808	9	100	16	10	, 6	5.74%	85.24%	9.02%
5345.2967	5345.2965	2	100	16	11	6	10.13%	84.13%	5.74%

Еэксп	$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	dE	V_1V_2V	₃ J	K _a	K _c	%(020)	%(100)	%(001)
5345.2967	5345.2965	2	100	16	11	5	10.13%	84.13%	5.74%
5523.0243	5523.0259	-16	100	16	12	5	21.51%	74.89%	3.60%
5523.0243	5523.0259	-16	100	16	12	4	21.51%	74.89%	3.60%
5675.6111	5675.6076	34	100	16	13	4	48.79%	49.38%	1.83%
5675.6111	5675.6076	34	100	16	13	3	48.79%	49.38%	1.83%
5879.4344	5879.4332	12	100	16	14	3	16.83%	81.20%	1.96%
5879.4344	5879.4332	12	100	16	14	2	16.83%	81.20%	1.96%
6083.2326	6083.2319	7	100	16	15	2	5.34%	93.23%	1.44%
6083.2326	6083.2319	./	100	16	15	1	5.34%	93.23%	1.44%
6290.5730	6290.5730	0	100	16	16	1	1.91%	97.37%	0.72%
6290.5730	6290.5730	0	100	16	16	0	1.91%	97.37%	0.72%
4165.2734	4165.2745	-11	001	16	0	16	0.01%	1.98%	98.00%
4165.2734	4165.2746	-12	001	16	1	16	0.01%	1.98%	98.00%
4313.5365	4313.5355	10	001	16	1	15	0.01%	1.76%	98.23%
4313.5392	4313.5377	15	001	16	2	15	0.02%	1.76%	98.22%
4446.1499	4446.1520	-21	001	16	2	14	0.02%	1.67%	98.31%
4446.2071	4446.2073	-2	001	16	3	14	0.02%	1.82%	98.17%
4561.4819	4561.4830	-11	001	16	3	13	0.02%	1.71%	98.27%
4561.8526	4561.8538	-12	001	16	4	13	0.48%	6.88%	92.64%
4653.2313	4653.2321	-8	001	16	4	12	0.02%	1.43%	98.55%
4676.9911	4676.9922	-11	001	16	5	12	0.84%	39.75%	59.41%
4718.7776	4718.7712	65	001	16	5	11	18.03%	3.26%	78.71%
4777.8090	4777.8101	-11	001	16	6	11	1.00%	40.87%	58.13%
4787.5832	4787.5861	-29	001	16	6	10	0.44%	18.17%	81.39%
4859.8444	4859.8434	10	001	16	7	10	1.07%	30.73%	68.20%
4861.5600	4861.5578	22	001	16	.7	9	1.17%	33.72%	65.11%
4982.0520	4982.0535	-15	001	16	8	9	0.84%	14.82%	84.34%
4982.2476	4982.2499	-23	001	16	8	8	0.84%	14.93%	84.23%
5117.4468	5117.4484	-16	001	16	9	8	1.21%	7.89%	90.90%
5117.4596	5117.4618	-22	001	16	10	7	1.21%	7.90%	90.90%
5262.5095	5262.5116	-21	001	16	10		38.61%	15.35%	46.04%
5262.5095	5262.5119	-24	001	16	10 11	6	38.61%	15.35%	46.04%
5424.9424	5424.9449	-25	001	16	11	6	0.08%	5.19%	94.73%
5424.9424	5424.9449	-25	001	10		5	0.08%	5.198	94.738
5595.2558	5595.2583	-25	001	10	12	5	0.00%	3.50%	96.50%
5595.2558	5595.2583	-25	001	10	12 12	4	0.00%	3.506	90.5U3
5//4./390	5//4./410	-14 14	001	10	13 13	4	0.003	2.446	97.556
5//4./390	5//4./41U	-14	001	16	1J	3	0.003	2.446	97.556
5062 2057	5962.2049 5962 29/0	0	001	16	1/1	с С	0.010 0 010	1 60%	20.326 08 208
6156 7775	5702.2049 6156 7712	0 1 0	001	1 G	1 E	⊿ ົ	0.010	1.000 0 020	20.220 00 160
0100.//20 6156 7725	0130.//13 6156 7712	⊥∠ 1 0	001	⊥0 16	15 15	∠ 1	0.000	U.036 0 079	77.⊥00 00 160
6357 0010	6357 0017	±2 _7	001	16	16	⊥ 1	0.000	0.036	99.100 99.100
6357.0910	6357 0017	- / _7	001	16	16	_⊥ ⊥	0.000	0.000	99.940 99 019
0721.02T0	0337.0917	- /	UUT	то	то	U	0.00%	0.00%	22.240

Приложение 2.5 (продолжение)

Примечания: $E_{3\kappa cn}$ – экспериментальное значение уровня энергии (в см⁻¹); E_{6bl} – вычисленное значение уровня энергии (в см⁻¹); dE – разница между экспериментальным и вычисленным значением (в 10⁻⁴ см⁻¹); V₁V₂V₃ – колебательные квантовые числа; *J*, K_a , K_c – вращательные квантовые числа; $(V_1V_2V_3)$ – коэффициенты смешивания колебательно-вращательных уровней для состояния V₁V₂V₃.

5538.81955538.8370 -17.5 02014178.80%21.01% $0.19%$ 5738.81955538.8370 -17.5 0201414078.80%21.01% $0.19%$ 5727.13925727.1412 -2.0 0201514181.10%18.56% $0.35%$ 5950.25585950.203552.3020151594.14% $5.79%$ 0.07% 5715.88315715.8852 -2.1 0201613451.21% 47.10% 1.69% 5927.24885927.24820.60201614383.16%16.36% 0.48% 5927.24885927.24820.60201615294.66%5.21% 0.13% 6151.93196151.9381 -6.2 0201615294.66%5.21% 0.13% 634.01466383.980833.8020161698.09% 1.88% 0.03% 5925.60215925.6047 -2.6 020171355.17%42.87% 1.95% 5925.60215925.6047 -2.6 020171485.00%14.43% 0.58% 6139.01576139.01391.8020171485.00%14.43% 0.58% 6139.01576139.01391.8020171485.00%14.43% 0.58% 6353.0666365.30521.4020171595.12%4.70% 0.18% 6354.0666365.3052 </th <th>Еэксп</th> <th>$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$</th> <th>dE</th> <th>$V_1V_2V_3$</th> <th>$_3 J$</th> <th>Ka</th> <th>K_c</th> <th>%(020)</th> <th>%(100)</th> <th>%(001)</th>	Еэксп	$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	dE	$V_1V_2V_3$	$_3 J$	Ka	K _c	%(020)	%(100)	%(001)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5538.8195 5538.8195	5538.8370 5538.8370	-17.5 -17.5	020 020	14 14	14 14	1 0	78.80% 78.80%	21.01% 21.01%	0.19% 0.19%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5727.1392	5727.1412	-2.0	020	15	14	2	81.10%	18.56%	0.35%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5727.1392	5727.1412	-2.0	020	15	14	T	81.10%	18.56%	0.35%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5950.2558	5950.2035	52.3	020	15	15	1	94.14%	5.79%	0.07%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5950.2558	5950.2035	52.3	020	15	15	0	94.148	5./98	0.0/%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5715.8831	5715.8852	-2.1	020	16	13	4	51.21%	47.10%	1.69%
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5715.8831	5715.8852	-2.1	020	16	13	3	51.21%	47.10%	1.69%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5927.2488	5927.2482	0.6	020	16	14	3	83.16%	16.36%	0.48%
	5927.2488	5927.2482	0.6	020	16	14	2	83.16%	16.36%	0.48%
	6151.9319	6151.9381	-6.2	020	16	15	2	94.66%	5.21%	0.13%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6151.9319	6151.9381	-6.2	020	16	15	1	94.66%	5.21%	0.13%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6384.0146	6383.9808	33.8	020	16	16	1	98.09%	1.88%	0.03%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6384.0146	6383.9808	33.8	020	16	16	0	98.09%	1.88%	0.03%
5925.60215925.6047 -2.6 0201713455.17%42.87%1.95%6139.01576139.01391.80201714485.00%14.43%0.58%6365.30666365.30521.40201715395.12%4.70%0.18%6365.30666365.30521.40201715295.12%4.70%0.18%6598.84006598.8535 -5.5 0201716298.20%1.73%0.07%6837.07436837.063810.50201717199.32%0.66%0.02%6146.90866146.9102 -1.6 0201813659.09%38.77%2.15%6362.28446362.2916 -3.2 0201814486.60%12.75%0.65%6590.14646590.14303.40201815395.33%4.24%0.23%6825.20646825.20293.50201816398.31%1.59%0.10%6825.20646825.20293.50201816398.31%1.59%0.10%6825.20646825.20293.5020181799.34%0.62%0.04%7065.01507065.0205 -5.5 020181799.34%0.62%0.04%7065.01507065.0205 -5.5 020181799.34%0.62%0.04%7065.015070	5925.6021	5925.6047	-2.6	020	17	13	5	55.17%	42.87%	1.95%
	5925.6021	5925.6047	-2.6	020	17	13	4	55.17%	42.87%	1.95%
	6139.0157	6139.0139	1.8	020	17	14	4	85.00%	14.43%	0.58%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6139.0157	6139.0139	1.8	020	17	14	3	85.00%	14.43%	0.58%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6365.3066	6365.3052	1.4	020	17	15	3	95.12%	4.70%	0.18%
6598.8480 6598.8535 -5.5 020 17 16 2 98.20% 1.73% 0.07% 6598.8480 6598.8535 -5.5 020 17 1 98.20% 1.73% 0.07% 6837.0743 6837.0638 10.5 020 17 17 99.32% 0.66% 0.02% 6146.9086 6146.9102 -1.6 020 18 13 5 59.09% 38.77% 2.15% 6362.2884 6362.2916 -3.2 020 18 14 5 86.60% 12.75% 0.65% 6362.2884 6362.2916 -3.2 020 18 14 4 86.60% 12.75% 0.65% 6590.1464 6590.1430 3.4 020 18 5 95.53% 4.24% 0.23% 6590.1464 6590.1430 3.4 020 18 17 2 99.34% 0.62% 0.04% 7065.0146 6825.2029 3.5 020 18 17 2 99.34% 0.62% 0.04% 7065.0150 7065.0205	6365.3066	6365.3052	1.4	020	17	15	2	95.12%	4.70%	0.18%
6598.8480 6598.8535 -5.5 020 17 16 1 98.20% 1.73% 0.07% 6837.0743 6837.0638 10.5 020 17 17 1 99.32% 0.66% 0.02% 6837.0743 6837.0638 10.5 020 17 17 0 99.32% 0.66% 0.02% 6146.9086 6146.9102 -1.6 020 18 13 5 59.09% 38.77% 2.15% 6362.2884 6362.2916 -3.2 020 18 14 4 86.60% 12.75% 0.65% 6362.2884 6362.2916 -3.2 020 18 14 4 86.60% 12.75% 0.65% 6362.2884 6362.2029 3.5 020 18 15 3 95.53% 4.24% 0.23% 6590.1464 6590.1430 3.4 020 18 16 2 98.31% 1.59% 0.10% 6825.2064 6825.2029 3.5 020 18 17 99.34% 0.62% 0.04% 7065.01	6598.8480	6598.8535	-5.5	020	17	16	2	98.20%	1.73%	0.07%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6598.8480	6598.8535	-5.5	020	17	16	1	98.20%	1.73%	0.07%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6837.0743	6837.0638	10.5	020	17	17	1	99.32%	0.66%	0.02%
	6837.0743	6837.0638	10.5	020	17	17	0	99.32%	0.66%	0.02%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6146.9086	6146.9102	-1.6	020	18	13	6	59.09%	38.77%	2.15%
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6146.9086	6146.9102	-1.6	020	18	13	5	59.09%	38.77%	2.15%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6362.2884	6362.2916	-3.2	020	18	14	5	86.60%	12.75%	0.65%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6362.2884	6362.2916	-3.2	020	18	14	4	86.60%	12.75%	0.65%
6590.1464 6590.1430 3.4 020 18 15 3 95.53 % 4.24 % 0.23 % 6825.2064 6825.2029 3.5 020 18 16 3 98.31 % 1.59 % 0.10 % 6825.2064 6825.2029 3.5 020 18 16 2 98.31 % 1.59 % 0.10 % 7065.0150 7065.0205 -5.5 020 18 17 2 99.34 % 0.62 % 0.04 % 7065.0150 7065.0205 -5.5 020 18 17 1 99.34 % 0.62 % 0.04 % 7308.0347 7308.0325 2.2 020 18 18 99.77 % 0.21 % 0.02 % 6379.6795 6379.6779 1.6 020 19 13 7 62.84 % 34.88 % 2.28 % 6379.6795 6379.6779 1.6 020 19 13 6 62.84 % 34.88 % 2.28 % 6379.6795 6379.6779 1.6 020 19 13 6 62.84 % 34.88 % 2.28 % 6379.6795 6379.6779 1.6 020 19 13 62.84 % 34.88 % 2.28 % 6379.6795 6379.6779 1.6 020 19 13 62.84 % 34.88 % 2.28 % 6379.6795 6379.6779 1.6 020 19 14 6 87.99 % 11.30 % 0.71 % 6596.9344 -3.5 020 19 14 6 8	6590.1464	6590.1430	3.4	020	18	15	4	95.53%	4.24%	0.23%
6825.2064 6825.2029 3.5 020 18 16 3 98.31 % 1.59 % 0.10 % 6825.2064 6825.2029 3.5 020 18 16 2 98.31 % 1.59 % 0.10 % 7065.0150 7065.0205 -5.5 020 18 17 2 99.34 % 0.62 % 0.04 % 7065.0150 7065.0205 -5.5 020 18 17 1 99.34 % 0.62 % 0.04 % 7308.0347 7308.0325 2.2 020 18 18 1 99.77 % 0.21 % 0.02 % 7308.0347 7308.0325 2.2 020 18 18 0 99.77 % 0.21 % 0.02 % 6379.6795 6379.6779 1.6 020 19 13 6 62.84 % 34.88 % 2.28 % 6596.9309 6596.9344 -3.5 020 19 14 6 87.99 % 11.30 % 0.71 % 6826.2903 6826.2923 -2.0 020 19 15 95.89 % 3.84 % 0.27 % 7062.8545 7062.8498 4.7 020 19 16 98.41 % 1.47 % 0.12 % 7304.2920 7304.2868 5.2 020 19 17 3 99.36 % 0.57 % 0.06 % 7304.2920 7304.2868 5.2 020 19 17 2 99.36 % 0.57 % 0.06 % 749.0658 7549.0709 -5.1 020 19 <t< td=""><td>6590.1464</td><td>6590.1430</td><td>3.4</td><td>020</td><td>18</td><td>15</td><td>3</td><td>95.53%</td><td>4.24%</td><td>0.23%</td></t<>	6590.1464	6590.1430	3.4	020	18	15	3	95.53%	4.24%	0.23%
6825.2064 6825.2029 3.5 020 18 16 2 98.31 % 1.59 % 0.10 % 7065.0150 7065.0205 -5.5 020 18 17 2 99.34 % 0.62 % 0.04 % 7065.0150 7065.0205 -5.5 020 18 17 1 99.34 % 0.62 % 0.04 % 7308.0347 7308.0325 2.2 020 18 18 1 99.77 % 0.21 % 0.02 % 7308.0347 7308.0325 2.2 020 18 18 0 99.77 % 0.21 % 0.02 % 6379.6795 6379.6779 1.6 020 19 13 7 62.84 % 34.88 % 2.28 % 6379.6795 6379.6779 1.6 020 19 13 6 62.84 % 34.88 % 2.28 % 6596.9309 6596.9344 -3.5 020 19 14 6 87.99 % 11.30 % 0.71 % 6826.2903 6826.2923 -2.0 020 19 15 5 95.89 % 3.84 % 0.27 % 7062.8545 7062.8498 4.7 020 19 16 4 98.41 % 1.47 % 0.12 % 7062.8545 7062.8498 4.7 020 19 16 3 98.41 % 1.47 % 0.12 % 7062.8545 7062.8498 4.7 020 19 17 3 99.36 % 0.57 % 0.06 % 7304.2868 5.2 020 19 </td <td>6825.2064</td> <td>6825.2029</td> <td>3.5</td> <td>020</td> <td>18</td> <td>16</td> <td>3</td> <td>98.31%</td> <td>1.59%</td> <td>0.10%</td>	6825.2064	6825.2029	3.5	020	18	16	3	98.31%	1.59%	0.10%
7065.0150 7065.0205 -5.5 020 18 17 2 99.34 % 0.62 % 0.04 % 7065.0150 7065.0205 -5.5 020 18 17 1 99.34 % 0.62 % 0.04 % 7308.0347 7308.0325 2.2 020 18 18 1 99.77 % 0.21 % 0.02 % 7308.0347 7308.0325 2.2 020 18 18 0 99.77 % 0.21 % 0.02 % 6379.6795 6379.6779 1.6 020 19 13 6 62.84 % 34.88 % 2.28 % 6596.9309 6596.9344 -3.5 020 19 14 6 87.99 % 11.30 % 0.71 % 6226.2903 6826.2923 -2.0 020 19 15 95.89 % 3.84 % 0.27 % 6826.2903 6826.2923 -2.0 020 19 15 95.89 % 3.84 % 0.27 % 7062.8545 7062.8498 4.7 020 19 16 98.41 % 1.47 % 0.12 % 7062.8545 7062.8498 4.7 020 19 16 98.41 % 1.47 % 0.12 % 7044.2920 7304.2868 5.2 020 19 17 399.36 % 0.57 % 0.06 % 749.0658 7549.0709 -5.1 020 19 18 99.77 % 0.20 % 0.03 % 749.0658 7549.0709 -5.1 020 19 199.77 % 0.20 % 0.03 % <td>6825.2064</td> <td>6825.2029</td> <td>3.5</td> <td>020</td> <td>18</td> <td>16</td> <td>2</td> <td>98.31%</td> <td>1.59%</td> <td>0.10%</td>	6825.2064	6825.2029	3.5	020	18	16	2	98.31%	1.59%	0.10%
7065.0150 7065.0205 -5.5 020 18 17 1 $99.34%$ $0.62%$ $0.04%$ 7308.0347 7308.0325 2.2 020 18 18 1 $99.77%$ $0.21%$ $0.02%$ 7308.0347 7308.0325 2.2 020 18 18 0 $99.77%$ $0.21%$ $0.02%$ 6379.6795 6379.6779 1.6 020 19 13 7 $62.84%$ $34.88%$ $2.28%$ 6379.6795 6379.6779 1.6 020 19 13 6 $62.84%$ $34.88%$ $2.28%$ 6596.9309 6596.9344 -3.5 020 19 14 6 $87.99%$ $11.30%$ $0.71%$ 6826.2903 6826.2923 -2.0 020 19 15 $95.89%$ $3.84%$ $0.27%$ 6826.2903 6826.2923 -2.0 020 19 15 $95.89%$ $3.84%$ $0.27%$ 7062.8545 7062.8498 4.7 020 19 16 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 $98.41%$ $1.47%$ $0.12%$ 704.2920 7304.2868 5.2 020 19 17 $29.36%$ $0.57%$ $0.06%$ 749.0658 7549.0709 -5.1 020 19 18 $99.77%$ $0.20%$ $0.03%$ 749.0658 7549.0709 -5.1 020 19 $19.977%$ $0.20%$ $0.03%$	7065.0150	7065.0205	-5.5	020	18	17	2	99.34%	0.62%	0.04%
7308.0347 7308.0325 2.2 020 18 18 99.77 % 0.21 % 0.02 % 7308.0347 7308.0325 2.2 020 18 18 0 99.77 % 0.21 % 0.02 % 6379.6795 6379.6779 1.6 020 19 13 7 62.84 % 34.88 % 2.28 % 6596.9309 6596.9344 -3.5 020 19 14 6 87.99 % 11.30 % 0.71 % 6596.9309 6596.9344 -3.5 020 19 14 5 87.99 % 11.30 % 0.71 % 6826.2903 6826.2923 -2.0 020 19 15 5 95.89 % 3.84 % 0.27 % 6826.2903 6826.2923 -2.0 020 19 15 4 95.89 % 3.84 % 0.27 % 7062.8545 7062.8498 4.7 020 19 16 4 98.41 % 1.47 % 0.12 % 704.2868 5.2 020 19 16 3 98.41 % 1.47 % 0.12 % 7304.2920 7304.2868 5.2 020 19 17 2 99.36 % 0.57 % 0.06 % 7549.0658 7549.0709 -5.1 020 19 18 99.77 % 0.20 % 0.03 % 795.9254 7795.9272 -1.8 020 19 19 99.94 % 0.05 % 0.01 % 795.9254 7795.9272 -1.8 020 20 13 7 $66.$	7065.0150	7065.0205	-5.5	020	18	17	1	99.34%	0.62%	0.04%
7308.0347 7308.0325 2.2 020 18 18 0 $99.77%$ $0.21%$ $0.02%$ 6379.6795 6379.6779 1.6 020 19 13 7 $62.84%$ $34.88%$ $2.28%$ 6596.9309 6596.9344 -3.5 020 19 13 6 $62.84%$ $34.88%$ $2.28%$ 6596.9309 6596.9344 -3.5 020 19 14 6 $87.99%$ $11.30%$ $0.71%$ 6826.2903 6826.2923 -2.0 020 19 15 5 $95.89%$ $3.84%$ $0.27%$ 6826.2903 6826.2923 -2.0 020 19 15 4 $95.89%$ $3.84%$ $0.27%$ 7062.8545 7062.8498 4.7 020 19 16 4 $98.41%$ $1.47%$ $0.12%$ 704.2864 5.2 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 7304.2920 7304.2868 5.2 020 19 17 3 $99.36%$ $0.57%$ $0.06%$ 7549.0658 7549.0709 -5.1 020 19 18 $99.77%$ $0.20%$ $0.03%$ 795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 623.7828 6623.7782 4.5 020 20 13 7 $66.37%$ $31.26%$ $2.37%$	7308.0347	7308.0325	2.2	020	18	18	1	99.77%	0.21%	0.02%
	7308.0347	7308.0325	2.2	020	Τ8	18	0	99.77%	0.21%	0.02%
6379.6795 6379.6779 1.6 020 19 13 6 $62.84%$ $34.88%$ $2.28%$ 6596.9309 6596.9344 -3.5 020 19 14 6 $87.99%$ $11.30%$ $0.71%$ 6826.2903 6826.2923 -2.0 020 19 14 5 $87.99%$ $11.30%$ $0.71%$ 6826.2903 6826.2923 -2.0 020 19 15 5 $95.89%$ $3.84%$ $0.27%$ 6826.2903 6826.2923 -2.0 020 19 15 4 $95.89%$ $3.84%$ $0.27%$ 7062.8545 7062.8498 4.7 020 19 16 4 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 704.2868 5.2 020 19 17 3 $99.36%$ $0.57%$ $0.06%$ 7304.2920 7304.2868 5.2 020 19 17 2 $99.36%$ $0.57%$ $0.06%$ 7549.0658 7549.0709 -5.1 020 19 18 2 $99.77%$ $0.20%$ $0.03%$ 7795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 7795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 623.7828 6623.7782 4.5 020 20 13 7	6379.6795	6379.6779	1.6	020	19	13	7	62.84%	34.88%	2.28%
6596.9309 6596.9344 -3.5 020 19 14 6 $87.99%$ $11.30%$ $0.71%$ 6596.9309 6596.9344 -3.5 020 19 14 5 $87.99%$ $11.30%$ $0.71%$ 6826.2903 6826.2923 -2.0 020 19 15 5 $95.89%$ $3.84%$ $0.27%$ 6826.2903 6826.2923 -2.0 020 19 15 4 $95.89%$ $3.84%$ $0.27%$ 6826.2903 6826.2923 -2.0 020 19 16 4 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 704.2868 5.2 020 19 17 2 $99.36%$ $0.57%$ $0.06%$ 7549.0658 7549.0709 -5.1 020 19 18 2 $99.77%$ $0.20%$ $0.03%$ 795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 623.7828 6623.7782 4.5 020 20 13 7 </td <td>6379.6795</td> <td>6379.6779</td> <td>1.6</td> <td>020</td> <td>19</td> <td>13</td> <td>6</td> <td>62.84%</td> <td>34.88%</td> <td>2.28%</td>	6379.6795	6379.6779	1.6	020	19	13	6	62.84%	34.88%	2.28%
6596.9309 6596.9344 -3.5 020 19 14 5 87.99 % 11.30 % 0.71 % 6826.2903 6826.2923 -2.0 020 19 15 5 95.89 % 3.84 % 0.27 % 6826.2903 6826.2923 -2.0 020 19 15 4 95.89 % 3.84 % 0.27 % 7062.8545 7062.8498 4.7 020 19 16 4 98.41 % 1.47 % 0.12 % 7062.8545 7062.8498 4.7 020 19 16 3 98.41 % 1.47 % 0.12 % 704.2868 5.2 020 19 17 3 99.36 % 0.57 % 0.06 % 7304.2920 7304.2868 5.2 020 19 17 2 99.36 % 0.57 % 0.06 % 7549.0658 7549.0709 -5.1 020 19 18 2 99.77 % 0.20 % 0.03 % 7795.9254 7795.9272 -1.8 020 19 19 99.94 % 0.05 % 0.01 % 7795.9254 7795.9272 -1.8 020 19 19 99.94 % 0.05 % 0.01 % 623.7828 6623.7782 4.5 020 20 13 7 66.37 % 31.26 % 2.37 %	6596.9309	6596.9344	-3.5	020	19	14	6	87.99%	11.30%	0.71%
6826.2903 6826.2923 -2.0 020 19 15 5 $95.89%$ $3.84%$ $0.27%$ 6826.2903 6826.2923 -2.0 020 19 15 4 $95.89%$ $3.84%$ $0.27%$ 7062.8545 7062.8498 4.7 020 19 16 4 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 17 3 $99.36%$ $0.57%$ $0.06%$ 7304.2920 7304.2868 5.2 020 19 17 2 $99.36%$ $0.57%$ $0.06%$ 7549.0658 7549.0709 -5.1 020 19 18 2 $99.77%$ $0.20%$ $0.03%$ 7795.9254 7795.9272 -1.8 020 19 18 $99.77%$ $0.20%$ $0.01%$ 795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 623.7828 6623.7782 4.5 020 20 13 7 $66.37%$ $31.26%$ $2.37%$	6596.9309	6596.9344	-3.5	020	19	14	5	87.99%	11.30%	0.71%
6826.2903 6826.2923 -2.0 020 19 15 4 $95.89%$ $3.84%$ $0.27%$ 7062.8545 7062.8498 4.7 020 19 16 4 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 7062.8545 7062.8498 4.7 020 19 16 3 $98.41%$ $1.47%$ $0.12%$ 7304.2920 7304.2868 5.2 020 19 17 3 $99.36%$ $0.57%$ $0.06%$ 7304.2920 7304.2868 5.2 020 19 17 2 $99.36%$ $0.57%$ $0.06%$ 7549.0658 7549.0709 -5.1 020 19 18 2 $99.77%$ $0.20%$ $0.03%$ 7549.0658 7549.0709 -5.1 020 19 18 1 $99.77%$ $0.20%$ $0.03%$ 7795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 7795.9254 7795.9272 -1.8 020 19 19 $99.94%$ $0.05%$ $0.01%$ 623.7828 6623.7782 4.5 020 20 13 7 $66.37%$ $31.26%$ $2.37%$	6826.2903	6826.2923	-2.0	020	19	15	5	95.89%	3.84%	0.27%
7062.8545 7062.8498 4.7 020 19 16 4 98.41 % 1.47 % 0.12 % 7062.8545 7062.8498 4.7 020 19 16 3 98.41 % 1.47 % 0.12 % 7304.2920 7304.2868 5.2 020 19 17 3 99.36 % 0.57 % 0.06 % 7304.2920 7304.2868 5.2 020 19 17 2 99.36 % 0.57 % 0.06 % 7549.0658 7549.0709 -5.1 020 19 18 2 99.77 % 0.20 % 0.03 % 7549.0658 7549.0709 -5.1 020 19 18 2 99.77 % 0.20 % 0.03 % 7795.9254 7795.9272 -1.8 020 19 19 99.94 % 0.05 % 0.01 % 7795.9254 7795.9272 -1.8 020 19 19 99.94 % 0.05 % 0.01 % 6623.7828 6623.7782 4.5 020 20 13 7 66.37 % 31.26 % 2.37 %	6826.2903	6826.2923	-2.0	020	19	15	4	95.89%	3.84%	0.27%
7062.85457062.84984.70201916398.41%1.47%0.12%7304.29207304.28685.20201917399.36%0.57%0.06%7304.29207304.28685.20201917299.36%0.57%0.06%7304.29207304.28685.20201917299.36%0.57%0.06%7549.06587549.0709-5.10201918299.77%0.20%0.03%7549.06587549.0709-5.10201918199.77%0.20%0.03%7795.92547795.9272-1.80201919199.94%0.05%0.01%7795.92547795.9272-1.80201919099.94%0.05%0.01%6623.78286623.77824.50202013866.37%31.26%2.37%6623.78286623.77824.50202013766.37%31.26%2.37%	7062.8545	7062.8498	4.7	020	19	16	4	98.41%	1.47%	0.12%
7304.29207304.28685.20201917399.36%0.57%0.06%7304.29207304.28685.20201917299.36%0.57%0.06%7549.06587549.0709-5.10201918299.77%0.20%0.03%7549.06587549.0709-5.10201918199.77%0.20%0.03%7795.92547795.9272-1.80201919199.94%0.05%0.01%7795.92547795.9272-1.80201919099.94%0.05%0.01%6623.78286623.77824.50202013866.37%31.26%2.37%6623.78286623.77824.50202013766.37%31.26%2.37%	7062.8545	7062.8498	4.7	020	19	16	3	98.41%	1.47%	0.12%
7304.29207304.28685.20201917299.36%0.57%0.06%7549.06587549.0709-5.10201918299.77%0.20%0.03%7549.06587549.0709-5.10201918199.77%0.20%0.03%7795.92547795.9272-1.80201919199.94%0.05%0.01%7795.92547795.9272-1.80201919099.94%0.05%0.01%6623.78286623.77824.50202013866.37%31.26%2.37%6623.78286623.77824.50202013766.37%31.26%2.37%	7304.2920	7304.2868	5.2	020	19	17	3	99.36%	0.57%	0.06%
7549.0658 7549.0709 -5.1 020 19 18 2 99.77% 0.20% 0.03% 7549.0658 7549.0709 -5.1 020 19 18 1 99.77% 0.20% 0.03% 7795.9254 7795.9272 -1.8 020 19 19 1 99.94% 0.05% 0.01% 7795.9254 7795.9272 -1.8 020 19 19 0 99.94% 0.05% 0.01% 6623.7828 6623.7782 4.5 020 20 13 8 66.37% 31.26% 2.37% 6623.7828 6623.7782 4.5 020 20 13 7 66.37% 31.26% 2.37%	7304.2920	7304.2868	5.2	020	19	17	2	99.36%	0.57%	0.06%
7549.0058 7549.0709 -5.1 020 19 18 1 99.77% 0.20% 0.03% 7795.9254 7795.9272 -1.8 020 19 19 1 99.94% 0.05% 0.01% 7795.9254 7795.9272 -1.8 020 19 19 0 99.94% 0.05% 0.01% 6623.7828 6623.7782 4.5 020 20 13 8 66.37% 31.26% 2.37% 6623.7828 6623.7782 4.5 020 20 13 7 66.37% 31.26% 2.37%	/549.0658	/549.0709	-5.1	020	19	10	2	99.77%	0.20%	0.03%
7795.9254 7795.9272 -1.8 020 19 19 99.94% 0.05% 0.01% 7795.9254 7795.9272 -1.8 020 19 19 0 99.94% 0.05% 0.01% 6623.7828 6623.7782 4.5 020 20 13 8 66.37% 31.26% 2.37% 6623.7828 6623.7782 4.5 020 20 13 7 66.37% 31.26% 2.37%	1549.0658 7705 0054	/549.0/09 7705 0070	-5.1	020	10	10 10	⊥ 1	99.//8 00 010	U.ZU% 0 050	U.U38 0 010
6623.7828 6623.7782 4.5 020 20 13 8 66.37% 31.26% 2.37% 6623.7828 6623.7782 4.5 020 20 13 7 66.37% 31.26% 2.37%	1193.9454 7705 0051	1123.9212 7705 0070	-1.8 _1 0	U∠U 020	19 10	19 10	∩ ⊥	77.743 00 010	0.053 0 050	U.UI3 0 010
6623.7828 6623.7782 4.5 020 20 13 7 66.37% 31.26% 2.37%	6672 7070	6622 7700	-1.8 / F	020 020	⊥ > 2 ∩	エフ 1つ	Q	22.240 66 270	U.UD6 31 760	U.U⊥る 2 270
	6623 7828	6623.7782		020	20	13	7	66 37%	31 26%	2.37%

Приложение 2.6 Пример смешивания волновых функций для состояния (020) молекулы D₂¹⁶O

$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	$E_{{}_{6bl'4}}$	dE	$\mathbf{V}_1\mathbf{V}_2\mathbf{V}_3$	J	Ka	K _c	%(020)	%(100)	%(001)
6812 7027	6812 7071	_3 /	020	20	11	7	80 109	10 05%	0 76%
6842 7937	6842 7971	-3.4	020	20	14	6	89.198	10.05%	0.76%
7073 5975	7073 5987	-1 2	020	20	15	6	96 21%	3 49%	0.70%
7073.5975	7073.5987	-1.2	020	20	15	5	96.21%	3.49%	0.30%
7311.6213	7311.6232	-1.9	020	20	16	5	98.49%	1.36%	0.15%
7311.6213	7311.6232	-1.9	020	20	16	4	98.49%	1.36%	0.15%
7554.6721	7554.6670	5.1	020	20	17	4	99.38%	0.54%	0.08%
7554.6721	7554.6670	5.1	020	20	17	3	99.38%	0.54%	0.08%
7801.2383	7801.2320	6.3	020	20	18	3	99.76%	0.19%	0.05%
7801.2383	7801.2320	6.3	020	20	18	2	99.76%	0.19%	0.05%
8050.0478	8050.0530	-5.2	020	20	19	2	99.93%	0.05%	0.03%
8050.0478	8050.0530	-5.2	020	20	19	1	99.93%	0.05%	0.03%
8299.9590	8299.9610	-2.0	020	20	20	1	99.99%	0.00%	0.01%
8299.9590	8299.9610	-2.0	020	20	20	0	99.99%	0.00%	0.01%

Примечания: $E_{3\kappa cn}$ – экспериментальное значение уровня энергии (в см⁻¹); E_{6bly} – вычисленное значение уровня энергии (в см⁻¹); dE – разница между экспериментальным и вычисленным значением (в 10⁻⁴ см⁻¹); $V_1V_2V_3$ – колебательные квантовые числа; J, K_a, K_c – вращательные квантовые числа; $(V_1V_2V_3)$ – коэффициенты смешивания колебательно-вращательных уровней для состояния $V_1V_2V_3$.

Е _{эксп}	Евыч	dE (N	$V_1 V_2 V_3$) J	Ka	K _c	%(030)	%(110)	%(011)
5562.0945	5562.0929	1.6	030	20	0	20	99.55%	0.44%	0.01%
5562.0945	5562.0939	0.6	030	20	1	20	99.55%	0.44%	0.01%
5808.0410	5808.0359	5.1	030	20	1	19	99.39%	0.59%	0.02%
5808.0407	5808.0508	-10.1	030	20	2	19	99.39%	0.59%	0.02%
6021.9395	6021.9465	-7.0	030	20	2	18	98.99%	0.81%	0.20%
6022.1730	6022.1570	16.0	030	20	3	18	98.98%	0.81%	0.21%
6207.1484	6207.1558	-7.3	030	20	3	17	98.83%	1.02%	0.15%
6209.4887	6209.4854	3.3	030	20	4	17	98.80%	1.04%	0.17%
6357.7911	6357.8092	-18.1	030	20	4	16	98.33%	1.51%	0.16%
6374.0934	6374.0802	13.1	030	20	5	16	98.39%	1.40%	0.22%
	6463.2707		030	20	5	15	82.13%	17.25%	0.63%
6525.7902	6525.7815	8.7	030	20	6	15	97.61%	2.04%	0.35%
6559.4186	6559.4171	1.5	030	20	6	14	97.33%	2.35%	0.32%
6679.8294	6679.8429	-13.5	030	20	7	14	97.05%	2.37%	0.58%
6685.3174	6685.3219	-4.5	030	20	7	13	95.19%	4.31%	0.50%
	6849.7122		030	20	8	13	47.62%	4.26%	48.12%
6849.1178	6849.1075	10.3	030	20	8	12	94.94%	4.22%	0.85%
7032.0455	7032.0401	5.4	030	20	9	12	94.38%	4.45%	1.17%
7032.0952	7032.1115	-16.3	030	20	9	11	94.44%	4.41%	1.15%
	7229.8664		030	20	10	11	90.10%	6.65%	3.24%
7229.8657	7229.8578	7.9	030	20	10	10	90.08%	6.61%	3.31%
7440.5471	7440.5532	-6.1	030	20	11	10	71.71%	22.14%	6.15%
7440.5471	7440.5528	-5.7	030	20	11	9	71.72%	22.14%	6.14%
7654.3798	7654.3758	4.0	030	20	12	9	60.45%	37.86%	1.70%
7654.3798	7654.3759	3.9	030	20	12	8	60.45%	37.86%	1.70%
7946.4540	7946.4569	-2.9	030	20	13	8	55.86%	38.23%	5.90%
7946.4540	7946.4569	-2.9	030	20	13	7	55.86%	38.23%	5.90%
8179.4477	8179.4582	-10.5	030	20	14	7	71.59%	22.60%	5.82%
8179.4477	8179.4582	-10.5	030	20	14	6	71.59%	22.60%	5.82%
8422.6449	8422.6541	-9.2	030	20	15	б	80.09%	14.15%	5.76%
8422.6449	8422.6541	-9.2	030	20	15	5	80.09%	14.15%	5.76%
8672.6659	8672.6689	-3.0	030	20	16	5	84.69%	9.69%	5.63%
8672.6659	8672.6689	-3.0	030	20	16	4	84.69%	9.69%	5.63%
8927.3153	8927.2959	19.4	030	20	17	4	87.55%	7.14%	5.31%
8927.3153	8927.2959	19.4	030	20	17	3	87.55%	7.14%	5.31%
9184.8796	9184.9004	-20.8	030	20	18	3	89.75%	5.58%	4.68%
9184.8796	9184.9004	-20.8	030	20	18	2	89.75%	5.58%	4.68%
9444.1317	9444.1047	27.0	030	20	19	2	91.89%	4.54%	3.58%
9444.1317	9444.1047	27.0	030	20	19	1	91.89%	4.54%	3.58%
9703.7180	9703.7274	-9.4	030	20	20	1	94.85%	3.81%	1.34%
9703.7180	9703.7274	-9.4	030	20	20	0	94.85%	3.81%	1.34%
5921.6740	5921.6749	-0.9	110	20	0	20	0.47%	96.04%	3.49%
5921.6740	5921.6750	-1.0	110	20	1	20	0.47%	96.04%	3.49%
6125.4874	6125.4821	5.3	110	20	1	19	0.67%	96.18%	3.14%
6125.4874	6125.4859	1.5	110	20	2	19	0.67%	96.19%	3.14%
6309.2407	6309.2397	1.0	110	20	2	18	1.26%	95.97%	2.78%
6309.3375	6309.3424	-4.9	110	20	3	18	1.01%	96.21%	2.78%
6475.9399	6475.9451	-5.2	110	20	3	17	17.58%	80.51%	1.91%
6473.8753	6473.8756	-0.3	110	20	4	17	1.58%	96.02%	2.40%
6616.3818	6616.3761	5.7	110	20	4	16	2.18%	96.13%	1.69%
6619.8938	6619.8977	-3.9	110	20	5	16	1.65%	96.22%	2.13%
6726.9491	6726.9323	16.8	110	20	5	15	3.59%	95.43%	0.98%
6751.1164	6751.1168	-0.4	110	20	6	15	1.41%	95.99%	2.60%
6806.9107	6806.9149	-4.2	110	20	6	14	2.71%	94.95%	2.34%
	6876.4018		110	20	7	14	1.55%	90.56%	7.88%
6901.3330	6901.3585	-25.5	110	20	7	13	1.55%	82.78%	15.67%
6901.3330	6901.3585	-25.5	110	20	7	13	1.55%	82.78%	15.67%

Приложение 2.7 Экспериментальные и вычисленные уровни энергий состояний (030), (110) и (011) молекулы D_2^{16} О вместе с коэффициентами смешивания для J = 20

$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	$E_{выч}$	dE (V	$V_1 V_2 V_3$)	JI	K_a K_a	<i>c</i> %(030)	%(110)	%(011)
	7030.8762		110 2	20	8 13	1.95%	56.48%	41.57%
7027.2919	7027.3152	-23.3	110 2	20	8 12	2.36%	77.97%	19.68%
7175.9995	7175.9991	0.4	110 2	20	9 12	4.27%	82.03%	13.70%
7175.8795	7175.8590	20.5	110 2	20	9 11	4.30%	83.17%	12.53%
7343.1629	7343.1566	6.3	110 2	20 1	0 11	8.32%	83.16%	8.52%
7343.1586	7343.1508	7.8	110 2	20 1	0 10	8.32%	83.22%	8.46%
7527 2078	7527 2113	-35	110 2	0 1	1 10	17 07%	76 20%	6 73%
7527.2078	7527 2110	-3.2	110 2	$10 \pm$	1 9	17 07%	76 20%	6 73%
/52/.20/0	7728 1518	5.2	110 2	0 1	2 9	34 16%	59 74%	6 10%
	7728 1518		110 2	0 1	2 8	34 16%	59 74%	6 10%
7870 6530	7870 6568	-38	110 2	0 1	3 8	39 12%	59 74%	1 14%
7870 6530	7870 6568	-3.8	110 2	$10 \pm$	20 27	39 12%	59 748	1 14%
8088 5166	8088 5135	3 1	110 2	10 ± 1	27 27	23 318	75 772	0 038
8088 5166	8088 5135	2 1	110 2	20 I	т, Л б	23.318	75.778	0.238
8308 6688	8300 6681	1 7	110 2	20 I	т 0 Б б	11 679	Q1 55%	0.798
0309.0090	0309.0001	1 7	110 2	1 0 1		14.07%	04.55%	0.70%
0509.0090	0509.0001 0524 0725	1.7	110 2	50 I		14.07%	04.00%	0.70%
0534.9/35	0534.9725	1.0	110 2	30 I		10.00%	09.310	0.036
0554.9/55	0554.9725	1.0	110 2	30 I	0 4 7 1	10.003 7 40%	09.316	0.036
0764.2017	0764.2034	-⊥./ 1 7	110 2	30 I	/ 1 7 2	7.426	92.10%	0.40%
8/64.261/	8/64.2634	-1./	110 2	1 U	1 3	7.426	92.108	0.483
8996.8905	8996.8930	-2.5	110 2	20 I	83	5./8%	93.898	0.328
8996.8905	8996.8930	-2.5	110 2	20 I	8 2	5./8%	93.89%	0.32%
9232.0098	9232.0098	0.0	110 2	20 I	9 2	4.70%	95.13%	0.1/%
9232.0098	9232.0098	0.0	110 2	20 I	9 I 0 1	4.70%	95.13%	0.1/%
9468.6690	9468.6703	-1.3	110 2	20 2	0 1	3.94%	96.03%	0.03%
9468.6690	9468.6703	-1.3	110 2	20 2	0 0	3.94%	96.03%	0.03%
6042.1162	6042.0756	40.6	011 2	20	0 20	0.19%	3.46%	96.35%
6042.1162	6042.0752	41.0	011 2	20	1 20	0.19%	3.46%	96.35%
6244.6671	6244.6483	18.8	011 2	20	1 19	0.12%	3.12%	96.76%
6244.6671	6244.6477	19.4	011 2	20	2 19	0.11%	3.12%	96.77%
6427.4859	6427.5009	-15.0	011 2	20	2 18	0.12%	2.81%	97.07%
6427.4910	6427.5103	-19.3	011 2	20	3 18	0.12%	2.81%	97.07%
6591.0832	6591.0732	10.0	011 2	20	3 17	0.18%	2.55%	97.27%
6591.2436	6591.2404	3.2	011 2	20	4 17	0.20%	2.60%	97.20%
6733.6541	6733.6383	15.8	011 2	20	4 16	0.24%	2.41%	97.35%
6735.4224	6735.4224	0.0	011 2	20	5 16	0.29%	3.81%	95.90%
	6845.6642		011 2	20	5 15	49.01%	1.08%	49.91%
6860.1724	6860.1642	8.2	011 2	20	6 15	0.46%	16.06%	83.48%
	6931.9760		011 2	20	6 14	0.55%	7.18%	92.27%
6981.3392	6981.3474	-8.2	011 2	20	7 14	0.68%	19.48%	79.84%
	6995.8748		011 2	20	7 13	1.06%	40.59%	58.35%
	7113.1917		011 2	20	8 13	0.67%	12.52%	86.81%
7116.3710	7116.3532	17.8	011 2	20	8 12	0.69%	13.58%	85.74%
7259.3555	7259.3832	-27.7	011 2	20	9 12	1.02%	10.19%	88.79%
	7259.7452		011 2	20	9 11	0.99%	10.20%	88.81%
7417.7136	7417.7067	6.9	011 2	20 1	0 11	10.61%	1.66%	87.73%
7417.7203	7417.7383	-18.0	011 2	20 1	0 10	10.62%	1.66%	87.72%
7591.9856	7591.9879	-2.3	011 2	20 1	1 10	4.78%	2.40%	92.82%
7591.9856	7591.9902	-4.6	011 2	20 1	19	4.77%	2.40%	92.82%
7777.1469	7777.1489	-2.0	011 2	20 1	29	4.41%	2.03%	93.56%
7777.1469	7777.1490	-2.1	011 2	20 1	2 8	4.41%	2.03%	93.56%
7972.1468	7972.1459	0.9	011 2	20 1	38	4.57%	1.63%	93.80%
7972.1468	7972.1459	0.9	011 2	20 1	3 7	4.57%	1.63%	93.80%
8175.6503	8175.6444	5.9	011 2	20 1	4 7	4.83%	1.30%	93.88%
8175.6503	8175.6444	5.9	011 2	20 1	4 6	4.83%	1.30%	93.88%
8386.3885	8386.3830	5.5	011 2	20 1	56	5.04%	1.01%	93.95%
8386.3885	8386.3830	5.5	011 2	20 1	55	5.04%	1.01%	93.95%

Еэксп	E_{sbiy}	dE (V	$V_1 V_2 V_3$) J	Ka	K_c	%(030)	%(110)	%(011)
8603.1673	8603.1644	2.9	011	20	16	5	5.11%	0.77%	94.12%
8603.1673	8603.1644	2.9	011	20	16	4	5.11%	0.77%	94.12%
8824.8370	8824.8351	1.9	011	20	17	4	4.94%	0.55%	94.51%
8824.8370	8824.8351	1.9	011	20	17	3	4.94%	0.55%	94.51%
9050.2713	9050.2706	0.7	011	20	18	3	4.39%	0.36%	95.25%
9050.2713	9050.2706	0.7	011	20	18	2	4.39%	0.36%	95.25%
9278.3541	9278.3590	-4.9	011	20	19	2	3.31%	0.17%	96.51%
9278.3541	9278.3590	-4.9	011	20	19	1	3.31%	0.17%	96.51%
9507.9518	9507.9659	-14.1	011	20	20	1	1.47%	0.00%	98.53%
9507.9518	9507.9659	-14.1	011	20	20	0	1.47%	0.00%	98.53%

Примечание:

 \vec{E}_{scn} – экспериментальное значение энергии вращательного уровня (см⁻¹); E_{gblq} – вычисленное значение энергии вращательного уровня; dE – разница между экспериментальным и вычисленным значениями энергии (в 10⁻⁴ см⁻¹); $v_1v_2v_3$ – колебательные квантовые числа состояния; J, K_a , K_c – вращательные квантовые числа уровня энергии; $\%(v_1v_2v_3)$ – коэффициенты смешивания, вклад соответствующего колебательного состояния в волновую функцию колебательного вращательного уровня энергии.

Приложение 2.8 Сравнение полученных в нашей работе вращательных уровней энергии состояний (030), (011) и (110) для J = 15 с данными из [158, 160, 161]

$v_1v_2v_3$	J	K_a K_a	с E _{эксп}	$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	dE	$E_{\mathfrak{I} \kappa cn}$	δE
030	15	0 15		4691.7661		4691.7745	
030	15	1 15	4691.7713	4691.7712	0.1	4691.7743	-3.0
030	15	1 14	4872.1683	4872.1735	-5.2	4872.1689	-0.6
030	15	2 14	4872.3408	4872.3451	-4.3	4872.3413	-0.5
030	15	2 13	5024.8356	5024.8271	8.6	5024.8379	-2.3
030	15	3 13	5027.4330	5027.4279	5.1	5027.4365	-3.5
030	15	3 12	5142.7102	5142.7284	-18.2	5142.7314	-21.2
020	15 15	4 12	5162.1059	5162.1021	3.8	5162.1064	-0.5
030	15	4 11 5 11	5224.1979 5200 6410	5224.1999	-2.1	5224.25/8	-59.9
030	15	5 10	5306 9836	5306 9786	-2.7	5306 9849	-4.2
030	15	5 10 6 10	5423 3128	5423 3195	-6 7	5423 3081	4 7
030	15	6 9	5426 1177	5426 1099	78	5426 1172	0.5
030	15	7 9	5576.3525	5576.3419	10.6	5576.3516	0.9
030	15	78	5575.6148	5575.6194	-4.6	5575.6123	2.5
030	15	8 8	5746.1571	5746.1651	-8.0	5746.1430	14.1
030	15	87	5746.1746	5746.1771	-2.5	5746.1430	31.6
030	15	97	5931.5553	5931.5523	3.0	5931.5649	9.6
030	15	96	5931.5553	5931.5528	2.5	5931.5508	4.5
030	15	10 6	6129.4319	6129.4291	2.8	6129.4346	-2.7
030	15	10 5	6129.4319	6129.4291	2.8	6129.4346	-2.7
030	15	11 5	6338.3487	6338.3485	0.2		
030	15	11 4	6338.3487	6338.3485	0.2		
030	15	12 4	6551.6613	6551.6654	-4.1		
030	15	12 3	6551.6613	6551.6654	-4.1		
030	15	13 3	6767.6703	6767.6714	-0.9		
030	15	13 2	6767.6703	6767.6714	-0.9		
030	15	14 2	7060.1842	7060.1786	5.6		
030	15	14 1	7060.1842	7060.1786	5.6		
030	15	15 1	7295.2647	7295.2660	-1.3		
030	15	15 0	/295.264/	/295.2660	-1.3		
110	15	0 15	5051.7401	5051.7422	-2.1	5051.7486	-8.5
110	15	1 15	5051.7456	5051.7494	-3.8	5051.7486	-3.9
110	15	1 14	5202.9082	5202.9079	0.3		
110	15	2 14	5202.9919	5202.9823	9.6		
110	15	2 13	5335.5168	5335.5238	-7.0		
110	15	3 13	5336.3244	5336.3322	-7.8		
110	15	3 12	5445.3579	5445.3500	7.9		
110	15	4 12	5452.8196	5452.8199	-0.3		
110	15	4 11	5523.9082	5523.9142	-6.0		
110	15	5 11	5557.4047	5557.4109	-6.2		
110	15	5 10	5590.3471	5590.3509	-3.8		
110	15	6 10	5663.4944	5663.4844	10.0	5663.4955	-1.1
110	15 1 F	6 9 7 0	5659.85/8	5659.8/19	-14.1	5659.8571	* 0.7
110	15 15	7 9 7 0	5/98.3/0/	5/98.3811 5706 4715	-10.4	5/98.3/39	-3.2
110	15	/ 0 0 0	5/90.4/5/	5/90.4/15	4.2	5/90.402/	-7.0
110	15 15	ס ס ר ג	5930.4114 5020 2602	5930.4120 5930 2607	-0.0		
110	15	0 / 0 7	5950.3023 6082 4054	6082 4020	-0.4 2 5		
110	15 15	9 6	6082.4034	6082 4017	_0 7		
110	15	10 6	6249 5997	6249 5982	1 6		
110	15	10 5	6249 5997	6249 5982	1 6		
110	15	11 5	6430 6560	6430 6584	-2.4		
110	15	11 4	6430.6560	6430.6584	-2.4		
110	15	12 4	6625.6456	6625.6465	-1.0		
110	15	12 3	6625.6456	6625.6465	-1.0		

$v_1 v_2 v_3$	J	Ka	K_c	$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	E_{sbiy}	dE	$E_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	δΕ
110	15	13	3	6835.6812	6835.6811	0.1		
110	15	13	2	6835.6812	6835.6811	0.1		
110	15	14	2	6983.6114	6983.6045	6.9		
110	15	14	1	6983.6114	6983.6045	6.9		
110	15	15	1	7200.6988	7200.6988	-0.1		
110	15	15	0	7200.6988	7200.6988	-0.1		
011	15	0	15	5169.5072	5169.5074	-0.2	5169.5077	-0.5
011	15	1	15	5169.5072	5169.5076	-0.4	5169.5077	-0.5
011	15	1	14	5319.6058	5319.6071	-1.3	5319.6080	-2.2
011	15	2	14	5319.6237	5319.6217	2.0	5319.6228	0.9
011	15	2	13	5451.6310	5451.6361	-5.1	5451.6339	-2.9
011	15	3	13	5451.9098	5451.9131	-3.3	5451.9123	-2.5
011	15	3	12	5562.4667	5562.4628	4.0	5562.4673	-0.6
011	15	4	12	5564.5982	5564.5950	3.3		
011	15	4	11	5643.7858	5643.7850	0.8	5643.7854	0.4
011	15	5	11	5683.3119	5683.2955	16.4	5683.3160 *	-4.1
011	15	5	10	5707.3010	5707.3026	-1.6	5707.3039	-2.9
011	15	б	10	5766.8031	5766.8016	1.5		
011	15	6	9	5771.5241	5771.5216	2.5	5771.5308	2.5
011	15	7	9	5885.6973	5885.6913	6.1	5885.6946	2.7
011	15	7	8	5886.4151	5886.4129	2.2	5886.4121	3.0
011	15	8	8	6018.7371	6018.7368	0.3		
011	15	8	7	6018.7921	6018.7928	-0.7		
011	15	9	7	6166.3902	6166.3891	1.2		
011	15	9	б	6166.3910	6166.3920	-1.1		
011	15	10	б	6325.8302	6325.8335	-3.3		
011	15	10	5	6325.8302	6325.8336	-3.5		
011	15	11	5	6498.7133	6498.7131	0.2		
011	15	11	4	6498.7133	6498.7131	0.2		
011	15	12	4	6681.1660	6681.1643	1.7		
011	15	12	3	6681.1660	6681.1643	1.7		
011	15	13	3	6872.4125	6872.4127	-0.2		
011	15	13	2	6872.4125	6872.4127	-0.2		
011	15	14	2	7071.2182	7071.2159	2.4		
011	15	14	1	7071.2182	7071.2159	2.4		
011	15	15	1	7276.3509	7276.3532	-2.3		
011	15	15	0	7276.3509	7276.3532	-2.3		

Примечание:В первых четырех колонках помещены колебательные $(v_1v_2v_3)$ и вращательные $(J K_a K_c)$ квантовые числа. В пятой колонке – экспериментальные значения вращательных уровней энергии, полученные с помощью программы RITZ (в см⁻¹). В шестой – энергии, рассчитанные с использованием гамильтониана в виде производящих функций. В седьмой – разница между экспериментальными и рассчитанными энергиями (в единицах 10^{-3} см⁻¹). В девятой – разница между экспериментальные уровни энергии из работ [138, 140, 141] (в см⁻¹). В девятой – разница между экспериментальными энергиями из колонок 5 и 8 (в единицах 10^{-3} см⁻¹)

Приложение 3.1 Колебательно-вращательные уровни энергии молекулы $^{18}O_3$, полученные из наблюдаемых переходов для трех состояний (025), (501) и (115) типа симметрии B_1

			(025) (501) (115)											
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C
1	0	1					6013,7661	1		1.1	6072,8381	1		3.0
3	Ō	3	5988.6447	1		-7.1	6017.3467	1		0.4	6076.3487	1		2.0
5	0	5	5994.9564	1		0.6	6023.7844	1		3.5	6082.6564	1		1.4
7	0	7	6004.0315	2	0.1	1.4	6033.0546	1		5.7	6091.7410	2	0.6	2.0
9	0	9	6015.8430	2	0.3	0.7	6045.1346	1		11.3	6103.5723	1		2.8
11	0	11	6030.3555	2	0.2	1.1	6059.9876	1		15.8	6118.1142	3	0.8	2.1
13	0	13	6047.5307	2	0.1	2.0	6077.5848	1		22.2	6135.3308	1		0.8
15	0	15	6067.3357	2	0.1	2.2	6097.8926	1		22.8	6155.1957	3	1.5	0.8
17	0	17	6089.7493	2	0.7	2.0	6120.8921	1		16.5	6177.6821	1		-0.4
19	0	19	6114.7610	2	1.1	2.1	6146.5939	1		24.1	6202.7789	1		-1.2
21	0	21	6142.3665	2	0.4	1.6	6174.9701	1		22.6	6230.4805	2	0.4	-2.1
23	0	23	6172.5686	1		2.2	6206.0279	2	0.8	20.7	6260.7876	1		-1.8
25	0	25	6205.3663	2	0.3	0.0	6239.7633	2	1.7	13.5	6293.7023	2	0.3	-0.1
27	0	27	6240.7672	2	2.1	-0.4	6276.2033	1		25.7	6329.2237	2	1.6	-0.3
29	0	29	6278.7731	2	0.8	0.5	6315.2948	1		1.6	6367.3581	2	0.2	2.0
31	0	31	6319.3872	2	2.6	4.3	6357.0822	2	0.4	-16.9	6408.1047	3	0.1	4.5
33	0	33	6362.6027	2	2.1	3.2					6451.4679	1		10.7
35	0	35	6408.4279	1		5.2				~ .				
1	1	0					6016.5189	1	~ ~	-0.4	6075.5703	1		4.1
2	1	2		4		0.4	6017.8661	2	0.2	-0.3	6076.8802	1		0.4
3	1	2	5991.5147	1	~ ~	-0.4	6020.2155	4	1.0	1.1	6079.1977	1	0.0	1.9
4	1	4	5993.9325	2	0.8	0.9	6022.7320	2	1.3	-0.9	6081.6395	2	0.2	2.3
5	1	4	5998.0509	2	3.2	-4.5	6026.8634	2	0.7	0.7	6085.7280	1	0.4	2.6
6	1	6	6001.3818	2	0.1	-0.9	6030.3738	2	0.1	-2.7	6089.1088	2	0.1	0.6
/	1	0	6007.4940	2 1	1.0	0.3	6040 7972	2	0.0	1.3	6095.1520	1		2.5
0	1	0	6010 9204	1	0.4	0.0	6040.7672	1		-0.7	6107 4604	1	1 /	0.0
9 10	1	0	6024 2762	2	0.4	0.5	6052 0602	2	0.1	1.3	6112 1629	2	1.4	1.0
10	1	10	6025 0208	2	0.1	1.1	6064 4619	2	1 1	-7.0	6122 6420	2	0.0	-0.7
12	1	12	6030.0200	2	2.1	1.0	6060 0131	2	0.6	_11 0	6127 7327	1		-0.2
12	1	12	6053.0738	2	1.0	03	6082 8403	2	0.0	22	6140 6808	1		-0.2
14	1	14	6058 0946	1	1.0	1.0	6088 6196	2	0.0	-14 3	6145 9816	1		-0.6
15	1	14	6073 9583	1		0.8	6104 1141	2	0.3	21	6161 5536	2	0.8	2.6
16	1	16	6078 9511	2	0.6	1.3	6110 1017	1	0.0	-17.2	6166 9011	2	0.6	-1.3
17	1	16	6097 6422	2	0.0	1.3	6128 2581	1		0.8	6185 2322	2	0.0	1.0
18	1	18	6102,4599	2	0.2	1.7	6134,4092	1		-14.5	6190.4852	1	0.1	0.7
19	1	18	6124.0880	2	0.1	0.8	6155.2478	1		2.2	6211.6849	1		0.1
20	1	20	6128.6105	2	0.3	0.4	6160.6988	1		11.0	6216.7190	2	1.2	-0.7
21	1	20	6153.2565	2	0.4	1.3	6185.0447	3	0.6	0.5	6240.8780	2	0.1	1.4
22	1	22	6157.3983	1		0.3	6190.3325	2	1.2	-41.2	6245.5975	2	0.8	-2.8
23	1	22	6185.1044	2	0.3	2.1	6217.6169	2	0.2	-0.3	6272.7694	2	0.7	3.1
24	1	24	6188.8184	2	1.9	2.5	6222.7194	1		-1.9	6277.1194	2	0.1	-0.9
25	1	24	6219.5890	2	0.3	0.4	6252.9260	2	1.3	-3.5	6307.3160	2	0.3	0.9
26	1	26	6222.8589	1		0.3	6257.7579	1		0.1	6311.2676	2	0.2	-6.7
27	1	26	6256.6800	2	1.7	-1.4	6290.9417	1		-7.7	6344.4915	2	0.2	1.8
28	1	28	6259.5237	3	0.6	1.5					6348.0540	2	0.9	0.7
29	1	28	6296.3583	1		-0.2	6331.6345	2	0.8	-18.2	6384.2685	2	0.2	3.2
30	1	30	6298.8053	1		2.2	6335.9053	1		-16.8	6387.4633	1		1.1
31	1	30	6338.6068	2	0.5	-1.5					6426.6313	1		4.4
32	1	32	6340.7018	2	0.5	2.9					6429.5003	2	0.0	7.6
33	1	32	6383.4260	1		-1.6								
34	1	34	6385.2093	1		2.3								
35	1	34	6430.8160	1		-2.3								
2	2	1					6026.1258	1	~ ~	0.2	6085.0709	2	1.1	-0.3
3	2	1	0000 0450			0.0	6028.2810	2	0.8	1.1	6087.1835	2	0.6	0.6
4	2	3	6002.3152	1	~ ~	0.3	6031.1461	3	0.9	0.4	6089.9921	3	1.3	0.9
D E	2	3 F		2	0.0	-2.1	6020 0240	2	0.2	0.0	0093.5235	2	1.3	-1.5
07	2	5	6015 0240	2	∪.∠ ₄₄	1.4	6044 4422	∠ ₄	1.7	0.5	6102 7075	ა ი	0.0	0.0
/ 0	2	כ ד	6020 5660	3 1	1.1	-0.9	6010 7776	1	Λĵ	-0.2	6102.7075	ა ი	0.0	-0.9
0	2	7	6027 0024	ו ר	00	2.4 2 E	0049.1110	2	0.5	-1.4	6114 7574	2	0.2	0.0
9 10	∠ 2	0	6023 2007	2	0.9 0.9	2.U 6.2	6063 3817	ົ່	0.8	_1 2	6121 5772	2	0.9 1 2	0.9 _1 A
11	2	a a	6042 0477	2	0.0	1.2	6071 6100	<u>ح</u> 1	0.0	1.2	6129 6957	2	0.2	-0.2
12	2	11	6049 9679	2	0.Z	-22.6	6079 8343	3	0.8	-2.6	6137 6953	1	0.2	-0.2
13	2	11	6059 9321	3	1.2	26	6089 8085	1	0.0	2.0	6147 5527	2	07	0.3
14	2	13	6068.8660	2	0.7	-6.1	6099.1285	2	0.2	-4.3	6156.5927	1	2.1	-0.6
				-				-				-		2.0

Приложение 3.1 (продолжение)

				(025)				(501)				(115))	
J	Ka	Kc	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C
15	2	13	6080.7599	2	0.4	1.0	6110.9813	1		2.2	6168.3473	1		1.7
16	2	15	6090.5142	2	0.5	-3.3	6121.2562	2	0.5	-6.0	6178.2607	1		1.5
17	2	15	6104.5413	1		0.2	6135.1474	1		-0.5	6192.0858	2	0.5	2.0
18	2	17	6114.9095	2	0.8	-4.0	6146.2094	1		-5.9	6202.6814	1		-0.4
19	2	17	6131,2725	1		2.8	6162.3174	1		4.1	6218,7655	1		1.4
20	2	19	6142 0417	1		-4.2	6173 9800	2	07	-2.6	6229 8460	2	07	-2.0
21	2	10	6160 9276	2	01	0.6	6102 /666	2	0.1	2.0	62/18 3751	2	0.7	2.0
21	2	21	6171 9050	2	0.1	2.0	6204 5571	1	0.1	17	6250 7/21	1	0.4	2. 1 1.2
22	2	21	6102 4966	2	0.2	-5.0	6204.0071	1 2	0 5	0.0	6200 0011	2	0 5	-4.2
23	2	21	0193.4000	2	2.0	-0.4	0223.3011	2	0.5		0200.0911	2	0.5	3.3
24	2	23	6204.4548	2	0.8	-4.9	6237.9403	2	0.3	11.7	6292.3483	2	1.3	-2.9
25	2	23	6228.9208	1		2.7	6261.6387	2	0.1	-4.5	6316.2827	2	2.1	0.9
26	2	25	6239.7064	1		-4.5	6274.1020	2	0.6	-5.9	6327.6630	2	0.4	-0.5
27	2	25	6267.1860	2	1.2	3.0	6300.6065	2	0.7	-13.5	6354.5227	3	0.7	0.9
28	2	27	6277.6131	1		-25.8					6365.6621	1		-0.2
29	2	27	6308.2441	2	0.9	3.7	6342.4230	1		-33.8	6395.5720	1		1.0
30	2	29	6318.2279	1		-2.4					6406.3380	2	0.1	2.4
31	2	29	6352.0487	2	0.7	3.7					6439.3877	2	0.3	-0.1
32	2	31	6361.4679	2	0.0	-4.9	6398.4989	1		-35.3	6449.6794	2	0.5	4.4
33	2	31	6398 5534	1		44		-			6485 9264	1		31
34	2	33	0000.0001	•							6495 6219	1		-18.2
3	2	00	6013 0508	1		03	60/1 0256	2	3.2	-13	6100.0210	2	17	_1.8
4	2	2	6015.0030	1		0.0	6044 7092	2	0.5	1.5	6102 5202	2	0.4	-1.0
4	3	2	0010.0710	2	4.0	0.0	0044.7903	5	0.5	1.0	0103.5203	3	0.4	-2.0
5	3	2	6019.3843	2	1.2	-1.4	6048.3861	2	0.6	1.4	6107.0389	2	0.2	-0.8
6	3	4	6023.6023	3	1.9	-1.8	6052.6923	3	1.6	1.7	6111.2589	3	0.2	-1.3
/	3	4	6028.5275	1		-0.4	6057.7168	2	0.3	0.9	6116.1845	1		-1.7
8	3	6	6034.1550	2	0.0	1.0	6063.4589	3	0.2	0.5	6121.8132	3	0.2	-1.8
9	3	6	6040.4905	2	1.0	-1.0	6069.9260	1		1.5	6128.1527	2	0.7	-1.2
10	3	8	6047.5269	3	0.3	3.1	6077.1041	3	0.1	1.2	6135.1872	3	1.0	-2.3
11	3	8	6055.2847	1		0.8	6085.0175	3	0.2	1.0	6142.9491	2	0.3	0.0
12	3	10	6063.7123	2	5.1	-4.0	6093.6263	2	1.1	-0.4	6151.3855	1		-1.0
13	3	10	6072.9159	2	1.2	-0.3	6103.0004	2	0.7	0.3	6160.5789	2	0.2	-2.0
14	3	12	6082.7340	1		0.3	6113.0310	1		-0.8	6170.4080	1		0.5
15	3	12	6093 4023	2	12	-1.0	6123 8873	2	02	0.7	6181 0615	1		-0.7
16	3	14	6104 5778	2	0.2	17	6135 3168	2	0.2	-24	6192 2515	1		-1.5
17	3	1/	6116 7655	2	<u>0.2</u>	13	61/7 6026	1	0.2	1 0	6204 4080	2	16	-13
10	2	16	6120 2425	1	0.5	1.5	6160 4969	2	0.2	1.3	6216 0202	2	0.2	-1.0
10	2	10	6142 0222	2	0.4	1.7	6174 4246	2 1	0.5	-1.4	6220 6419	2 1	0.2	-1.4 1.2
19	3	10	0143.0232	2	0.4	0.0	0174.4340	1	0.4	3.9	0230.0410	1		-1.3
20	3	18	0150.7285	2	1.4	1.7	6188.5360	2	0.1	0.0	6244.4119	1		1.7
21	3	18	6172.2035	2	1.6	-1.1	6204.1340	2	0.1	5.9	6259.7881	1		0.9
22	3	20	6187.0312	2	0.3	7.0	6236.8134	2	0.3	7.8	6274.7126	1		-0.1
23	3	20	6204.3364	2	0.3	0.0	6253.2858	2	1.2	-10.1	6291.8697	1		3.1
24	3	22	6220.1568	2	1.2	32.4	6272.4922	2	0.5	7.2	6307.8220	1		0.9
25	3	22	6239.4407	2	0.0	0.8					6326.9062	2	1.5	2.8
26	3	24	6255.9849	2	0.1	-30.7					6343.7284	2	0.4	3.5
27	3	24	6277.5283	2	1.6	1.2	6329.4512	2	0.5	1.7	6364.9188	2	0.1	6.1
28	3	26	6294.6658	1		-17.5	6352.9059	2	1.0	-0.3	6382.4177	2	0.0	7.1
29	3	26	6318.6010	1		3.2	6371.8143	1		6.9	6405.9076	3	0.4	8.3
30	3	28					6397.6381	2	1.2	-13.0	6423.8795	2	0.2	29.0
31	3	28	6362.6406	2	0.7	2.4	6417.0205	2	1.1	21.3	6449.8671	2	0.8	11.7
32	3	30	6380 2585	2	0.1	-19.2		_			6468 0925	2	1.9	-20.7
33	3	30	6409 6227	2	14	-0.7	6465 0240	1		10.5	0.00020	-		_0
34	3 3	32	0100.0227	-		0.1	6041 9256	2	32	-1 3				
35	3	32	6450 5301	1		10.5	0041.0200	2	0.2	1.0	6546 6105	2	06	18.3
35	3	32	6024 0200	1		10.5	6062 0022	2	06	10	6122 4420	2 1	0.0	10.5
4	4	1	0034.0209	1	4.0	-0.0	0003.0922	2	0.0	1.9	0122.4429	1	~ ~	-5.0
5	4	1	6038.3417	2	1.9	-0.9	6067.4777	2	1.9	0.2	6125.9611	3	0.9	-3.5
6	4	3	6042.5590	3	0.4	0.4	6071.7837	3	0.1	1.2	6130.1830	3	1.2	-2.1
7	4	3	6047.4794	2	0.2	1.3	6076.8059	3	0.7	0.4	6135.1061	3	0.8	-3.4
8	4	5	6053.1022	2	0.6	0.9	6082.5469	2	0.3	0.3	6140.7352	1		-2.8
9	4	5	6059.4280	2	0.2	-0.6	6089.0070	3	1.0	0.7	6147.0696	3	0.3	-1.5
10	4	7	6066.4588	2	0.0	-1.5	6096.1833	3	2.6	-1.2	6154.1080	2	0.2	-0.6
11	4	7	6074.1988	2	1.0	1.5	6104.0805	2	0.7	-1.5	6161.8509	4	1.2	-0.8
12	4	9	6082.6390	3	0.2	-0.2	6112.6979	1		-0.8	6170.2998	2	1.0	0.4
13	4	9	6091.7874	2	0.5	-0.5	6122.0348	2	0.0	-0.8	6179.4568	1		2.4
14	4	11	6101.6404	1	-	-0.8	6132.0874	1		-4.3	6189.3174	1		3.9
15	4	11	6112 2056	2	02	0.8	6142 8659	2	0.5	-4.5	6199 8894	1		6.3
16	4	13	6123 4700	2	0.5	0.7	0112.0000	-	0.0	1.0	6211 1685	1		14 1
17	⊿	13	6135 4560	2	0.6	22	6166 5870	2	04	-35	6223 1535	2	ΛQ	10 /
18		15	6148 1307	2	0.0	0.1	6179 5250	2	0.4	-23	6235 85/7	2	0.9	27.6
10		15	6161 5360	<u>~</u> 1	0.2	_2 Q	6193 2001	1	0.4	_1 0	6249 2680	2	0.0	25.0
13	-+	10	0101.0000	1		-0.3	0100.2001	-+	0.0	-1.0	02-10.2000	~	0.0	20.2

Приложение 3.1 (продолжение)

прило	жени	IC 5.	і (продоля)			(201)				(115)		
J	Ka	Kc	$E ({\rm cm}^{-1})$	(025) Nh	ΔE	J	Ka	(501) Kc	E	Nh	ΔE	(115)	Ka	Kc
20	4	17	6175.6265	2	1.4	1.7	6207.5765	2	0.4	-0.1		U		110
21	4	17	6190.4703	1		-3.1	6222.7096	2	1.6	1.1				
22	4	19	6205.9573	2	0.1	0.1	6238.5168	2	1.6	-1.0	6293.4804	1		-45.8
23	4	19	6222.2602	2	0.0	-3.3	6255.1227	2	0.5	2.2	6309.8323	1		-32.1
24	4	21	6239.1321	1	0.1	2.1	6272.3561	1	0.0	2.3	6326.7174	1		-55.1
20 26	4	23	6275 1532	2 1	0.1	-2.0	6290.4001	2 1	0.9	0.U 2.0	6362 7552	1		-00.0
20	4	23	6294 4668	2	28	-3.6	6328 7067	1		2.0	6382.0523	2	03	-44.2 -30.8
28	4	25	6314 0279	2	0.7	19.6	6348 7177	1		1.9	6401 6189	2	0.3	-38.3
29	4	25	6334.9235	1	0.1	-0.2	6369.8915	1		-3.0	6422.4856	2	0.1	-28.7
30	4	27	6355.7147	1		-13.5	6391.2430	2	0.4	1.4				
31	4	27	6378.3080	2	0.5	1.4	6414.0580	2	0.5	11.4	6465.8295	2	0.0	-16.9
32	4	29					6436.6594	1		-1.9				
33	4	29	6424.6470	2	0.6	3.7	6461.1827	1		8.8				
34	4	31					6484.9655	1		-4.7				
35	4	31	6473.9507	1		-0.7	6511.2909	1	0.0	1.3				
30	4	33					6536.1465	2	0.0	-15.9				
51	4	33	6062 6800	2	12	22	6002 0050	1	0.1	-13.5	6150 2660	2	1 1	4.6
6	5	2	6066 9035	2	0.6	-2.3	6096 3077	3	0.1	3.Z 1 7	6154 4865	2	0.4	-4.0
7	5	2	6071 8204	2	0.3	19	6101 3299	3	0.4	21	6159 4081	1	0.4	-4.5
8	5	4	6077.4379	2	0.1	1.0	6107.0679	2	0.2	0.5	6165.0360	3	1.3	-3.1
9	5	4	6083.7589	2	1.0	0.6	6113.5254	2	0.5	0.5	6171.3642	3	0.5	-4.9
10	5	6	6090.7853	2	0.6	1.6	6120.7002	3	0.3	-0.3	6178.3979	2	2.0	-5.2
11	5	6	6098.5135	2	0.9	0.2	6128.5950	2	0.4	0.7	6186.1376	3	0.6	-3.6
12	5	8	6106.9478	2	0.4	0.5	6137.2043	1		-2.2	6194.5800	2	0.3	-3.7
13	5	8	6116.0865	1		0.3	6146.5344	3	0.1	-2.9	6203.7274	3	0.8	-3.2
14	5	10	6125.9294	2	0.9	-0.8	6156.5830	3	0.5	-3.9	6213.5797	3	1.0	-2.4
15	5	10	6136.4790	2	0.8	-0.7	6167.3492	2	0.7	-6.4	6224.1359	3	0.5	-2.8
10	5	12	6147.7338	2	0.5	-1.4	6101 0475	3	0.7	-5.7	6247 2667	2	06	10
18	5	1/	6172 3631	2	0.4	-1.0	6203 0721	23	0.3	-3.5	6260 0388	2	0.0	-1.2
10	5	14	6185 7372	2	0.1	-2.8	6217 6217	2	1.6	-4.0	6273 4201	2	0.0	-0.2
20	5	16	6199.8221	3	1.7	0.1	6231.9880	1	1.0	-5.2	6287.5036	1	0.0	-2.2
21	5	16	6214.6101	2	1.2	-2.4	6247.0777	5	0.2	-4.3	6302.2973	3	0.5	-1.5
22	5	18					6262.8872	1		-3.5	6317.7975	2	0.8	-0.5
23	5	18	6246.3145	1		-3.1	6279.4185	3	4.0	-3.5	6334.0067	4	0.5	0.3
24	5	20	6263.2261	1		-3.8	6296.6726	3	2.0	-0.4	6350.9197	2	1.4	-0.8
25	5	20	6280.8542	1		-4.5	6314.6502	1		1.8	6368.5482	1		1.5
26	5	22	6299.1824	2	1.3	-3.7	6333.3439	2	0.2	1.5	6386.8739	2	0.8	-2.9
21	5 5	22	6318.2360	2	0.0	-4.4	6352.7680	1		4.7	6405.9261	2	0.1	2.1
20	5	24	6358 4633	1		-1.3	6303 7761	2	02	4.9	6446 1476	2	0.0	-4.4 1 1
30	5	24	6379 6102	2	12	-4.3	6415 3572	2	0.2	5.0	6467 2962	2	0.5	-13.7
31	5	26	6401.5429	1		-3.5	6437.6759	1	0.2	12.9	6489.2181	2	1.2	7.6
32	5	28	6424.0959	2	0.5	3.4	6460.7014	1		4.7	6511.7689	2	0.5	-34.4
33	5	28	6447.4689	2	0.0	-14.9	6484.4624	2	1.5	19.3				
34	5	30					6508.9670	1		27.1				
6	6	1	6096.6207	1		5.1	6126.2437	2	0.0	2.7	6184.1567	2	1.0	-2.9
7	6	1	6101.5197	2	0.0	3.4	6131.2627	1	4 5	2.7	6189.0805	3	0.5	-1.7
8	6	3	6107.1228	2	0.2	2.2	6136.9988	3	1.5	2.9	6194.7063	2	0.7	-1.7
9	0	5	6120 4474	3 2	0.2	2.5	0143.4400	3	0.7	0.1	6201.0351	2 1	0.5	-2.4
10	6	5	6128 1650	2	0.0	4.9 13	6158 5033	23	1.0	-1.0	6215 8063	ו 2	02	-0.9
12	6	7	6136 5881	3	0.9	3.8	6167 1045	2	1.3	-27	6224 2489	1	0.2	0.8
13	6	7	6145.7165	3	1.1	3.2	6176.4211	3	0.7	-5.0	6233.3921	2	1.2	-0.6
14	6	9	6155.5515	1	-	3.6	6186.4569	2	2.4	-3.9	6243.2425	1	-	1.1
15	6	9	6166.0890	2	1.7	0.7	6197.2051	2	1.4	-5.4	6253.7956	2	0.1	1.1
16	6	11	6177.3357	2	0.1	1.3	6208.6677	2	0.8	-6.5	6265.0532	2	1.6	1.3
17	6	11	6189.2880	2	0.2	1.4	6220.8450	2	0.8	-5.6	6277.0171	1		3.2
18	6	13	6201.9435	2	1.3	-1.2	6233.7329	2	1.2	-4.6	6289.6856	4	0.3	4.8
19	6	13	6215.3078	3	0.8	-1.3	6247.3309	3	1.5	-1.2	6303.0570	3	0.2	4.4
20	6	15	0229.3/83	ן ר	06	-0.9 1 0	6276 6206	2	0.3	2.4 ۱۱ ۵	6321 0100	ა ი	1.9 0 E	4.4
∠ I 22	6	17	6250 6256	∠ 1	0.0	-1.3	6202 2226	1		127	6347 1085	ა ე	0.0	0.1 A R
22	6	17	6275 8267	2	01	-3.0	0232.0000	I		13.7	6363 6017	2	0.2	8.0
24	6	19	6292.7238	2	0.1	-5.1	6327.2396	1		3.7	6380.5048	2	0.1	11.3
25	6	19	6310.3277	2	0.1	-2.1		•			6398.1127	2	0.1	13.2
26	6	21	6328.6407	3	1.8	-1.7					6416.4262	2	0.3	14.0

Приложение 3.1 (продолжение)

I	K.a	Ka	$F(om^{-1})$	(025)	٨E	I	Ka	(501)	F	NL	٨E	(115)	Kc	Ka
27	<u>6</u>	<u>1</u> 21	6347.6573	3	<u>0.5</u>	-0.8	ка	КĊ	L	ND	6435.4490	3	0.9	17.3
28	6	23	6367.3847	3	0.9	-0.8					6455.1762	2	0.3	18.0
29	6	23	6387.8181	2	1.4	2.0					6475.6105	1	4.0	18.3
30 31	0 6	25 25	6408.9627	2	0.2	3.4 6.4					6496.7577	2	1.2	24.0 27.5
32	6	27	6453.3761	1		10.3					0010.0110	I.		27.0
35	6	29					6564.2653	1		18.2				
36	6	31					6590.1683	1		7.1				
37	6	31					6616.8085	1		8.8				
30 7	0 7	33 0	6136 7071	2	04	13	6166 6035	1		-4.0 4.6	6224 0936	2	01	1 1
8	7	2	6142.4317	1	0.4	2.8	6172.3509	2	0.2	5.7	6229.7181	3	1.5	1.0
9	7	2	6148.8805	2	0.3	4.2	6178.8135	2	0.3	3.9	6236.0482	3	0.4	3.0
10	7	4	6156.0552	3	0.4	6.4	6185.9956	3	1.1	3.7	6243.0806	3	1.1	3.7
11	7	4					6193.8957	1	0.1	3.6	6250.8175	3	1.0	5.2
12	7	6	6180 2505	1		0.8	6211 8493	2	0.1	2.3	6268 4007	3	0.7	4.7 5.4
14	7	8	6190.1192	2	0.3	-1.3	6221.9046	1	0.0	3.1	6278.2502	2	0.3	7.0
15	7	8	6200.6891	2	0.4	-2.9	6232.6775	1		3.2	6288.8023	2	0.6	6.7
16	7	10	6211.9624	2	0.3	-2.6	6244.1662	3	0.4	0.8	6300.0602	3	0.8	7.4
17	7	10	6223.9342	4	0.8	-5.7	6256.3768	2	0.1	1.9	6312.0225	2	0.6	7.3 5.4
10	7	12	6249 9915	3 1	1.0	-5.7	6282 9507	2	0.2	2.2	6338 0615	2	0.0	5.4 5.5
20	7	14	6264.0753	1		-5.3	6297.3173	2	0.9	1.9	6352.1383	1		3.1
21	7	14	6278.8617	2	2.2	-5.6	6312.4002	2	1.3	0.1	6366.9229	3	0.3	2.1
22	7	16	6294.3512	1	~ ~	-6.3	6328.2064	3	1.1	2.6	6382.4126	2	0.3	-0.5
23	/ 7	16	6310.5461	2	0.3	-5.5	6344.7313	2	0.1	4.4	6398.6115	2	0.7	-1.2
24 25	7	18	6345.0496	2	0.3	-2.4	6379.9357	2	0.1	3.8	6433.1323	2	0.2	-3.0
26	7	20	6363.3583	2	0.7	-0.3	6398.6140	1	•••	-0.2	6451.4603	4	1.5	-3.0
27	7	20	6382.3714	1		1.8	6418.0214	1		4.9	6470.4984	1		-2.6
28	7	22	6402.0900	2	1.0	4.7	6438.1447	2	1.7	5.5	0540 7000	0	4.0	74
29 30	/ 7	22	6422.5138	1		8.2 12.3	6458.9878	1		5.6 0.0	6510.7266	2	1.8	7.1
31	7	24	6465.4788	1		17.8	6502.8378	2	0.0	6.9				
32	7	26	6488.0195	2	1.5	23.4	6525.8435	2	0.5	6.6				
33	7	26					6549.5684	2	0.4	4.0				
34	7	28					6574.0172	2	0.2	3.9				
36	7	20 30					6625 0759	1		-4.3				
37	7	30					6651.6858	1		-7.0				
8	8	1	6182.6674	1		0.1	6213.0314	1		4.7	6270.0938	4	1.0	-4.5
9	8	1	6189.0249	1		-0.3	6219.4906	3	0.2	3.1	6276.4849	1	07	4.9
10	8 8	3	6196.0915	ა ვ	0.6	-0.2	6226.6694	2	0.9	3.0 1.8	6283.5896	2	0.7	11.8
12	8	5	6212.3497	2	0.9	-0.2	6243.1797	2	1.5	1.0	6299.9467	2	0.5	24.7
13	8	5	6221.5445	1		-2.0	6252.5074	2	0.1	-3.6		_		
14	8	7	6231.4518	2	0.2	-2.5	6262.5604	2	0.1	-1.7	6318.0664	2	1.9	-69.8
15	8	7	6242.0713	2	0.3	-4.3	6273.3287	3	0.2	-2.8	6328.6581	2	1.5	-42.7
10	8	9	6265 4593	2	2.1	-14.0	6284.8160	2 1	0.4	-3.2 -2.8	6339.9506	3	٥٥	-16.9
18	8	11	6278.2310	3	0.0	-6.7	6309.9487	3	3.3	-1.0	6364.6120	3	1.7	3.5
19	8	11	6291.7292	3	6.5	-1.3	6323.5917	1		-1.0	6377.9920	2	0.7	8.7
20	8	13	6305.9583	2	1.1	12.8	6337.9528	3	3.8	-1.5	6392.0708	2	1.6	9.8
21	8	13					6353.0329	3	1.5	-1.7	6406.8535	3	0.3	12.3
22	8	15					6295 2506	2	1.0	1 2	6422.3379	2	0.3	12.3
23	8	17					6402 5861	2	1.0	-1.2	6455 4131	2	0.0	10.2
25	8	17					6420.5443	2	0.3	-0.7	6473.0053	2	1.3	8.8
26	8	19					6439.2216	2	2.1	1.2	6491.2991	2	0.6	5.8
27	8	19					6458.6171	1		1.9	6510.2941	1	4.0	0.8
28	8	21 24					64/8./329	1 1		3.4	6529.9971	2	1.3	0.5
∠9 30	0 8	∠ı 23					6521 1199	י 1		5.5 2.9	6571.5069	1		-4.4 -6 1
31	8	23					6543.3935	2	0.7	2.9	301 1.0000	•		0.1
32	8	25					6566.3857	2	0.2	1.6				
33	8	25					6590.0990	1	4.0	1.2				
34 25	8	27					6630 6925	2	1.9	0.7				
55	0	∠ 1					0009.0020	1		-3.9				

Приложение 3.1 (продолжение)

	**		n (-1)	(025)				(501)				(115)		
	Ka	<u>Kc</u>	$E(\text{cm}^{-})$	Nb	ΔE	J	Ka	<u>Kc</u>	E	Nb	ΔE	J	Ка	Kc
30 37	0 8	29 29					6692 1445	2	0.0	-3.9				
38	8	31					6719 4605	2	2.9	-13.9				
9	9	0	6234.6720	1		1.3	6265.5118	2	0.1	2.8	6322.0188	2	1.9	12.1
10	9	2	6241.7237	1		0.4	6272.6896	2	0.1	2.6	6329.0544	3	3.1	7.5
11	9	2	6249.4840	2	0.5	2.4	6280.5861	2	1.6	3.3	6336.7980	2	1.5	7.0
12	9	4	6257.9474	1		1.8	6289.1971	3	0.5	0.5	6345.2432	4	1.9	4.1
13	9	4	6267.1189	2	0.5	3.2	6298.5281	3	1.2	-0.3	6354.3918	3	0.9	0.4
14	9	6	6276.9949	2	0.5	2.9	6308.5761	3	0.5	-2.1	6364.2459	4	0.5	-1.6
15	9	6	6287.5771	3	1.2	2.3	6319.3440	2	0.5	-2.1	6374.8022	4	0.4	-5.6
10	9	ð g	6310 8654	2	1.0	4.1	6343 0330	3	1.2	-2.2	6308.0041	3 1	1.3	-8.0
18	9	10	6323 5690	3	24	39	6355 9545	1	0.5	-2.2	6410 7008	3	10	-12.1
19	9	10	6336.9841	2	0.2	6.9	6369.5958	3	1.8	-3.3	6424.0722	3	0.9	-17.2
20	9	12	6351.1042	2	0.7	6.6	6383.9599	1		1.7	6438.1502	2	0.7	-19.9
21	9	12	6365.9342	2	0.3	7.3	6399.0334	1		-2.1	6452.9327	3	0.2	-22.1
22	9	14	6381.4696	2	0.2	3.9					6468.4176	2	2.2	-26.2
23	9	14	6397.7162	2	0.6	1.8					6484.6134	3	1.0	-23.7
24	9	16	6414.6705	3	1.1	-2.9	6448.5776	1		-1.2	6501.5103	2	0.3	-24.4
25	9	16	6432.3320	1		-10.6	6466.5288	2	0.2	-1.6	6519.1123	2	2.3	-24.4
20 27	9	10					0400.2023	Z	1.7	1.5	6556 4408	3	20	-19.3
28	g	20					6524 7019	З	05	36	6576 1694	1	2.0	-13.0
29	9	20					6545.5276	2	1.2	2.1	6596.6031	2	0.7	10.9
30	9	22					6567.0757	1		4.0	6617.7526	2	2.8	33.5
31	9	22					6589.3394	2	0.0	2.2				
32	9	24					6612.3260	2	1.3	4.1				
34	9	26		_			6660.4513	2	0.1	1.8				
10	10	1	6292.6417	2	0.5	1.3	6324.0122	1		1.9	0007 0700	~		
11	10	1	6300.3953	2	1.0	1.4	6331.9082	2	0.0	2.6	6387.6793	2	1.0	11.4
12	10	ა ვ	6318 0150	2	0.5	-0.2	6340.5164	I		-0.4	6405 2749	3 2	0.5	0.8
13	10	5	6327 8874	1	1.5	22	6359 8984	3	0.8	-0.3	6415 1264	2	0.0	7 1
15	10	5	6338.4593	1		-0.5	6370.6663	1	0.0	0.7	6425.6844	3	0.1	7.1
16	10	7	6349.7403	1		0.4	6382.1530	1		2.5	6436.9443	1	••••	5.4
17	10	7	6361.7240	1		-1.6	6394.3646	3	1.7	11.3	6448.9076	3	0.3	3.6
18	10	9	6374.4143	2	0.3	-2.9	6407.2845	1		10.2	6461.5748	3	0.2	2.0
19	10	9	6387.8091	2	0.6	-5.6	6420.8959	3	1.7	-17.3	6474.9462	3	0.9	1.3
20	10	11	6401.9135	1	~ ~	-4.8	6435.2560	1		-14.3	6489.0221	2	0.6	1.5
21	10	11	6416.7157	2	0.2	-12.5	6450.3335	3	1.1	-12.1	6503.7972	3 2	1.7	-2.4
22	10	13	6448 4473	1	0.2	-10.3	6482 6404	1		-7.0	6535 4649	23	23	-3.2
24	10	15	0110.1170	•		20.0	6499.8710	2	0.5	-9.7	6552.3525	2	1.0	-3.8
25	10	15					6517.8196	3	1.6	-9.4	6569.9409	1		-7.3
26	10	17					6536.4902	2	0.3	-5.5	6588.2350	2	0.5	-8.1
27	10	17					6555.8730	2	0.9	-7.8	6607.2329	1		-8.2
28	10	19					6575.9798	1		-4.7	6626.9336	2	2.9	-8.3
29	10	19									6647.3357	2	0.4	-9.8
3U 31	10	∠1 21					6640 6026	1		-13	0000.4440	I		-7.1
11	11	0					6388.4929	1		-0.7	6443.7869	1		1.7
12	11	2	6364.9932	1		0.5		-			6452.2352	1		3.2
13	11	2	6374.1558	2	3.1	3.6	6406.4342	1		-2.3	6461.3868	2	0.1	4.2
14	11	4	6384.0181	1		1.8	6416.4852	3	0.3	0.5	6471.2399	1		3.2
15	11	4	6394.5900	1		5.0	6427.2510	2	1.0	0.4	6481.7980	3	0.1	3.6
16	11	6	6405.8610	1		2.6	6438.7355	2	0.5	1.1	6493.0600	3	0.8	4.2
1/	11	6	6417.8408	1	• •	4.2	6450.9363	3	0.3	0.1	6505.0239	2	0.9	3.5
18	11 11	б р	0430.5202	2	2.0	0.9	0403.8562 6477 4067	3	0.7	0.5 2 1	6531 0502	2	1.0	4.6
20	11	0 10	6458 0010	ו כ	0 2	ა.4 ვი	0411.4901 6401 8511	∠ 2	0.0 0.2	5.4 5.2	6545 1200	2 I	20	-0.9
20	11	10	6472 7979	2	0.2	2.2	0-01.0044	2	0.0	0.0	6559.9170	1	2.0	44
22	11	12	6488.2984	2	0.7	1.2					6575.3987	1		5.2
23	11	12	6504.5015	1		-1.8					6591.5842	2	0.8	6.8
24	11	14	6521.4093	1		-4.7	6556.4655	1		15.3	6608.4697	1		5.4
25	11	14					6574.4125	1		16.8	6626.0612	1		7.3
27	11	16									6663.3498	2	1.4	8.7
28	11	18 1	6106 0170	4		76	6450 0400	4		0.4	6512 5240	1		10.5
12	1∠ 12	י 1	6435 4752	ו 2	02	-7.0 -6.3	6468 2514	1		-0.4 2 Q	6522 6872	2	02	-20.9
		•	2.00.1102	-		0.0	5.00.2011	•			2012.0012	-		_0.0

				(025)				(501)				(115))	
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	J	Ka	Kc	Ε	Nb	ΔE	J	Ka	Kc
14	12						6478.2951	1		-0.7	6532.5421	1		-22.0
15	12						6489.0593	2	0.3	-1.3	6543.1032	2	0.4	-17.9
16	12	5	6467.1768	1		1.5								
17	12	5	6479.1486	2	0.2	0.4	6512.7454	3	1.8	1.7	6566.3328	1		-12.6
18	12						6525.6661	2	0.3	4.4	6579.0040	2	0.6	-8.5
19	12										6592.3771	1		-5.6
20	12		6519.2946	2	0.5	3.9	6553.6618	2	1.8	10.5	6606.4547	4	0.4	-1.3
21	12		6534.0851	2	0.0	5.8					6621.2336	2	0.4	1.3
22	12										6636.7165	1		4.9
23	12										6652.9038	3	1.0	10.3
24	12										6669.7920	1		13.9
25	12													
26	12										6705.6779	2	0.1	22.9
13	13	0					6535.2372	1		-6.3				
14	13	2					6545.2834	1		-6.1				
15	13	2					6556.0513	1		-1.7				
16	13	4					6567.5338	3	0.3	-0.3				
19	13	6					6606.2946	2	0.2	11.7				
20	13	8					6620.6487	1		14.3				
14	14	1					6617.4075	1		-13.8				
15	14	1					6628.1740	1		-8.9				

Приложение 3.1 (продолжение)

Примечание: Nb число наблюдаемых переходов, использовавшихся для определения верхнего уровня энергии E (см⁻¹) соответствующего колебательного состояния. ΔE неопределенность уровня энергии (10⁻³ см⁻¹), (*O*-*C*) разница (10⁻³ см⁻¹) между экспериментальным значением уровня энергии и рассчитанным с помощью модели эффективного гамильтониана.

				(21	4)			(43	0)	
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
12	0	12	6101.3424	1		-29.1				
14	0	14	6119.9277	1		-15.3				
16 10	0	16 10	6141.1616	1		-3.1	6122 6192	1		22.0
20	0	20	6191 5280	2	02	11.3	6161 5928	1		-4 9
22	0	22	6220.6608	1	0.2	5.0	6191.5835	2	0.8	2.9
24	Õ	24	6252.4034	2	0.1	22.3	6224.2953	1	0.0	6.2
26	0	26	6286.8461	2	0.3	9.4	6259.6966	2	1.2	12.3
28	0	28	6324.0295	2	0.4	10.1	6297.7510	2	5.1	2.9
30	0	30	6363.3772	2	0.9	-0.2	6338.4807	2	0.4	11.8
32	0	32	6405.9078	2	0.5	-18.9	6381.8553	1		15.3
34	0	34	6451.0412	2	1.1	-18.7	6427.9083	1		29.8
38	0	38	65490.0700 6549 4224	2	0.4	-4.1 29.7				
15	1	15	6131.1618	1		-6.2				
16	1	15	6147.9757	2	0.0	-8.2				
17	1	17	6153.4812	2	0.4	0.6	6122.2283	2	0.7	6.0
18	1	17								
19	1	19	6178.4890	2	1.1	4.5	6148.0555	2	0.4	-3.7
20	1	19	0000 0440				0470 0405	~	~ ~	
21	1	21	6206.2449	1	07	-1.5	6176.6125	2	0.6	-9.8
22	1	∠ I 23	6236 3264	2	0.7	0.3 40.0	6207 8881	1		-10.6
23	1	23	6264 9133	2	0.5	-0.2	0207.0001			-10.0
25	1	25	6269.3938	3	0.7	21.7	6241.8663	2	0.3	-9.7
26	1	25	6300.9445	2	0.1	0.0				
27	1	27	6305.0887	2	2.4	11.3	6278.5347	2	0.6	-7.2
28	1	27	6339.6553	2	0.2	1.1				
29	1	29	6343.4926	2	0.7	14.7	6317.8776	2	1.3	-5.6
30	1	29	6381.0665	2	0.6	14.7	6250 0010	1		4.0
31 32	1	১। 31	6/25 201/	2	05	-19.9	0359.0010	I		-4.9
33	1	33	6428.2127	2	0.1	-19.7	6404.5326	1		-6.5
34	1	33	0.20.2.2	_	••••		0.0010020	•		0.0
35	1	35	6474.6744	3	0.7	-8.4	6451.8241	2	2.2	-3.4
36	1	35	6520.1776	1		32.2				
37	1	37	6523.8302	3	0.1	8.8	6501.7283	1		-14.7
38	1	37	6572.3492	2	0.5	49.9				
13	2	12	6121.7408	2	0.0	-16.8				
14	2	12	6142 0477	4	05	-96				
16	2	14	0112.0177	•	0.0	0.0				
17	2	16	6165.1258	2	0.3	-5.8				
18	2	16	6179.9381	1		2.1				
19	2	18	6190.9749	3	0.1	2.9				
20	2	18	6208.0729	1		10.3				
21	2	20	6219.5727	3	1.0	2.9				
22	2	20 22	6250 0214	Z 1	0.4	5.0				
23	2	22	6273 0653	2	1.0	19.3				
25	2	24	6285.0041	4	0.6	0.2				
26	2	24	6309.8760	1		22.0				
27	2	26	6321.8195	2	0.8	-6.0				
28	2	26	6349.5247	2	1.0	13.5				
29	2	28	6361.3650	3	0.6	-11.4				
30	2	28	6391.9905	2	1.2	4.6				
31 32	∠ 2	30	6437 2565	∠ 2	0.1	-10.2				
33	2	32	6448.6827	2	0.3	6.0				
36	2	34	6536.1276	2	1.3	-16.2				
37	2	36	6546.6618	1	-	11.4				
38	2	36	6589.7109	2	0.4	7.1				
17	3	15	6179.2614	1		-4.4				

Приложение 3.2 Колебательно-вращательные уровни энергии молекулы ¹⁸О₃, полученные из наблюдаемых переходов для двух состояний (214), и (430) типа симметрии A₁

(214)(430) $E (cm^{-1})$ 0 - C $E (cm^{-1})$ ΔE Nb ΔE 0 - C Ka Kc Nb 18 6192.1915 -2.9 3 15 1 3 2 -2.7 19 17 6205.3859 0.4 20 3 6219.9095 2 1.2 -2.5 17 3 3 3 3 3 3 21 19 6234.3416 1.1 -2.4 6250.5552 22 19 1 -2.0 23 21 6266.1224 3 2 1.5 -6.8 24 21 6284.1511 1.0 -2.7 3 25 23 6300.7313 0.3 -8.3 -4.0 26 23 6320.7177 2 0.3 27 25 6338.1557 3 0.3 -14.4 28 25 6360.2697 1 -3.9 3 2 29 27 1.8 6378.3983 -16.2 30 27 6402.8053 0.4 -6.5 2 -20.4 31 29 6421.4462 0.8 1 32 29 6448.3194 -5.9 33 31 6467.3062 3 0.4 -16.0 2 34 31 6496.8234 0.1 -3.8 35 33 6515.9803 4 1.3 -1.4 36 33 6548.2325 1 -6.7 37 6567.4940 3 0.1 35 26.0 4 6253.3536 21 18 3 1.8 11.5 22 4 4 18 23 20 6285.1977 3 0.2 7.6 4 24 20 25 4 22 6319.9046 2 2.1 5.7 26 4 22 4 27 24 6357.4753 4 0.9 1.5 4 1 -0.3 28 24 6377.5721 29 4 26 6397.9200 2 0.0 -0.3 4 2 30 26 6419.6057 0.5 0.6 31 4 28 6441.2466 2 1.3 1.3 32 4 28 6464.5884 1 5.0 4 33 30 6487.4669 1 6.9 34 4 6512.5364 9.3 30 1 35 4 32 6536.6041 2 0.0 17.3 5 20 15 6263.0272 1 14.0

Приложение 3.2 (продолжение)

5

6

17 8 6277.9158

21

13

Примечание: Nb число наблюдаемых переходов, использовавшихся для определения верхнего уровня энергии E (см⁻¹) соответствующего колебательного состояния. ΔE неопределенность уровня энергии (10⁻³ см⁻¹), (*O*-*C*) разница (10⁻³ см⁻¹) между экспериментальным значением уровня энергии и рассчитанным с помощью модели эффективного гамильтониана.

С

-10.7

6181.9075

1

-6.8

2

(205)(205)0 - C K_c $E (cm^{-1})$ Nb ΔE 0 - C K_c $E(\mathrm{cm}^{-1})$ Nb ΔE Ka JKa 1 6271.3011 -2.4 7 6300.7992 3 -3.2 0 1 1 2 5 0.3 3 0 3 6274.7950 3 0.6 -3.7 8 2 7 6306.3179 -3.3 1 5 7 0 5 7 6281.0770 2 0.3 -1.0 9 2 7 6312.7895 1 -1.1 2 0 6290.1195 2 0.1 -1.8 10 9 6319.5872 2 0.7 -0.9 9 0 2 9 2 9 6301.9010 2 1.3 0.4 2.5 11 6327.6567 0.8 2 2 2 11 0 11 6316.3875 2 0.2 4.3 12 11 6335.6314 0.9 -0.9 13 0 13 6333.5438 8.0 13 2 2 2 2 2 2 2 11 6345.4194 0.1 1.1 1 2 2 0 15 15 2 0.4 10.1 14 13 6354.4480 2.9 6353.3412 1.3 0 2 0.3 13 17 17 6375.7763 10.8 15 6366.1039 0.6 2.2 19 0 19 6400.8699 12.0 16 15 6376.0177 1 1.6 1 0 17 21 21 1 -14.8 15 1 2.3 6428.2851 6389.7154 2 23 0 23 6458.5239 2 0.2 -6.2 18 17 6400.3360 0.3 1.6 2 2 2 2 25 0 25 6491.3501 -0.9 19 17 6416.2534 0.1 3.7 1 0 2 27 27 6526.7747 0.6 20 19 6427.3900 1.9 0.6 0.3 29 0 29 6564.8056 2 21 2 6445.7041 2 4.9 0.3 1.7 19 0.4 2 31 0 31 6605.4462 2 0.4 3.0 22 2 21 6457.1684 0.3 2.7 2 0 33 23 21 6478.0476 1 33 6648.7036 1 9.7 6.6 24 2 1 0 6273.9609 1 -2.3 23 6489.6636 1 3.2 1 2 0.6 25 2 2 1 2 6275.2685 3 -4.6 23 6513.2557 0.1 6.7 3 1 2 6277.5697 1 -2.6 26 2 25 6524.6984 1 8.5 4 1 4 2 1.2 27 2 25 6280.0095 -2.8 6551.2992 1 7.3 1 4 2 28 2 27 2 0.8 5 6284.0629 0.2 -2.5 6562.6703 1.3 2 6 1 6 6287.4533 2 0.6 -1.6 29 2 2 2 27 6592.1521 0.1 6.9 7 2 30 2 1 6 0 -0.7 29 6603.1280 6293.4360 1.9 0.1 8 1 2 8 6297.5960 1.1 0.6 31 29 6635.7535 1 4.9 9 1 8 6305.6769 2 2.9 32 2 2 2 2 3 31 6646.3599 -2.3 -1.1 1 2 33 10 10 3.0 1 6310.4293 31 6682.0835 1 1.1 4.5 2 2 1 10 6320.7793 0.6 2.4 34 33 6692.2446 1 20.4 11 35 12 1 12 6325.9401 0.6 0.9 33 6731.0951 1 4.1 1 2 3 2 12 0 2.1 0 6298.5231 0.4 -4.9 13 6338.7198 3 14 14 6344.1301 0.6 4.7 4 2 2 4 2 -4.7 1 2 6301.3232 0.5 15 14 6359.4816 2 0.8 1.8 5 3 6304.8228 3 -5.6 1 1.1 3 16 1 16 6364.9816 2 0.9 5.2 6 3 6309.0259 0.6 -3.4 7 3 4 3 1 6383.0417 2 0.4 4.4 -3.8 17 16 6313.9286 0.7 1 2 0.2 8.5 8 3 6 2 18 18 6388.4939 6319.5320 0 -2.8 3 3 19 1 18 6409.3619 1 2.1 9 6 6325.8400 1.2 -4.1 0.2 10 3 8 2 -2.1 20 1 20 6414.6640 2 11.2 6332.8451 0.1 3 2 21 1 20 6438.4160 2 0.1 4.2 11 8 6340.5686 0.2 -1.5 3 3 3 3 22 1 22 6443.5860 2 0.7 -0.8 12 10 6348.9688 0.3 -0.1 1 2 13 23 22 6470.1599 0.2 4.2 10 6358.1188 0.3 -0.3 3 3 2 3 24 1 24 6474.7924 2 0.1 -2.0 14 12 6367.9017 0.3 0.1 25 1 24 6504.5575 2 0.2 2.5 15 12 6378.5032 0.2 -0.2 3 14 1 26 1 26 6508.8759 8.7 16 6389.6455 -0.3 1 2 2 27 6541.5785 0.2 0.7 17 3 14 6401.7390 0.6 0.0 1 26 2 28 1 28 6545.5490 2 1.9 -3.8 18 3 16 6414.2083 0.2 1.1 3 2 29 1 28 6581.1975 0.2 -3.3 19 16 6427.8468 1 1.0 3 2 30 1 30 15.7 20 18 0.1 -0.1 6584.8773 1 6441.5670 2 31 1 30 2 1 21 3 18 6456.8470 6623.4053 -4.5 1.1 0.4 3 3 2 2 2 -45.9 22 20 32 1 32 6626.7493 1 6471.7322 1.3 -1.5 33 1 32 6668.1897 2 0.3 -9.4 23 20 6488.7664 0.3 1.1 34 1 24 3 22 34 6671.3142 1 0.8 6504.6953 0.3 -1.2 2 3 3 25 35 1 34 6715.5628 1 -6.0 22 6523.6257 0 2.3 37 1 36 1 26 24 6540.4434 0.6 -2.9 6765.5284 5.5 3 3 2 2 27 2 2 2 2 1 6283.2459 2 0.9 -4.5 24 6561.4363 0.4 0.3 3 3 28 1 6285.3480 0.9 -4.1 26 6578.9672 0.5 -5 3 2 4 3 6288.1438 0.8 -3.4 29 26 0.5 -1.4 3 6602.2064 2 2 5 2 2 3 3 3 3 3 3 6291.6617 1.2 -2 30 3 28 6620.2575 0.2 -5.7 3 6 5 6295.8344 2 0.2 -4.5 31 3 28 6645.9291 0.2 -3.2 2 32 30 -2.8 27 5 22 6664.3383 1 6601.4236 0.6 28.8 5 2 33 30 6692.5837 2 0.4 -8.0 28 24 6621.0364 -6.6 2.3 35 32 2 0.1 -17.5 29 5 24 6641.4101 2 -11.9 6742.1340 0.8 5 36 34 30 26 6662.4604 1 6760.5543 1 -11.6 -14.4 3 37 34 2 0.2 5 26 6794.6291 6.4 31 6684.2599 1 -21.9 4 2 32 5 4 1 6319.7602 0.6 -5.3 28 6706.7084 1 -26.0

Приложение 3.3 Колебательно-вращательные уровни энергии молекулы ¹⁸О₃, полученные из наблюдаемых переходов для состояния (205)

Приложение 3.3 (продолжение)

			(205)							(205)			
J	K_a	K_c	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
4	4	1	6319.7602	2	0.6	-5.3	32	5	28	6706.7084	1		-26.0
5	4	1	6323.2612	2	0.6	-4.9	6	6	1	6380.0802	2	0.5	-0.3
6	4	3	6327.4630	3	0.6	-4.3	7	6	1	6384.9832	3	0.4	0.4
7	4	3	6332.3662	3	0.3	-2.9	8	6	3	6390.5855	3	1.1	-0.2
8	4	5	6337.9675	2	0.7	-4.3	9	6	3	6396.8894	3	0.9	0.2
9	4	5	6344.2740	2	1.2	-1.7	10	6	5	6403.8942	3	0.7	0.7
10	4	7	6351.2780	3	0.2	-3.1	11	6	5	6411.5987	1		0.0
11	4	7	6358.9878	1		-0.5	12	6	7	6420.0040	2	0.2	-0.8
12	4	9	6367.3969	1		-0.3	13	6	7	6429.1126	2	1.3	0.4
13	4	9	6376.5095	3	1.2	0.1	14	6	9	6438.9206	3	0.2	-0.2
14	4	11	6386.3231	2	0.3	0.0	15	6	9	6449.4296	2	1.9	-1.2
15	4	11	6396.8434	2	1	0.6	16	6	11	6460.6411	2	0.6	-1.4
16	4	13	6408.0625	1		0.7	17	6	11	6472.5550	2	0.8	-1.1
17	4	13	6419.9925	2	1.1	-0.2	18	6	13	6485.1683	2	1.5	-3.4
18	4	15	6432.6179	1		1.4	19	6	13	6498.4865	2	1.3	-3.1
19	4	15	6445.9653	2	0.7	0.8	20	6	15	6512.5075	2	0.8	-2.3
20	4	17	6459.9900	3	0.1	-0.3	21	6	15	6527.2307	2	0.1	-2.3
21	4	17	6474.7671	2	0.1	2.0	22	6	17	6542.6570	2	0.7	-2.2
22	4	19	6490.1884	1		2.3	23	6	17	6558.7867	2	0.1	-2.0
23	4	19	6506.4057	2	0.5	2.5	24	6	19	6575.6192	2	0.4	-2.7
24	4	21	6523.2106	3	0.6	4.5	25	6	19	6593.1572	2	0.4	-1.9
25	4	21	6540.8936	2	0.4	3.8	26	6	21	6611.3992	2	0.3	-1.6
26	4	23	6559.0541	2	0.1	2.9	27	6	21	6630.3477	2	1	0.3
27	4	23	6578.2387	1		0.0	28	6	23	6649.9992	2	1.3	-0.6
28	4	25	6597.7227	1		1.3	29	6	23	6670.3596	2	0.1	2.0
29	4	25	6618.4676	2	0.1	0.9	30	6	25	6691.4263	2	1.3	2.3
30	4	27	6639.2165	2	0.1	1.7	31	6	25	6713.2007	2	0.2	5.5
31	4	27	6661.5925	2	0	-1.2	7	7	0	6419.1375	1		3.3
32	4	29	6683.5279	2	0.5	0.2	8	7	2	6424.7414	2	0.7	2.9
33	4	29	6707.6395	2	0.9	-2.1	9	7	2	6431.0469	2	0.8	3.4
34	4	31	6730.6549	2	1.6	0.6	10	7	4	6438.0528	2	1	3.5
35	4	31	6756.6263	2	0.6	-6.4	11	7	4	6445.7578	3	0.8	2.0
36	4	33	6780.5930	2	0.5	5.6	12	7	6	6454.1646	1		1.2
5	5	0	6346.9490	2	0.1	-4.0	13	7	6	6463.2730	1		1.1
6	5	2	6351.1510	3	0.1	-1.1	14	7	8	6473.0830	3	1.1	1.6
7	5	2	6356.0503	3	0.4	-1.2	15	7	8	6483.5928	2	0.1	0.7
8	5	4	6361.6506	3	0.6	-0.4	16	7	10	6494.8026	3	0.8	-1.5
9	5	4	6367.9523	2	0.6	1.3	17	7	10	6506.7170	2	1.1	-0.4
10	5	6	6374.9533	2	1.3	1.7	18	7	12	6519.3295	3	1.5	-2.7
11	5	6	6382.6553	2	0.6	2.4	19	7	12	6532.6464	2	0	-2.1
12	5	8	6391.0584	3	0.7	3.3	20	7	14	6546.6640	3	0.5	-2.6
13	5	8	6400.1635	2	1.1	4.8	21	7	14	6561.3829	3	0.3	-3.7
14	5	10	6409.9693	2	0	5.8	22	7	16	6576.8048	3	1.4	-3.6
15	5	10	6420.4765	2	0.3	6.5	23	7	16	6592.9276	2	0.2	-4.7
16	5	12	6431.6854	3	0.9	7.0	24	7	18	6609.7532	1		-5.4
17	5	12	6443.5958	1		6.6	25	7	18	6627.2797	2	0.1	-7.5
18	5	14	6456.2095	3	0.5	7.2	26	7	20	6645.5138	2	1.8	-4.5
19	5	14	6469.5255	3	1.2	7.0	27	7	20	6664.4461	2	0.3	-6.0
20	5	16	6483.5450	3	0.3	7.8	28	7	22	6684.0840	1		-4.8
21	5	16	6498.2666	2	1.3	6.1	29	7	22	6704.4241	3	0.2	-4.5
22	5	18	6513.6930	2	0.3	6.9	30	7	24	6725.4670	2	1.1	-4.5
23	5	18	6529.8235	3	0.7	5.3	31	7	24	6747.2168	1		-1.2
24	5	20	6546.6556	3	0.4	4.2	32	7	26	6769.6700	1		2.1
25	5	20	6564.1968	2	0.6	1.8	34	7	28	6816.6867	2	1.3	7.2
26	5	22	6582.4367	3	0.7	0.6	35	7	28	6841.2520	1		10.3
36	7	30	6866.5231	2	0.8	15.2	12	10	3	6587.9103	2	0	4.8
8	8	1	6464.1117	2	0.2	6.9	13	10	3	6597.0303	1		3.4
9	8	1	6470.4196	3	2.1	7.3	14	10	5	6606.8514	3	0.8	1.5
10	8	3	6477.4262	2	0.3	5.5	15	10	5	6617.3743	1		-0.3
11	8	3	6485.1343	3	0.8	4.2	16	10	7	6628.5994	2	0.9	-1.6
12	8	5	6493.5449	3	1.2	4.3	17	10	7	6640.5271	2	1.2	-1.9
13	8	5	6502.6554	2	0.9	3.3	19	10	9	6666.4849	3	1.3	-5.4
14	8	7	6512.4666	3	0.3	1.8	20	10	11	6680.5177	3	0.2	-5.7
15	8	7	6522.9786	1		0.0	21	10	11	6695.2527	2	0.2	-5.5
16	8	9	6534.1918	2	1.8	-1.9	22	10	13	6710.6908	3	0.6	-4.0
17	8	9	6546.1083	2	0	-1.6	23	10	13	6726.8243	1		-8.8

			(205)							(205)			
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
18	8	11	6558.7240	3	0.4	-3.6	24	10	15	6743.6680	2	1.5	-5.1
19	8	11	6572.0435	3	0.2	-3.3	25	10	15	6761.2116	2	1.3	-3.2
20	8	13	6586.0641	3	1.1	-3.2	26	10	17	6779.4593	3	0.3	1.0
21	8	13	6600.7847	2	0	-4.7	28	10	19	6818.0556	2	0.1	5.3
22	8	15	6616.2062	3	1	-7.0	31	10	21	6881.2259	2	0.7	24.4
23	8	15	6632.3317	2	0.9	-6.9	11	11	0	6634.4629	1		3.5
24	8	17	6649.1576	2	0.1	-8.1	12	11	2	6642.8884	2	0.2	2.9
25	8	17	6666.6873	2	0.3	-7.5	13	11	2	6652.0156	3	0.7	1.7
26	8	19	6684.9174	1		-8.4	14	11	4	6661.8459	3	0.6	1.5
28	8	21	6723.4862	2	0.2	-7.7	15	11	4	6672.3770	3	1.7	0.0
29	8	21	6743.8271	1		-4.3	16	11	6	6683.6114	2	0.4	-0.3
30	8	23	6764.8679	2	0	-3.2	17	11	6	6695.5462	1		-2.4
33	8	25	6832.2141	2	0	8.5	18	11	8	6708.1867	3	1.5	-0.8
9	9	0	6514.9933	2	0.6	9.3	19	11	8	6721.5273	3	0.3	-1.1
10	9	2	6522.0037	3	0.6	7.7	20	11	10	6735.5702	3	0.4	-1.4
11	9	2	6529.7146	2	0.9	5.2	21	11	10	6750.3174	2	0.3	0.7
12	9	4	6538.1279	2	0.5	3.9	22	11	12	6765.7677	1		3.8
13	9	4	6547.2419	2	1.5	1.9	23	11	12	6781.9181	3	0.7	5.0
14	9	6	6557.0584	3	0.8	1.0	24	11	14	6798.7733	1		9.1
15	9	6	6567.5755	3	0	-0.7	25	11	14	6816.3313	2	0.1	13.9
16	9	8	6578.7935	2	1	-3.0	12	12	1	6703.0727	1		3.2
17	9	8	6590.7148	3	0.9	-3.5	13	12	1	6712.2072	2	0.2	1.0
18	9	10	6603.3364	3	0.9	-5.5	14	12	3	6722.0431	1		-2.8
19	9	10	6616.6591	2	0.2	-8.5	15	12	3	6732.5858	1		-2.3
20	9	12	6630.6842	1		-12.4	16	12	5	6743.8308	1		-2.3
21	9	12	6645.4096	2	0.2	-27.2	17	12	5	6755.7756	2	1.2	-5.1
22	9	14	6660.8377	3	0.2	20.8	19	12	7	6781.7768	2	0.7	-7.1
23	9	14	6676.9677	2	0.1	3.3	20	12	9	6795.8316	3	0.7	-7.9
24	9	16	6693.7999	2	0.1	-0.3	21	12	9	6810.5901	2	2	-7.3
25	9	16	6711.3339	3	1.8	-1.7	22	12	11	6826.0516	3	1.1	-6.5
27	9	18	6748.5088	1		-0.6	23	12	11	6842.2171	2	0.7	-4.0
29	9	20	6788.4935	3	1.5	3.9	13	13	0	6777.6272	1		6.8
30	9	22	6809.5406	2	0.2	8.2	14	13	2	6787.4783	2	0	7.5
31	9	22	6831.2864	1		9.4	16	13	4	6809.2850	1		3.0
10	10	1	6571.7762	1		8.3	17	13	4	6821.2452	2	1.2	2.4
11	10	1	6579.4922	1		6.3	20	13	8	6861.3468	1		2.0

Приложение 3.3 (продолжение)

Примечание:Nb число наблюдаемых переходов, использовавшихся для определения верхнего уровня энергии E (см⁻¹) соответствующего колебательного состояния. ΔE неопределенность уровня энергии (10⁻³ см⁻¹), (*O*-*C*) разница (10⁻³ см⁻¹) между экспериментальным значением уровня энергии и рассчитанным с помощью модели эффективного гамильтониана.

Приложение 3.4 Колебательно-вращательные уровни энергии молекулы ¹⁸О₃, полученные из наблюдаемых переходов для состояний (304), (016), (350)

				(304)				(016)		
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C
8	0	8	6321.5129	1		-6.4				
10	0	10	6334.6932	1		-6.9				
12	0	12	6350 5674	1		-5.5				
14	Õ	14	6369 0997	1		-4.8				
16	0	16	6300 2656	1		-2.0	6338 3601	2	1 /	-13.5
10	0	10	6414 0277	1		-2.5	6261 0967	2 1	1.4	-13.5
20	0	20	6440 4070	1		-3.5	6200 2075	1	0.2	-12.4
20	0	20	0440.4272	1		-3.0	0300.2075	2	0.5	-0.0
22	0	22	6469.4188	1		-1.2	6417.0160	2	0.7	-3.0
24	0	24	6501.0153	1		-0.1	6448.4194	2	1.1	2.3
26	0	26	6535.2211	2	2.3	2.4	6482.4186	2	0.2	5.1
28	0	28	6572.0455	2	9.4	13.0	6519.0235	2	0.6	9.4
30	0	30	6611.4552	2	0.1	-3.4	6558.2337	2	0.6	9.4
32	0	32	6653.4953	1		-2.8	6600.0573	2	1.0	7.3
34	0	34	6698.1492	2	0.1	-2.6	6644.4972	2	0.1	0.5
36	0	36	6745.4172	1		-2.6	6691.5663	2	0.9	-3.9
38	0	38	6795.3004	2	1.1	-1.1	6741.2684	2	0.1	-7.2
40	0	40	6847.7879	2	6.6	-8.7	6793.6124	2	0.1	-6.1
42	0	42	6902.9053	1		1.1	6848.6179	2	0.4	14.3
11	1	11	6343.7583	1		-4.9				
13	1	13	6360.6626	1		-3.1	6308.9132	2	0.6	8.6
14	1	13	6374 8493	1		-6.1	6323 1427	1	0.0	84
15	1	15	6380 2422	2	04	-1.0	6328 3888	1		33
17	1	17	6402 4846	1	0.4	-1.5	0020.0000			0.0
10	1	17	6402.4040	1		-1.5				
10	1	10	6422.1007	1		-1.5	6275 2210	2	0.1	24.7
19		19	0427.3031	1		-0.4	0375.2310	2	0.1	24.7
20	1	19	6449.9564	1	~ 4	0.4	0400 5400	4		00.0
21	1	21	6454.9335	2	0.4	-0.1	6402.5489	1		-36.6
22	1	21	6480.4697	1		0.1	6428.2394	2	0.3	5.1
23	1	23	6485.1241	1		0.6	6432.5764	2	0.3	-15.4
24	1	23	6513.6618	3	2.0	3.0	6461.2476	1		5.3
25	1	25	6517.9503	2	2.3	0.8	6465.2193	2	0.3	-2.4
26	1	25	6549.4895	2	0.1	2.0	6496.8710	2	0.4	2.5
27	1	27	6553.4092	2	0.9	1.6	6500.4777	2	0.6	3.8
28	1	27	6587.9315	1		4.2	6535.0885	1		0.8
29	1	29	6591.4833	3	0.4	-0.7	6538.3551	2	0.2	7.3
30	1	29	6628.9621	1		2.9	6575.8870	2	0.9	1.1
31	1	31	6632.1987	2	0.1	0.9	6578.8522	2	0.4	7.4
32	1	31	6672.5729	1		-0.9	6619.2614	2	0.5	1.0
33	1	33	6675.5307	2	0.1	1.9	6621.9717	2	1.1	4.6
34	1	33	6718,7659	1	••••	-2.7	6665.2128	2	0.1	-3.3
35	1	35	6721 4749	1		-4.2	6667 7161	2	0.0	-2.2
36	1	35	6767 5441	2	15	-1.8	6713 7536	1	0.0	-8.4
37	1	37	6770 0453	1	1.0	-1.6	6716.0048	2	0.6	-7.2
20	1	27	6919 0072	2	15	-1.0	6764 9096	2	1.0	10.0
20	1	20	6010.9072	<u>ک</u>	1.5	-2.1	6767 1159	2	1.0	-10.9
39	1	39	0021.2002	1		2.3	0/07.1150	Z	1.4	-0.7
40	1	39	0872.8017	1		-3.0	0000 7000	2	0 5	4 7
41	1	41	6875.0314	1		2.0	6820.7889	2	0.5	4.7
42	1	41					6875.0574	2	0.4	4.7
43	1	43	6931.4514	1		10.6				
17	2	16	6414.0683	1		7.1				
18	2	16	6428.9835	1		3.0				
19	2	18	6439.8439	3	0.7	4.7	6387.5730	2	0.1	-9.7
21	2	20	6468.3598	1		8.0				
22	2	20	6488.1439	1		1.0				
23	2	22	6499.5911	1		6.0	6446.8818	1		-108.8
24	2	22	6522.0706	1		-0.1				
25	2	24	6533.5318	1		6.8				
26	2	24	6558.8580	1		0.5				
27	2	26	6570 1643	1		6.9	6517,1382	3	2.5	-297
28	2	26	6598,4697	1		1.0	00OOL	-		_0.1
29	2	28	6609 4720	2	47	2.8	6556 2585	2	12	-9.6
30	2	28	6640 8647	1		-0.7	0000.2000	-	1.4	0.0
31	2	30	6651 4593	1		11 0	6598 0371	2	02	63
22	2	32	6696 0473	1		-37 0	6642 4563	1	0.2	7.0
55	4	52	0000.07/0	1		01.0	0072.7000	1		1.0

(016) (304)0 - C $E \,({\rm cm}^{-1})$ $E (\mathrm{cm}^{-1})$ ΔE Nb ΔE Ka Kc Nb 2 2 34 6733.8506 5.7 32 1 6689.5249 35 34 6743.3850 1 10.2 2 1.1 2 36 34 6784.3400 -0.8 1 2 2 6739.2376 1.2 37 36 6793.2604 1 -0.7 39 2 2 0.4 38 6845.8178 6791.6004 -0.8 1 2 2 41 40 6900.9982 1 5.3 6846.6149 2 2.7 43 42 6958.7936 1 8.0 3 16 13 1 6416.0797 4.0 3 3 17 15 6427.9283 1 3.3 18 15 6440.8527 1 3.3 3 19 17 6453.9904 1 2.3 3 3 20 2 0.5 17 6468.5209 0.7 21 19 6482.8665 1 0.2 2 3 22 19 6499.1107 2.0 -1.8 3 23 21 6514.5517 1 2 -1.3 24 3 3 3 21 6532.6506 0.5 0.3 25 1 23 6549.0316 -7.4 27 25 6586.3110 1 -2.1 3 29 27 6626.3602 1 -2.1 3 31 -4.2 29 6669.1680 1 33 3 6714.7219 2 0.5 -5.5 31 35 3 1 -4.8 33 6763.0074 3 37 35 6814.0051 1 -5.5 41 3 39 -10.7 6924.0810 1 18 4 14 6459.1905 1 0.7 19 4 16 6472.5716 1 4.6 4 20 16 6486.6821 1 -2.3 4 21 18 6501.4718 1 6.9 4 4 22 18 6517.0209 1 -2.6 23 20 6533.1971 1 0.9 24 4 20 6550.2126 1 -4.6 4 4 26 22 6586.2720 1 -6.5 27 24 6605.1607 -2.3 1 4 28 6625.2177 -5.9 24 1 4 4 29 26 6645.3999 1 3.1 30 26 6667.0588 1 -13.4 4 31 28 6688.4600 1 0.1 6734.3503 33 4 30 1 3.9 4 35 32 6783.0551 1 6.6 4 39 36 6888.8623 1 6.1 4 41 38 6945.9447 9.1 1 (350) 0 22 22 2 2.7 6443.2125 0.2 19 1 19 6400.5639 1 -15.7

0 - C

6.1

1.0

-1.0

1.4

Приложение 3.4 (продолжение)

26

1

25

6525.0770

Примечание: Nb число наблюдаемых переходов, использовавшихся для определения верхнего уровня энергии E (см⁻¹) соответствующего колебательного состояния. ΔE неопределенность уровня энергии (10⁻³ см⁻¹), (*O*-*C*) разница (10⁻³ см⁻¹) между экспериментальным значением уровня энергии и рассчитанным с помощью модели эффективного гамильтониана.

0.4

-2.9

2

Приложение 3.5 Колебательно-вращательные уровни энергии молекулы ¹⁸О₃, полученные из наблюдаемых переходов для состояния (233)

			(233)							(233)			
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\mathrm{cm}^{-1})$	NŁ	ΔE	0 - C
3	0	3	6396.3827	1		-12.6	15	2	13	6487.9514	2	0.1	-1.1
5	0	5	6402.6445	2	0.8	-10.7	16	2	15	6497.7427	2	1	8.8
7	0	7	6411.6646	1		-6.5	17	2	15	6511.4928	2	1.5	1.1
9	0	9	6423.4145	2	0.8	-3.1	18	2	17	6521,9524	1	-	10.6
11	0	11	6437 8716	1		13	19	2	17	6537 9499	2	06	0.6
13	Õ	13	6455 0298	1		73	20	2	19	6548 9065	2	0.2	14.5
15	0	15	6474 9356	1		63	21	2	19	6567 3057	1	0.2	-4.7
17	0	17	6405 8463	2	07	_11 1	22	2	21	6578 6531	1		16.2
10	0	10	6520 0570	1	0.7	0.0	22	2	21	6500 5517	1		0.2
19	0	19	0520.9579	1		-9.0	23	2	21	0099.0017	י ר	0.6	0.2
21	0	21	0040.4091	1	<u> </u>	-2.0	24	2	23	0011.0000	3	0.6	-0.9
23	0	23	6578.5199	2	0.2	-2.5	25	2	23	0034.0412	2	0.4	-1.9
25	0	25	6611.0946	1		-2.9	26	2	25	6645.1832	3	0.4	3.2
27	0	27	6646.2297	2	1.4	-4.5	27	2	25	6672.5480	2	0.8	-2.5
31	0	31	6724.2006	1	~ ~	-22.2	28	2	27	6682.9311	1		6.3
33	0	33	6767.0462	2	0.6	-36.1	29	2	27	6713.2286	2	0.4	-5.9
5	1	4	6405.7674	2	0.7	-10.8	31	2	29	6756.6447	2	1.3	-7.4
6	1	6	6409.0959	1		-7.7	3	3	0	6421.3798	1		1.8
7	1	6	6415.1055	2	0.5	-11.2	5	3	2	6427.6518	3	0.3	2.8
8	1	8	6419.1722	1		-5.7	6	3	4	6431.8328	2	1.8	2.5
9	1	8	6427.3068	1		-7.6	7	3	4	6436.7136	2	0.4	2.9
10	1	10	6431.9293	2	0.1	-1	8	3	6	6442.2915	3	1.5	4.4
11	1	10	6442.3509	1		-7.3	9	3	6	6448.5700	3	0.7	2.3
12	1	12	6447.3601	2	0.4	2.3	10	3	8	6455.5422	1		4
13	1	12	6460.2238	1		-7.4	11	3	8	6463.2326	2	0.2	5.8
14	1	14	6465.4716	2	0.1	5.7	12	3	10	6471.5921	2	0.4	6.3
15	1	14	6480.9061	2	0.7	-5	13	3	10	6480.7043	2	1.2	6.7
16	1	16	6486.3077	1	-	12.1	14	3	12	6490.4385	3	0.5	6.5
17	1	16	6504.3672	2	0.1	-2.9	15	3	12	6500.9988	2	0.3	5.6
19	1	18	6530.5738	1		-1	16	3	14	6512.0855	1		8.3
20	1	20	6534 6148	1		-5.6	17	3	14	6524 1360	2	0.6	5.3
21	1	20	6559 4879	1		12	18	3	16	6536 5292	1	0.0	87
22	1	22	6563 4070	2	13	-4	19	3 3	16	6550 1347	2	09	3.2
23	1	22	6501 0670	2	0.2	31	20	2 2	18	6563 7670	2	0.0	8.2
23	1	24	6504 6504	2	0.2	2.1	20	2	10	6570 0225	2	0.9	2.5
24	1	24	6625 2745	2	0.1	-3.1	21	2	20	6502 7072	2	0.0	0.0
20	1	24	6629 4646	2	0.0	4.9	22	2	20	6610 9244	2	0.3	9.0
20	1	20	0020.4040	2	1.2	-3.5	23	ა ი	20	6626 6102	2	0.7	3.1
21	1	20	0002.0715	2	1.2	4.0	24	3	22	0020.0103	2	0.7	1
28	1	28	6664.8415	2	0.6	-9.5	25	3	22	6645.5562	2	1.5	-1.6
29	1	28	6701.4365	2	0.8	5.1	26	3	24	6662.2084	2	1.4	3.1
30	1	30	6703.7992	2	0.9	-18.2	27	3	24	6683.2419	1		-2
31	1	30	6743.3463	2	1	-1.5	28	3	26	6700.6168	1		0.6
32	1	32	6745.3343	2	0	-34.4	29	3	26	6723.8679	2	1	-15.2
33	1	32	6787.8092	2	0.2	-0.6	30	3	28	6742.1350	2	1.3	-22.2
2	2	1	6405.4033	2	0.4	-7.1	31	3	28	6767.4426	2	0.3	-24
3	2	1	6407.4985	2	0.6	-3.9	4	4	1	6443.5839	1		3
4	2	3	6410.2801	3	0.9	-4.2	5	4	1	6447.0686	1		4.2
5	2	3	6413.7807	3	1.9	-5.1	6	4	3	6451.2490	3	0.6	4
6	2	5	6417.9369	2	2.7	-2.8	7	4	3	6456.1265	3	0.2	3.6
7	2	5	6422.8810	2	0.7	-4.3	8	4	5	6461.7032	3	0.5	4.9
8	2	7	6428.3709	1		-1.4	9	4	5	6467.9778	2	0	6.4
9	2	7	6434.8234	2	1.1	-1.9	10	4	7	6474.9483	3	1.2	5.7
10	2	9	6441.5752	2	1.3	-0.7	11	4	7	6482.6168	1		4.5
11	2	9	6449.6342	2	0.3	1	12	4	9	6490.9866	3	1.3	6.3
12	2	11	6457.5439	2	1.4	0.8	13	4	9	6500.0555	3	1.2	7.1
13	2	11	6467.3357	2	0.8	-0.1	14	4	11	6509.8214	1		7.1
14	2	13	6476.2685	2	0.2	3.1	15	4	11	6520.2914	1		8.1
16	4	13	6531,4547	3	0.9	7.3	16	6	11	6586.7782	2	0.6	-6.3
17	4	13	6543.3298	3	0.8	8.5	17	6	11	6598.6290	2	0.2	-5.8
18	4	15	6555.8897	2	0.2	6.5	18	6	13	6611 1794	2	1.7	-3.5
19	4	15	6569,1753	2	0.6	6.8	19	6	13	6624,4258	1		-3.6
20	4	17	6583 1300	2	0.1	5.6	20	6	15	6638 3703	3	15	-37
21	4	17	6597.8351	2	0.9	3.2	21	6	15	6653.0156	1		-1.5
22	4	19	6613 1773	2	1.1	3.3	22	6	17	6668.3590	2	0.3	0.1
23	4	19	6629.3183	1		-2.6	23	6	17	6684.4017	2	0.1	2.2
-						-				-			
Приложение 3.5 (продолжение)

			(233)							(233)			
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
24	4	21	6646.0357	2	0.3	1.8	24	6	19	6701.1303	2	0.4	-8.8
25	4	21	6663.6451	2	1.1	-2.3	25	6	19	6718.5847	2	0.1	6.6
26	4	23	6681.7026	2	1.6	-3	26	6	21	6736.7240	3	0.8	7.7
27	4	23	6700.8180	1		-8.5	27	6	21	6755.5697	1		14.9
28	4	25	6720.1819	2	0.3	-7.4	28	6	23	6775.1082	2	0.3	15.8
30	4	27	6761.4715	3	5.7	-14.2	29	6	23	6795.3511	2	0.6	19.5
31	4	27	6783.7885	1		-31.3	30	6	25	6816.2346	1		-34.9
5	5	0	6472.0051	1		-2.6	7	7	0	6547.4921	2	0.4	16.1
6	5	2	6476.1859	1		-2	8	7	2	6553.0704	2	0.7	13
7	5	2	6481.0631	1		-2.1	9	7	2	6559.3475	2	1.3	11
8	5	4	6486.6384	2	0.6	-1.2	10	7	4	6566.3193	2	0.5	6
9	5	4	6492.9089	3	0.8	-2.3	11	7	4	6573.9909	2	1.1	3.1
10	5	6	6499.8788	3	1.4	-1.4	12	7	6	6582.3608	2	0.2	0.8
11	5	6	6507.5484	1		1.6	13	7	6	6591.4265	1		-3.6
12	5	8	6515.9133	1		2.2	14	7	8	6601.1882	2	1.3	-10
13	5	8	6524.9729	2	0.6	-0.4	15	7	8	6611.6628	2	1.9	-1.5
14	5	10	6534.7334	2	0.1	-0.3	16	7	10	6622.8211	1		-7.6
15	5	10	6545.1935	2	0.3	1.1	17	7	10	6634.6870	2	0.1	-4.1
16	5	12	6556.3472	1		-2.6	18	7	12	6647.2522	2	0.8	0.1
17	5	12	6568.2073	1		1	19	7	12	6660.5179	2	0.5	6.5
18	5	14	6580.7606	2	0.4	-1							
19	5	14	6594.0162	2	0.9	-0.8				(520)			
20	5	16	6607.9700	2	0.3	-1.4							
21	5	16	6622.6239	1		-3.4	22	0	22	6567.5313	1		24.5
22	5	18	6637.9803	3	0.7	-1.3	15	1	15	6473.0847	2	0.1	17.6
23	5	18	6654.0349	1		-5.3	17	1	17	6497.7428	2	0.2	-31.1
24	5	20	6670.7887	2	0.4	-6.2	24	1	23	6609.6423	2	0.7	6.7
25	5	20	6688.2505	1		-8.8							
26	5	22	6706.4054	2	0.3	-8.8							
27	5	22	6725.2772	1		-11.7							
28	5	24	6744.8279	2	0.2	-14.6							
29	5	24	6765.1156	2	1.3	-19							
30	5	26	6786.0614	1		-21.2							
6	6	1	6506.6277	1		-15.4							
7	6	1	6511.5057	1		-14.5							
8	6	3	6517.0808	3	0.7	-13.4							
9	6	3	6523.3547	1	_	-10.5							
10	6	5	6530.3194	2	0.3	-13.8							
11	6	5	6537.9882	1		-10.1							
12	6	7	6546.3489	1		-11.8							
13	6	7	6555.4086	2	0.3	-11.8							
14	6	9	6565.1709	2	0.4	-6.6							
15	6	9	6575.6246	1		-7.5							

Приложение 3.6 Колебательно-вращательные уровни энергии молекулы ¹⁸О₃, полученные из наблюдаемых переходов для трех состояний (035), (511),(233) и (063) типа симметрии B₁

				(025)				(222)				(511)	<u> </u>	
I	Ka	Kc	$F(cm^{-1})$	(035) Nh	٨F	0.0	$F(cm^{-1})$	(233) Nh	٨F	0.0	$F(cm^{-1})$	(511) Nh) \ \ F	0.0
1	0	1	6557 5141	1	ΔL	1.4	6643 6081	1	ΔL	11.7	L (em)	110	ΔL	0-0
3	0	1	6560 9944	2	07	-1.4	6647 1030	2	18	62	6615 2000	2	0.2	-13.5
5	0	5	6567 2440	2	0.7	-1.1	6653 3945	2	0.2	6.8	0013.2777	2	0.2	-15.5
7	0	7	6576 2446	1	0.5	-1.0	6662 4510	2	0.2	0.0 5.4	6630 9195	2	0.1	-15.1
9	0	9	6587 9573	1		-0.3	6674 2455	2	0.0	2.4	6642 9325	$\frac{2}{2}$	0.1	-13.1
11	0	11	6602 3496	1		-0.5	6688 7486	1	0.0	2.7	6657 7135	2	0.8	-1/.0
13	0	13	6619 3828	1		-0.5	6705 9228	1		2.0	6675 2242	$\frac{2}{2}$	0.2	-14.2
15	0	15	6639 0267	2	11	-0.3	6725 7416	1		2.5 4.0	6695 4367	$\frac{2}{2}$	1.1	-10.8
17	0	17	6661 2541	1	1.1	-0.5	6748 1878	2	0.8	11.8	6718 3283	$\frac{2}{2}$	0.3	-10.0
19	0	19	6686 0565	2	04	-2.4	6773 2549	1	0.0	29.9	6743 8855	$\frac{2}{2}$	14	-6.5
21	Ő	21	6713 4320	$\frac{2}{2}$	0.1	-0.9	6800 9511	1		70.0	6772 1031	1	1.4	-2.1
23	Ő	23	6743 3836	1	0.1	79	0000.2211	1		70.0	6802.9766	1		11
25	Õ	25	6775.8868	2	0.2	-3.8					6836.5111	1		6.5
27	Õ	27	6810.9772	2	0.1	-3.6					6872.7052	2	0.9	10.3
29	Õ	29	6848.6558	1	011	7.1					6911.5606	2	0.7	11.2
31	Ő	31	6888.8957	2	0.9	-1.6					6953.0796	1	0.7	8.6
33	Ő	33	6931.7262	2	1.4	-2.9					6997.2619	1		-1.7
35	Õ	35	6977.1346	2	0.3	-13.4					7044.1043	1		-30.9
1	1	0	6560.2789	1		-2.1	6646.4001	2	0.2	7.3				
2	1	2	6561.5782	1		0.7					6615.8492	1		-12.1
3	1	2	6563.8858	2	0.1	1.2	6650.0428	2	0.1	7.8	6618.1799	1		-15.4
4	1	4	6566.2827	1		-0.3	6652.7650	2	1.7	220.8	6620.6795	2	6.2	-19.1
5	1	4	6570.3694	2	0.3	1.9	6656.5874	2	1.3	5.8	6624.7927	1		-10.9
6	1	6	6573.6698	2	1.1	-2.3	6659.7539	1		9.0	6628.2808	2	0.1	-14.9
7	1	6	6579.7250	2	0.0	1.9	6666.0170	2	1.0	-3.0	6634.3210	1		-20.8
8	1	8	6583.7370	2	0.1	-1.0	6669.9120	2	0.1	-30.7	6638.6355	2	0.6	-11.5
9	1	8	6591.9444	2	0.4	2.7	6678.3294	2	0.6	-7.0	6646.7899	2	0.1	-11.5
10	1	10	6596.4723	2	0.9	0.1	6682.7664	1		-37.0	6651.7328	2	0.6	-12.9
11	1	10	6607.0123	2	0.4	2.9	6693.5023	2	0.6	-12.6	6662.1629	1		-11.8
12	1	12	6611.8647	1		-0.4	6698.2897	1		-50.9	6667.5730	2	0.4	-10.5
13	1	12	6624.9108	2	0.0	3.0	6711.5258	1		-11.7	6680.4318	2	1.0	-9.2
14	1	14	6629.9036	2	0.1	-2.5	6716.4906	1		-60.1	6686.1437	1		-8.2
15	1	14	6645.6166	2	0.2	3.3	6732.3816	2	0.8	-2.9	6701.5766	2	0.8	-8.8
16	1	16	6650.5817	1		-3.5	6737.3627	1		-64.1	6707.4367	1		-5.2
17	1	16	6669.1002	2	1.1	4.1	6756.0437	2	0.4	8.7	6725.5732	2	0.9	-10.4
18	1	18	6673.8824	2	0.7	-9.7	6760.9032	1		-59.1	6731.4422	1		-3.1
19	1	18	6695.3220	2	0.1	1.3	6782.4900	2	0.1	17.3	6752.3995	2	0.6	-8.0
20	1	20	6699.8160	2	0.2	-2.3	6787.1488	1		-2.2	6758.1558	1		1.5
21	1	20	6724.2495	2	1.4	2.7	6811.6900	2	0.1	1001.3	6782.0160	2	1.1	-8.3
22	1	22	6728.3523	1		-3.3	6815.9900	2	0.3	2.0	6787.5703	1		7.5
23	1	22	6755.8314	2	0.3	-0.4	6842.6318	1		-1.5	6814.3928	1		-6.5
24	1	24	6759.4974	2	0.1	-0.3					6819.6684	2	0.1	1.2
25	1	24	6790.0330	2	0.7	-2.4					6849.4940	2	1.7	-1.6
26	1	26	6793.2321	2	1.7	-7.1					6854.4706	2	0.2	-3.4
27	1	26	6826.8195	2	0.2	-4.5					6887.2788	1		-1.7
28	1	28	6829.5765	2	0.4	0.2								
29	1	28	6866.1703	1		-3.4					6927.7340	2	1.7	7.5
30	1	30	6868.5612	2	1.9	55.2								
31	1	30	6908.0653	1		-6.5					6970.8283	1		14.5
32	1	32	6910.0223	2	1.0	-4.6								• • •
33	1	32	6952.4510	1		-63.5					7016.5530	1		20.2
34	1	34	6954.1292	1		-10.0					5064 0110			20.4
35	I	34	6999.4959	2	1.1	-8.4					7064.9118	1		20.4
36	1	36	/000.8234	1	0.0	-22.4								
2	2	1	0509.8679	2	0.0	-5.7	CCE0 1000	~	0.0	0.2				
3	2	1	05/1.9630	2	1.1	-1.6	0058.1990	2	0.8	8.3	CC00 1702	1		F 1
4	2	3	65/4.7472	1		-0.2	6660.9921	2	1.1	7.8	6629.1582	1	07	-5.1
5	2	5	05/8.250/	1	0.2	-0.5		2	1.8	8.5	0032.7435	2	0./	-2.1
07	2	5	0382.4034	2	0.2	-0.3	0008.0809	2	0./	ð.U	6642.0522	2	1.2	-3.1
0	2	כ ד	0301.3333	∠ 1	0.8	-0.9	00/3.0420	2	1.5	5.1	0042.0523	1	0.2	-2.9
0	2	7	0372.0307	1	07	-2.3	6695 6214	1	1 1	4.Z	004/.088/	2 1	0.2	0.4
9 10	2	/ 0	6606 0465	5 1	0.7	-0.7	6602 /182	2	1.1	-0.5	6661 2142	1 2	17	-1.4 2.4
11	$\frac{2}{2}$	9 Q	6614 1262	2	07	-0.7	6700 4040	ے۔ 1	1.5	-0.5	6669 3030	ے 1	1./	2.4 0.8
11	4		0014.1202	4	0.7	-0.1	0,00.4740	1		5.0	0007.3730	1		0.0

Приложение 3.6 (продолжение)

				(035)				(233)				(511))	
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C
12	2	11	6622.0143	1		-1.0	6708.4593	1		-5.1	6677.5673	1		0.6
13	2	11	6631.8477	2	0.7	1.1	6718.2607	2	0.8	0.8	6687.4712	2	0.8	4.9
14	2	13	6640.7320	2	1.3	-3.0	6727.2687	1	0.0	-12.7	6696.7490	2	0.3	4.5
15	2	13	6652.4873	1		1.9	6738.9494	2	1.1	-2.2	6708.5053	1		1.4
16	2	15	6662.1927	2	0.0	-1.9	6748.8397	1		-19.4	6718.7422	2	0.5	7.1
17	2	15	6676 0523	2	0.0	2.0	6762 5713	2	0.0	-2.0	6732 5173	2	1.0	24
18	2	17	6686 3785	2	0.0	-2.0	6773 1644	1	0.0	-21.8	6743 5357	1	1.0	2.4 8.1
10	2	17	6702 5359	$\frac{2}{2}$	0.2	-2.4	6789 1174	2	0.1	-21.0	6759 5009	2	0.6	2.0
20	2	10	6713 2777	1	0.0	2.2	6800 2327	1	0.1	-4.0	6771 1177	1	0.0	2.0
20	2	19	6721.0507	1		-2.2	6919 5796	2	0.1	-17.1	6780 4401	2	16	2.2
21	2	19	6742 8700	2	2.2	-10.0	6820.0420	2	0.1	-2.0	6901 4771	2 1	1.0	3.3 7.2
22	2	21	0742.8709	ے 1	2.2	-5.5	6850.0429	2	0.2	0.1 5 4	(822.220)	1	1.0	7.5
23	2	21	0/04.2010	1		-2.4	0850.9241	2	1.5	-5.4	0822.3390	2	1.0	2.2
24	2	23	6775.1506	1	0.1	-4.0	0802.3803	2	0.3	51.0	0834.0000	1	1.0	0./
25	2	23	6/99.31//	2	0.1	-4.8	6886.0948	1		-8.3	6858.1512	2	1.6	1.5
26	2	25	6810.0955	2	0.1	-5.8					68/0.4/60	2	1.4	6.4
27	2	25	6837.2335	2	0.3	-20.8					6896.8602	1		7.0
28	2	27	6847.6948	2	0.3	-5.5					6909.0923	2	1.2	7.6
29	2	27	6877.9332	1		-22.9								
30	2	29	6887.9330	2	0.1	-5.8					6950.4341	1		6.5
31	2	29	6921.3572	2	0.2	-15.1								
32	2	31	6930.7994	2	0.5	-5.6					6994.4844	2	0.5	-5.0
33	2	31	6967.7519	2	0.5	-31.0								
34	2	33	6976.2933	2	1.6	4.5					7041.2413	2	0.4	-22.8
35	2	33	7016.2973	2	0.2	-26.0								
3	3	0	6585.6536	2	0.8	-3.2	6672.0558	1		5.4				
4	3	2	6588.4431	2	1.6	-1.2	6674.8565	1		6.7				
5	3	2	6591.9251	3	1.1	-4.1	6678.3558	2	0.3	6.2				
6	3	4	6596.1108	2	0.8	-0.8	6682.5570	1		7.0				
7	3	4	6600.9903	2	0.2	-2.9	6687.4588	2	0.3	6.2				
8	3	6	6606.5688	2	0.8	-2.3	6693.0610	1		6.3	6661.6665	2	0.5	58.2
9	3	6	6612.8514	1		-2.0	6699.3654	1		1.3	6668.0765	1		62.0
10	3	8	6619 8232	1		-2.4	6706 3716	2	0.6	4 5	6675 1976	2	04	60.0
11	3	8	6627.5158	1		-1.3	6714.0938	1	0.0	2.7	6683.0461	2	1.3	53.4
12	3	10	6635 8755	1		-2.3	6722 4915	1		1.6	6691 5975	1	110	51.5
13	3	10	6644 9914	2	03	-2.6	6731 6421	1		-0.6	6700 9014	2	03	47.3
14	3	12	6654 7275	$\frac{2}{2}$	0.5	-2.0	6741 4227	2	03	-0.0	6710 8650	1	0.5	41.5
15	3	12	6665 2968	$\frac{2}{2}$	0.7	-1.0	6752 0263	2	0.3	-2.5	6721 6371	1		34.7
16	3	14	6676 3778	$\frac{2}{2}$	0.7	-1.5	6763 1683	2	0.2	-4.6	6733 0035	1		36.0
17	3	14	6688 4460	2	0.2	1.3	6775 2630	2	0.7	10.0	6745 2800	2	14	31.6
17	2	14	6700 8272	ے 1	0.4	-1.5	6773.2030	2	0.0	-10.0	6757 0008	2	1.4	27.2
10	2	10	6714 4628	1		-2.0	6901 2759	2 1	0.5	-7.5	6737.9998	2 1	0.7	21.5
19	2	10	0/14.4020	1	0.1	-1.0	0801.5738	1	0.0	-10.0	0771.0520	1		24.7
20	3	18	0/28.0/10	2	0.1	-0.2	0815.0910	2	0.9	-8.1	0/85.8559	1	0.1	18.4
21	3	18	0/43.3/21	1	0.0	-0.1	0830.3998	1	0.1	1.2	6801.5200	2	0.1	19.2
22	3	20	6/58.098/	2	0.8	-0.8	6845.2627	2	0.1	-5.7	6816.5757	2	0.1	19.4
23	3	20	6//5.1914	2	0.7	-3.3	<0 7 0 00 7 0	•	0.0	2.5	6833.7579	2	0.2	10.2
24	3	22	6/90.9033	2	0.7	0.2	68/8.2353	2	0.3	2.5	6850.1323	2	0.3	10.7
25	3	22	6809.8742	2	0.5	-36.5	<010 000 7			14.0	6869.1747	1		5.4
26	3	24	6826.4624	2	0.6	0.1	6913.9987	1		14.2	6886.5287	1		4.2
27	3	24	6847.7438	2	0.1	-12.2					6907.5829	1		1.2
28	3	26	6864.6497	2	0.0	16.7	6952.5507	2	1.0	31.8	6925.7487	2	1.0	-5.3
29	3	26	6888.4099	2	0.0	-12.0					6948.9874	2	0.5	-5.4
30	3	28	6905.9420	2	0.3	-11.0	6993.8850	2	0.7	42.0	6967.7900	2	0.3	-8.1
31	3	28	6932.0306	2	1.3	-17.0					6993.3856	2	0.3	-15.0
32	3	30	6949.7115	2	0.1	-8.0	7038.0060	2	0.6	-12.7	7012.6296	1		-13.5
33	3	30	6978.5697	2	0.6	-26.6					7040.7861	1		-5.2
34	3	32	6996.2043	2	0.7	-5.7					7060.2528	2	0.2	-22.1
35	3	32	7027.9890	2	0.9	-39.0								
36	3	34	7045.3966	2	0.3	2.7								
37	3	34	7080.2293	1	0.8	-49.6								
4	4	1	6607.5979	1		-3.5	6694.2439	1		4.7	6662.1299	1		16.6
5	4	1	6611.0837	2	0.9	-2.1	6697.7436	1		4.7	6665.6938	1		15.6
6	4	3	6615.2642	2	2.4	-3.3	6701.9452	2	0.6	6.1	6669.9696	2	0.0	13.2
7	4	3	6620.1444	2	0.8	-2.3	6706.8442	3	0.5	4.3	6674.9582	1	-	10.7
8	4	5	6625.7227	$\overline{2}$	0.1	-0.9	6712.4452	2	0.6	3.7	6680.6588	1		6.8
9	4	5	6631.9990	2	1.2	0.5	6718.7488	1		4.4	6687.0768	1		6.9
10	4	7	6638.9722	1		0.5	6725.7522	1		3.4	6694.2042	1		3.0

Приложение 3.6 (продолжение)

				(035)				(233)				(511))	
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
11	4	7	6646.6443	3	0.4	0.6	6733.4583	2	1.5	3.0	6702.0463	3	0.4	0.2
12	4	9	6655.0169	1		2.5	6741.8659	1		2.3	6710.6030	2	1.2	-1.0
13	4	9	6664.0892	3	0.4	3.9	6750.9768	1		1.4	6719.8718	1		-4.3
14	4	11	6673.8604	1		5.5	6760.7884	1		-0.4	6729.8544	1		-6.0
15	4	11	6684.3329	2	0.5	5.8	6771.3064	1		-2.4	6740.5531	2	0.7	-6.9
16	4	13	6695.5065	1		9.6	6782.5245	1		-3.1	6751.9614	2	1.0	-7.1
17	4	13	6707.3836	1		9.6	6794.4546	1		-5.0	6764.0876	1		-7.5
18	4	15	6719.9562	2	0.7	11.4	6807.0769	1		-6.2	6776.9149	1		-8.0
19	4	15	6733.2465	3	0.5	14.4	6820.4220	1		-11.4	6790.4683	2	1.7	-5.9
20	4	17	6747.2212	1		17.6	6834.4482	1		-9.8	6804.7092	1		0.2
21	4	17	6761.9301	2	0.1	21.1	6849.2226	2	1.6	-14.0	6819.6923	1		16.3
22	4	19	6777.3033	2	0.1	23.6	6864.6453	2	0.9	-9.2				
23	4	19	6793.4462	1		31.7	6880.8627	2	0.5	-14.8				
24	4	21	6810.2212	2	0.8	33.8								
25	4	21	6827.8016	2	0.4	40.9	6915.3541	2	0.9	-12.3				
26	4	23	6845.5842	1		-18.5	6933.5122	1		-5.9				
27	4	23	6865.0153	2	0.3	52.6	6952.7088	2	0.8	-6.8				
28	4	25	6884.3304	2	0.8	57.5	6972.1849	2	1.7	-1.4				
29	4	25	6905.1031	2	2.4	64.3	6992.9466	2	0.1	6.5				
30	4	27	6925.7435	2	0.1	135.6	7013.6860	2	1.6	6.1				
31	4	27	6948.0935	1		82.8	7036.0895	2	1.0	33.2				
32	4	29	6969.8914	2	0.0	165.5	7058.0094	2	2.0	6.4				
33	4	29	6994.0096	1		107.8	7082.1555	1		74.3				
34	4	31					7105.1525	1		-17.3				
35	4	31	7042.8139	1		81.0								
5	5	0	6635.6930	2	0.1	1.4	6722.6451	1		3.2	6690.3731	1		15.1
6	5	2	6639.8715	2	0.4	-0.3	6726.8459	1		3.1	6694.6510	2	0.1	12.4
7	5	2	6644.7469	2	0.2	-2.1	6731.7459	3	1	1.5	6699.6363	3	1.2	3.6
8	5	4	6650.3228	1		-0.7	6737.3463	3	1	-0.4	6705.3376	3	0.5	-2.6
9	5	4	6656.5923	2	0.6	-2.7	6743.6499	1		0.0	6711.7499	2	0.0	-11.3
10	5	6	6663.5622	3	0.3	-1.9	6750.6526	1		-1.5	6718.8783	2	0.3	-17.5
11	5	6	6671.2300	2	0.4	-0.7	6758.3586	2	0.3	-1.1	6726.7230	2	1.6	-20.9
12	5	8	6679.5903	1		-4.9	6766.7643	1		-2.7	6735.2783	1		-27.3
13	5	8	6688.6519	2	0.4	-5.8	6775.8705	1		-5.6	6744.5475	1		-33.2
14	5	10	6698.4113	2	0.0	-7.2	6785.6803	1		-7.1	6754.5333	1		-36.2
15	5	10	6708.8670	2	1.8	-10.7	6796.1903	1		-10.8	6765.2318	1		-40.0
16	5	12	6720.0273	1		-8.6	6807.4033	1		-14.2	6776.6462	1		-41.4
17	5	12	6731.8837	2	0.4	-9.6	6819.3201	1		-17.1	6788.7741	1		-43.0
18	5	14	6744.4376	2	0.5	-12.3	6831.9340	1		-26.0	6801.6140	1		-45.7
19	5	14	6757.6951	3	0.7	-11.5	6845.2633	1		-23.9	6815.1693	1		-46.8
20	5	16	6771.6478	2	0.8	-15.2	6859.2816	1		-36.1	6829.4426	1		-42.5
21	5	16	6786.3063	3	0.5	-14.7	6874.0169	1		-37.6	6844.4276	2	1.3	-40.5
22	5	18	6801.6621	2	0.2	-16.2	6889.4805	2	0.8	-13.5	6860.1303	1		-31.9
23	5	18	6817.7234	2	0.1	-16.4	6905.6167	2	2.8	-26.0	6876.5425	1		-28.0
24	5	20	6834.4806	3	1.2	-18.3	6922.5252	2	0.9	33.0	6893.6711	1		-15.4
25	5	20	6851.9478	2	1.4	-19.2	6940.0742	1		17.8	6911.5132	1		-4.4
26	5	22	68/0.10/9	2	0.2	-20.6					6930.0647	I		15.7
27	5	22	6888.9861	2	0.1	-22.1								
28	2	24	6908.5499	2	0.2	-20.9								
29	5	24	6928.8456	2	0.7	-24.2								
30	5	26	6949.8157	2	0.3	-13.8								
31	ິ	26	69/1.5351	2	0.8	-26.2								
32	5	28	6993.8904	2	1.0	-17.9								
33	5	28	/01/.0639	1	0.2	-27.7								
34	S	30	7040.8052	2	0.2	-5.1								
55	5	30 1	/065.4391	2	0.2	-22.1	(757 0007	1		0.4				
6	6	1	0009.9387	2	0.0	18.3	0/5/.238/	1	20	-0.4	6730 7790	2	0.0	16.0
/	0	1	00/4.813/	1	1 7	19./	0/02.13/9	2	2.9	-1.9	0129.1189	2	0.9	10.8
8	6	3	6680.3823	2	1.7	18.3	6/6/./426	1		1.9	6/35.4895	3	0.5	13.2
9 10	0	5	0080.0491	2	0.5	18.5	0//4.044/	1		2.4	0/41.9184	3	1.0	14.1
10	0	5	6693.6109	2	0.8	17.0	6781.0502	1		5.8	0/49.0514	2	1.5	5.2
11	6	5	6/01.269/	3	1.1	15.8	0/88./552	1		/.9	6756.9087	5	0.7	/.0
12	0	/	0/09.0245	2 1	0.3	13.8	0/9/.15/9	1		0.8	0/03.4/19	1	0.2	1.2
15	0	/	0/18.0/09	1	0.4	12.2	0800.2043	1		ð.2	0114.1330	2	0.3	0.5
14 15	6	ש ר	0120.4200 6720 0701	3 2	1.0	9.8 0 N	0010.0/13	1		9.5	0704.7432 6705 4516	5 1	0.9	-3.0
13	0	9	0/30.8/21	3	1.0	8.0	0020.3790	1		9.8	0/93.4310	1		-0.0

Приложение 3.6 (продолжение)

				(035)				(233)				(511)		
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C
16	6	11	6750.0153	3	1.1	5.0	6837.7888	1		9.7	6806.8718	1		-7.8
17	6	11	6761.8552	3	0.3	1.1	6849.7011	1		10.9	6819.0044	2	0.3	-10.1
18	6	13	6774.3934	2	0.3	-2.5	6862.3148	1		11.4	6831.8548	2	1.0	-7.3
19	6	13	6787.6338	1		-2.2	6875.6318	1		13.1	6845.4120	2	0.2	-10.5
20	6	15	6801.5630	2	0.3	-11.7	6889.6483	1		11.8	6859.6855	2	0.2	-9.9
21	6	15	6816,1994	2	0.1	-12.7	6904.3667	2	0.9	9.6	6874.6712	2	0.6	-9.6
22	6	17	6831.5322	3	0.4	-16.8	6919.7935	2	0.8	12.9	6890.3716	1	0.0	-6.7
23	6	17	6847.5642	2	0.4	-20.8	6935,9188	1		11.3	6906.7842	2	0.4	-4.0
24	6	19	6864.2971	3	0.4	-24.4	6952.7458	2	1.1	8.1	6923.9118	2	0.2	1.6
25	6	19	6881 7317	2	0.1	-26.0	6970 2792	2	14	7 2	6941 7537	2	0.9	-2.3
26	6	21	6899 8675	1	0.1	-28.2	6988 5152	2	0.3	5.1	6960 3075	1	0.7	23.1
27	6	21	6918 7047	1		-29.2	7007 4567	2	2.0	3.2	6979 5717	1		31.6
28	6	23	6938 2562	2	07	-197	7027 1022	2	0.7	14	6999 5529	1		48.0
29	6	23	6958 5065	1	0.7	-11.4	7027.1022	2	0.7	-6.1	0777.3327	1		40.0
30	6	25	6979 4717	2	02	49	7068 5042	2	0.0	_93	7041 6456	1		84 3
31	6	25	7001 1490	1	0.2	34.0	7000.3042	2	0.7	-14.5	/041.0450	1		04.5
32	6	25	7001.1490	1		747	7112 7288	$\frac{2}{2}$	0.7	-24.0				
33	6	27	7025.5471	1		/ 4. /	7135 9040	2	0.5	-34.6				
34	6	$\frac{27}{20}$		(063)			7150 7836	2	0.1	-54.0				
54 7	7	29	6700 0785	(003)		21.4	6708 0121	2	0.5	-41.4				
0	7	2	6714 6624	1	12	-21.4	6802 6124	2	2.0	5.5 2.7				
0	7	2	6720.0450	2	1.5	-14.9	6800 0205	2	0.5	2.7 6.1				
10	7	2 4	6727.0196	2	0.2	-3.4	6816 0147	2 1	1./	0.1				
10	7	4	6725 5760	5	0.0	4.1	6824 6240	1		-4.0				
11	7	4	6742 0248	1	0.0	12.2	6822 0226	1		0.1				
12	7	0	0745.9248	Z	0.8	12.2	0855.0520	1		2.7				
13	7	0					0842.1385	1		1.5				
14	/	8					6851.9469	1		1.6				
15	/	8					6862.4567	1		2.0				
16	/	10					68/3.66/1	1		1.5				
1/	/	10					6885.5799	1		2.0				
18	/	12					6898.1914	1	0.7	-0.4				
19	7	12					6911.5082	2	0.7	0.8				
20	7	14					6925.5273	1		2.5				
21	7	14					6940.2408	1		-3.4				
22	7	16					6955.6607	2	1.5	-5.1				
23	7	16					6971.7798	1		-9.9				
24	7	18					6988.6069	2	1.7	-9.2				
25	7	18					7006.1366	2	0.2	-8.7				
26	7	20					7024.3623	2	0.7	-15.1				
27	7	20					7043.2941	2	0.3	-18.8				
28	7	22					7062.9290	2	1.0	-22.9				
29	7	22					7083.2671	2	0.7	-27.7				
30	7	24					7104.3080	2	1.1	-34.2				
31	7	24												
32	7	26					7148.4920	1		-60.4				
8	8	1	6756.3354	1		-8.6	6844.9242	2	0.7	3.6				
9	8	1	6762.6229	1		-7.6	6851.2302	2	1.3	1.5				
10	8	3	6769.6084	2	0.9	-6.7	6858.2414	2	0.9	3.7				
11	8	3	6777.2912	2	1.0	-6.8	6865.9532	1		5.7				
12	8	5	6785.6699	3	0.5	-9.2	6874.3633	1		5.0				
13	8	5	6794.7487	3	1.6	-9.7	6883.4745	1		4.6				
14	8	7	6804.5286	3	0.3	-7.1	6893.2880	1		5.5				
15	8	7	6815.0010	3	1.0	-10.0	6903.8016	1		5.5				
16	8	9	6826.1742	2	0.8	-10.2	6915.0184	1		7.8				
17	8	9	6838.0457	3	1.1	-9.9	6926.9343	1		8.2				
18	8	11	6850.6167	3	0.5	-8.1	6939.5494	1		6.7				
19	8	11	6863.8820	2	1.7	-9.9	6952.8647	1		4.3				
20	8	13	6877.8468	3	1.1	-9.9	6966.8932	1		13.9				
21	8	13	6892.5095	3	0.9	-9.7	6981.6152	3	0.4	15.8				
22	8	15	6907.8739	2	0.7	-5.7	6997.0374	2	1.2	16.3				
23	8	15	6923.9322	2	0.6	-5.5	7013.1612	2	0.4	17.1				
24	8	17	6940.6897	1		-3.8	7029.9896	2	1.1	20.8				
25	8	17	6958.1408	2	0.1	-6.1	7047.5168	2	1.2	21.4				
26	8	19	6976.2907	1		-7.5	7065.7461	2	0.6	22.1				
27	8	19	6995.1390	1		-8.2	7084.6801	1		25.2				

Приложение 3.6 (продолжение)

P			проде	(025)	/			(000)				(= 1 1 \	
J	Ka	Kc	$E ({\rm cm}^{-1})$	(035) Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	(233) Nb	ΔE	0 - C	$E ({\rm cm}^{-1})$	(511) Nb ΛΕ	0 - C
28	8	21	7014.6951	2	0.3	1.2	7104.3111	2	0.3	22.7	(
29	8	21	7034.9389	2	0.1	0.3	7124.6498	1		25.0			
30	8	23	7055.8829	1		1.8	7145.6824	2	0.5	17.8			
31	8	23	7077.5238	1		2.1	7167.4215	2	0.3	13.3			
32	8	25	6808 8258	2	0.1	03	/189.8662	2	1.3	10.2			
10	9	2	6815 8044	23	0.1	-0.3	6904 9781	2	04	0.0 64			
11	9	2	6823.4822	3	0.4	0.5	6912.7005	2	0.0	2.2			
12	9	4	6831.8574	2	2.0	1.5	6921.1225	3	1.7	-3.2			
13	9	4	6840.9238	3	3.3	-4.0	6930.2454	2	1.0	-8.3			
14	9	6	6850.6974	3	0.8	0.3	6940.0704	2	0.0	-11.7			
15	9	6	6861.1608	3	2.1	-3.3	6950.5965	2	0.0	-14.5			
10	9	8	6872.3271 6884 1854	3	1.3	-1.2	6961.8245	2	1.0	-15.5			
18	9	10	6896 7460	23	0.5	-4.7	6986 3820	3	0.6	-16.3			
19	9	10	6910.0045	3	0.3	-1.2	6999.7118	2	0.6	-15.8			
20	9	12	6923.9602	2	0.3	0.8	7013.7452	3	0.2	-11.7			
21	9	12	6938.6123	2	1.4	1.9	7028.4766	2	0.2	-9.7			
22	9	14	6953.9608	2	0.0	2.1	7043.9113	3	1.6	-4.6			
23	9	14	6970.0066	1		2.5	7060.0436	1	0.6	-2.2			
24	9	16 16	6986.7488	1		2.2	7076.8784	2	0.6	2.4			
25	9	18	7022 3286	3	0.8	5.6	7112 6500	1		4.2			
27	9	18	7041.1648	1	0.0	8.0	7131.5878	1		16.7			
28	9	20	7060.6980	2	0.4	10.4	7151.2254	1		20.3			
29	9	20	7080.9281	2	1.3	12.7	7171.5636	2	0.8	22.8			
30	9	22	7101.8547	1		14.7	7192.6034	1		24.8			
10	10	1	6867.2662	1		8.4							
11	10	1	08/4.9402 6883 3128	1	0.5	0.9 6.5							
12	10	3	6892 3834	23	0.5	6.5							
14	10	5	6902.1514	2	1.0	6.2							
15	10	5	6912.6174	1		6.6							
16	10	7	6923.7781	2	0.8	4.3							
17	10	7	6935.6359	3	0.3	1.7							
18	10	9	6948.1930	3	1.0	1.2							
20	10	11	6975 3978	2	0.8	-0.9							
20	10	11	6990.0465	3	1.1	-0.9							
22	10	13	7005.3905	3	1.1	-3.4							
23	10	13	7021.4329	3	1.1	-3.9							
24	10	15	7038.1710	2	0.5	-5.7							
25	10	15	7055.6082	3	0.8	-5.0							
26	10	17	7073.7435	2	0.0	-3.0							
28	10	19	7092.3099	2	0.6	-0.3 -4 4							
29	10	19	7132.3202	2	0.1	-4.9							
30	10	21	7153.2376	1		-6.4							
11	11	0	6931.6649	1		9.5							
12	11	2	6940.0384	2	0.2	10.3							
13	11	2	6949.1043	2	0.6	5.9							
14 15	11 11	4 1	6960 2271	2	0.9	8.0 6.1							
16	11	+ 6	6980.4974	2	0.6	4.2							
17	11	6	6992.3580	$\frac{2}{2}$	0.8	5.3							
18	11	8	7004.9135	2	0.3	4.2							
19	11	8	7018.1679	2	0.2	5.0							
20	11	10	7032.1187	1	<u> </u>	5.2							
21	11	10	7046.7652	3	0.4	4.2							
22 23	11 11	12	7078 1521	2	0.5	0.3 7 2							
23 24	11	14	7094 8883	2 1	0.4	7.2 5.1							
25	11	14	7112.3233	3	0.7	6.3							
26	11	16	7130.4519	1		4.8							
12	12	1	7001.9927	1		-4.5							
13	12	1	7011.0614	1		-6.2							

Приложение 3.6 (продолжение)

				(035)		
J	Ka	Kc	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
14	12	3	7020.8301	1		-5.3
15	12	3	7031.2968	3	2.0	-3.7
16	12	5	7042.4571	3	0.5	-5.8
17	12	5	7054.3168	2	2.0	-5.6
18	12	7	7066.8726	1		-6.4
19	12	7	7080.1263	2	0.2	-6.1
20	12	9	7094.0746	2	0.5	-8.2
21	12	9	7108.7261	2	0.9	-3.6
22	12	11	7124.0723	2	0.1	-1.1
23	12	11	7140.1146	2	0.2	1.1
24	12	13	7156.8519	2	0.1	1.9
25	12	13	7174.2860	1		3.4
26	12	15	7192.4127	1		1.3

							(134)						
J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	(1 34) J	Ka	Kc	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C
8	0	8	6617.5512	1		-9.7	17	2	16	6709.5186	3	0.5	0.1
10	0	10	6630.5938	2	1.6	-7.7	18	2	16	6724.3221	2	0.4	2.8
12	0	12	6646.3000	2	0.6	-2.9	19	2	18	6735.0132	3	0.5	3.2
14	0	14	6664.6301	2	0.4	-0.3	20	2	18	6752.1595	2	0.4	8.4
16	0	16	6685.5576	2	0.1	1.4	21	2	20	6763.2063	3	0.6	4.5
18	0	18	6709.0664	2	0.3	4.5	22	2	20	6782.8732	2	0.3	8.3
20	0	20	6735.1435	2	0.3	5.2	23	2	22	6794.0822	4	1.2	3.4
22	0	22	6763.7865	2	0.2	3.8	24	2	22	6816.4423	2	0.7	9.9
24	0	24	6/94.9994	2	1.9	1./	25	2	24	6827.6297	2	0.0	3.9
20	0	20	6828.7931	2	1.5	0.4	20	2	24	6852.8270	1	0.2	10.9
20	0	20	6903.2800	2	0.1	-13.0	20	$\frac{2}{2}$	20	6902 6793	3	0.3	3.0 7.0
32	0	32	6945 4963	2	1.0	47	30	2	28	6933 9895	2	0.7	-33.0
34	0	34	6989 5687	$\frac{2}{2}$	0.6	ч., 62	31	$\frac{2}{2}$	30	6944 1540	3	0.2	-55.0
36	Ő	36	7036.2078	2	2.4	-1.0	32	$\frac{2}{2}$	30	6978.6205	2	0.1	-27.2
38	Ő	38	7085.4249	2	0.4	-1.1	33	2	32	6988.2469	3	0.4	8.3
40	0	40	7137.2129	2	0.6	-3.7	34	2	32	7025.9133	2	0.3	-29.0
42	0	42	7191.5754	2	0.9	-5.8	35	2	34	7034.9584	2	0.6	11.7
44	0	44	7248.5142	2	0.7	-6.2	36	2	34	7075.8210	1		-31.8
46	0	46	7308.0261	2	0.2	-9.3	37	2	36	7084.3001	2	1.7	13.6
48	0	48	7370.1202	2	1.0	-7.3	38	2	36	7128.3024	2	0.1	-34.5
9	1	9	6625.5746	1		-5.5	39	2	38	7136.5318	2	0.4	3.0
10	1	9	6634.8165	1		-5.1	40	2	38	7183.3212	2	0.3	-41.5
11	1	11	6639.6295	2	0.8	-5.3	41	2	40	7190.3454	2	0.8	17.6
13	1	13	6656.3367	2	0.1	-4.7	42	2	40	7240.8649	1		-44.4
14	1	13	6670.5027	1		0.9	43	2	42	7247.4519	2	0.3	-24.8
15	1	15	6675.6902	2	1.4	0.5	44	2	42	7300.8963	2	0.2	-70.3
16	1	15	6692.5402	2	0.5	4.6	45	2	44	/30/.1098	2	0.4	19.5
1/	1	17	6097.0703	2	0.7	1.2	4/	2	46	/369.3248	2	0.6	26.6
10	1	17	6722 2725	2	0.8	9.4	15	2	11	6600 3242	1	0.5	-10.4
20	1	19	6744 8430	2	0.4	2.4	14	3	11	6700 7267	3 4	0.5	-0.9
20	1	21	6749 4880	$\frac{2}{2}$	0.5	2.0 4.1	15	3	13	6711 9845	1	1.0	-15.6
22	1	21	6775 0339	2	0.1	14.1	10	3	15	6723 7157	3	0.5	-8.4
23	1	23	6779.3089	$\frac{1}{2}$	0.2	6.1	18	3	15	6736.4924	2	0.1	-8.2
24	1	23	6807.8451	1		2.5	19	3	17	6749.4915	3	0.1	-9.2
25	1	25	6811.7238	2	0.8	3.4	20	3	17	6763.8609	3	2.3	-4.0
26	1	25	6843.2764	1		9.9	21	3	19	6778.0526	4	0.6	-6.7
27	1	27	6846.7362	2	0.9	4.1	22	3	19	6794.1140	3	1.2	-3.2
28	1	27	6881.2734	1		9.8	23	3	21	6809.3852	4	2.3	-7.0
29	1	29	6884.3391	2	0.2	3.6	24	3	21	6827.2827	3	1.7	1.4
30	1	29	6921.8250	2	0.9	9.9	25	3	23	6843.4821	4	1.0	-7.0
31	1	31	6924.5372	2	1.6	-0.7	26	3	23	6863.3789	3	0.5	3.2
32	1	31	6964.9184	2	0.5	-8.6	27	3	25	6880.3277	3	1.0	-10.4
33	1	33	6967.0163	3	0.3	6.7	28	3	25	6902.4147	2	0.5	4.8
54 25	1	33 25	7010.5398	2	0.9	9.7	29	3	27	6919.9161	4	0.7	-9.4
35	1	35 25	7012.5701	2	0.8	3.0	30 21	3	27	6944.3867	1	14	5.8
27	1	33 27	7050.7140	2	1.0	10.2	21	2	29	6080 2824	4	1.4	-0.0
38	1	37	7100.4943	2	1.0	-5.4	32	3	29	7007 2488	3	17	-6.2
39	1	39	7111.0028	$\frac{2}{2}$	0.4	-2.0	34	3	31	7037 0769	2	0.4	20.0
40	1	39	7162.7018	$\frac{2}{2}$	0.4	15.0	35	3	33	7054.9613	3	0.4	-4.5
41	1	41	7164.0759	2	0.5	-5.0	36	3	33	7087.7315	1	0.0	42.6
42	1	41	7218.5258	1		19.5	37	3	35	7105.3511	2	0.1	-2.7
43	1	43	7219.7246	2	0.9	-7.0	38	3	35	7141.2124	1	=	128.3
44	1	43	7276.8885	2	1.5	4.3	39	3	37	7158.4105	2	0.5	3.6
45	1	45	7277.9490	2	0.3	-8.7	41	3	39	7214.1270	1		7.3
46	1	45	7337.8442	2	1.2	19.7	43	3	41	7272.4758	1		-34.7
47	1	47	7338.7522	2	1.1	-8.2	19	4	16	6768.4200	2	1.1	-31.1
48	1	47	7401.3607	2	0.6	29.8	20	4	16	6782.3940	1		-7.5
13	2	12	6666.6914	4	1.1	-1.6	21	4	18	6797.0074	3	0.6	-22.4
14	2	12	6677.3722	2	0.2	1.5	22	4	18	6812.3831	2	1.5	-16.7
15	2	14	6686.7426	2	0.8	0.9	23	4	20	6828.3913	2	0.6	-16.6
16	2	14	6699.3926	2	1.1	3.4	24	4	20	6845.2053	1		-10.0

Приложение 3.7 Колебательно-вращательные уровни энергии молекулы $^{18}O_3$, полученные из наблюдаемых переходов для состояния (134) типа симметрии A_1

	(134)													
J	Ka	Kc	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C	
25	4	22	6862.5746	2	0.9	-11.7	15	6	10	6773.0962	2	1.3	21.3	
26	4	22	6880.8561	2	0.1	0.3	16	6	10	6784.1945	2	0.4	19.1	
27	4	24	6899.5566	3	0.7	-7.9	17	6	12	6795.9886	3	1.3	20.8	
28	4	24	6919.3901	1		18.7	18	6	12	6808.4742	2	0.8	21.0	
29	4	26	6939.3369	3	0.9	-3.3	19	6	14	6821.6519	3	1.8	19.0	
30	4	26	6960.7492	3	1.4	21.1	20	6	14	6835.5243	2	0.1	16.5	
31	4	28	6981.9058	2	1.5	-3.7	21	6	16	6850.0925	3	2.0	13.7	
32	4	28	7005.0064	1		28.4	22	6	16	6865.3536	3	0.4	6.4	
33	4	30	7027.2611	3	1.3	-4.8	23	6	18	6881.3136	2	0.8	-0.7	
34	4	30	7052.1752	2	0.8	33.9	24	6	18	6897.9676	1		-20.4	
35	4	32	7075.3974	3	0.4	-3.9	25	6	20	6915.3241	2	0.7	16.5	
36	4	32	7102.2786	3	1.1	39.0	26	6	20	6933.3771	3	0.6	-17.3	
37	4	34	7126.3036	2	0.7	-2.0	27	6	22	6952.1330	3	0.3	-34.9	
39	4	36	7179.9661	3	0.9	-1.0	28	6	22	6971.5957	3	0.9	-55.3	
41	4	38	7236.3762	1		2.6	29	6	24	6991.7748	3	0.4	-80.0	
13	6	8	6752.9601	2	1.5	15.5	30	6	24	7012.6768	3	0.9	-118.3	
14	6	8	6762.6816	3	1.0	16.5								

Приложение 3.7 (продолжение)

Приложение 3.8 Колебательно-вращательные уровни энергии молекулы $^{18}O_3$, полученные из наблюдаемых переходов для состояния (125) типа симметрии B_1

						(125)						
J	K_{a}	K_{c}	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C	J	K_{a}	K_{c}	$E ({\rm cm}^{-1})$	Nb	ΔE	0 - C
1	0	1	6797 1501	1		-49	3	3	0	6824 8078	1		33
3	0	3	6800 6131	1		8.0	1	3	° 2	6827 5706	2	0.2	1.5
5	0	5	6906 9264	1		-0.0	4	2	4	6925 2067	1	0.2	1.5
5	0	5	0800.8304	1	1.6	-10.9	0	3	4	0855.2007	1		-0.9
/	0	/	6815.8040	2	1.6	-8.0	/	3	4	6840.0665	1		1.0
9	0	9	6827.4810	2	0.3	-4.8	8	3	6	6845.6188	2	0.3	3.6
11	0	11	6841.8335	2	0.2	-0.2	9	3	6	6851.8715	2	1.0	5.5
13	0	13	6858.8238	1		3.2	10	3	8	6858.8076	3	1.8	3.9
15	0	15	6878.4247	2	0.1	7.8	11	3	8	6866.4596	2	0.2	3.8
17	0	17	6900.5878	2	0.2	-20.7	12	3	10	6874.7808	2	0.4	4.9
19	0	19	6925,3130	2	0.1	-5.2	13	3	10	6883.8471	1		3.3
21	Ő	21	6952 6625	2	04	39	14	3	12	6893 5380	1		3.9
23	Õ	23	6982 5606	1	0.1	5.0	15	3	12	6904 0455	1		2.1
25	0	25	7015 0263	2	07	0.6	15	2	14	6015 0929	2	0.2	2.1
25	0	25	7015.0205	2	0.7	0.0	10	2	14	(007.0745	2	0.2	2.0
27	0	27	7050.0727	2	0.6	-3.5	1/	3	14	6927.0745	2	1.1	2.0
29	0	29	/08/./096	2	0.7	-6.6	18	3	16	6939.4155	1		0.6
3	1	2	6803.4677	1		5.1	19	3	16	6952.9542	2	2.6	1.9
4	1	4	6805.9137	1		-6.4	20	3	18	6966.5429	1		0.5
5	1	4	6809.9274	2	0.3	7.1	21	3	18	6981.7130	2	0.1	0.4
6	1	6	6813.1538	4	1.8	1.9	22	3	20	6996.4752	2	0.3	0.2
7	1	6	6819.2370	2	0.0	5.6	23	3	20	7013.3904	2	0.7	2.8
8	1	8	6823.2112	1		-5.2	24	3	22	7029.2660	1		-3.5
9	1	8	6831 3874	2	04	0.6	25	3	22	7048 0287	1		2.8
10	1	10	6835 0162	1	0.4	14.1	25	3	24	7065 2310	1		24.6
10	1	10	6846 2748	2	1.1	-14.1	20	2	24	7005.2510	2	4.0	24.0
11	1	10	0040.3740	2	1.1	0.9	21	3	24	/065./156	<u>ک</u>	4.9	-1.9
12	1	12	6851.2870	2	0.4	-6.9	4	4	1	6846.3459	1	0.4	0.3
13	I	12	6864.1733	2	0.5	-2.7	5	4	1	6849.8152	2	0.4	1.6
14	1	14	6869.2976	2	0.1	-2.6	6	4	3	6853.9782	2	1.4	2.5
15	1	14	6884.7691	2	0.3	-2.1	7	4	3	6858.8334	2	2.2	1.1
16	1	16	6889.9426	2	0.9	2.6	8	4	5	6864.3859	3	0.7	2.0
17	1	16	6908.1287	2	0.6	-3.2	9	4	5	6870.6323	3	1.1	1.5
18	1	18	6913.2099	2	0.2	4.7	10	4	7	6877.5710	2	0.2	-2.8
19	1	18	6934.2235	2	0.4	-2.1	11	4	7	6885.2158	2	0.0	1.7
20	1	20	6939 0968	1	0	84	12	4	9	6893 5545	2	0.7	2.2
21	1	20	6963 01/0	2	11	_1.1	13	1	ó	6902 5934	2	0.5	13
21	1	20	6067 5040	2	0.7	-1.1	13	4	11	6012.2246	2	0.5	1.5
22	1	22	0907.3940	2	0.7	0.1	14	4	11	0912.3340	ے 1	0.0	0.0
25	1	22	0994.4034	2	0.5	2.0	15	4	11	0922.7894	1	2.0	1.4
24	I	24	6998.7144	1		3.9	16	4	13	6933.9574	2	2.0	-0.6
25	1	24	7028.5310	2	0.3	3.1	17	4	13	6945.8765	2	0.1	-1.3
27	1	26	7065.1875	2	0.2	3.5	18	4	15	6958.5719	1		-1.1
28	1	28	7068.6401	1		10.2	19	4	15	6970.5148	2	0.2	3.4
29	1	28	7104.4120	2	0.3	1.5	20	4	17	6984.6140	2	1.1	2.9
2	2	1	6809.2958	1		-1.0	21	4	17	6999.3533	1		1.9
3	2	1	6811.3789	1		0.2	22	4	19	7014.6843	2	0.1	0.7
4	2	3	6814,1470	2	0.9	-0.3	23	4	19	7030.7732	2	1.0	-1.7
5	2	3	6817 6312	2	1.0	-0.5	24	4	21	7047 4237	2	0.3	-3.0
6	2	5	6821 7674	2	0.8	1.1	25	4	21	7064 9441	2	1.1	_2 7
7	2	5	6926 6900	2	1.2	2.7	25	4	21	7004.2441	2	0.1	-2.1
/	2	5	6820.0890	2	1.5	2.1	20	4	23	7062.9131	2	0.1	-5.5
8	2	/	6832.1557	2	3.2	6.6	27	4	23	/101.91/3	2	0.3	-4.2
9	2	/	6838.5645	1		-1.4	28	4	25	/121.1/99	2	0.3	-6.0
10	2	9	6845.2937	2	1.2	3.7	29	4	25	7141.7261	2	0.4	-1.9
11	2	9	6853.2957	2	0.2	-0.8	30	4	27	7162.2204	1		-6.9
12	2	11	6861.1834	2	0.1	1.8	6	5	2	6878.0125	2	1.6	-8.5
13	2	11	6870.9025	1		0.0	7	5	2	6882.8469	2	1.8	-7.4
14	2	13	6879.8160	2	1.7	0.8	8	5	4	6888.3805	2	1.4	-6.0
15	2	13	6891 3993	1		-1.0	9	5	4	6894 6119	3	0.8	-34
16	2	15	6001 1707	2	0.0	-1.4	10	5	6	6001 5372	3	1.1	_2 2
17	ว้	15	601/ 7020	2	0.0	-1.4	11	5	6	6000 1571	2	0.2	-2.2 1 /
1/	2	15	0714.1920	2	0.5	-1.3	11	5	0	6017 4720	2	0.2	-1.4
18	2	17	0923.2040	2	0.5	-4.4	12	5	ð	0917.4730	2	1.5	0./
19	2	1/	0941.0/45	1	0.7	1.1	15	2	8	6926.4820	2	1.6	1.4
20	2	19	6952.0620	2	0.3	-4.0	14	5	10	6936.1873	2	1.0	3.9
21	2	19	6970.2097	1		2.0	15	5	10	6946.5826	2	0.3	1.8
22	2	21	6981.5604	2	1.3	-3.6	16	5	12	6957.6763	2	2.0	3.7
23	2	21	7002.1386	1		0.9	17	5	12	6969.4604	3	1.3	1.0
24	2	23	7013.7528	2	0.2	-5.4	18	5	14	6981.9426	2	0.6	1.8

Приложение 3.8 (продолжение)

						(.	125)						
 J	Ka	K_c	$E (\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	J	Ka	Kc	$E (\text{cm}^{-1})$	Nb	ΔE	0 - C
19	5	14	6995.1199	3	0.4	2.1	17	7	10	7033.4413	2	1.4	31.0
20	5	16	7008.9906	1		1.3	19	7	12	7058.9777	2	1.2	-51.8
21	5	16	7023.5621	2	2.2	4.5	20	7	14	7072.8453	2	1.9	-32.8
22	5	18	7038.8223	3	0.3	2.7	21	7	14	7087.3948	1		-24.7
23	5	18	7054.7817	2	0.2	1.1	22	7	16	7102.6347	2	0.5	-18.8
24	5	20	7071.4333	1		0.4	23	7	16	7118.5666	2	0.8	-13.7
25	5	20	7088.7898	2	1.4	0.8	24	7	18	7135.1892	1		-10.6
26	5	22	7106.8289	2	0.2	-2.1	25	7	18	7152.4976	2	0.2	-14
27	5	22	7125.5871	2	0.9	1.2	26	7	20	7170.5038	2	2.2	-13.0
28	5	24	7145.0174	2	1.7	2.2	27	7	20	7189.2041	2	1.3	-10.2
29	5	24	7165.1763	1		1.7	28	7	22	7208.6029	1		-1.5
30	5	26	7185.9912	2	0.2	4.9	29	7	22	7228.6828	1		-4.3
6	6	1	6907.4057	1		-6.3	8	8	1	6992.2344	1		2.1
7	6	1	6912.2509	2	0.9	-6.7	9	8	1	6998.4627	2	0.2	1.4
8	6	3	6917.7888	3	0.7	-6.9	10	8	3	7005.3861	2	2.8	3.7
9	6	3	6924.0231	3	0.8	-3.4	12	8	5	7021.3062	2	0.1	5.2
10	6	5	6930.9468	3	0.8	-3.3	13	8	5	7030.3044	2	2.1	5.8
11	6	5	6938.5662	1		-0.4	14	8	7	7039.9915	1		3.2
12	6	7	6946.8760	2	0.9	-0.2	16	8	9	7061.4453	2	0.3	1.1
13	6	7	6955.8767	2	0.5	-2.1	17	8	9	7073.2163	1		6.0
14	6	9	6965.5759	3	1.0	1.1	18	8	11	7085.6727	3	0.5	4.2
15	6	9	6975.9617	1		-2.4	19	8	11	7098.8248	3	0.5	6.0
16	6	11	6987.0498	1		3.2	20	8	13	7112.6672	1		6.0
17	6	11	6998.8239	3	1.0	1.1	21	8	13	7127.2014	4	0.8	5.9
18	6	13	7011.2968	1		4.3	22	8	15	7142.4277	2	0.1	5.8
19	6	13	7024.4579	3	0.7	2.1	23	8	15	7158.3455	1		5.4
20	6	15	7038.3158	1		2.9	25	8	17	7192.2613	2	0.3	9.1
21	6	15	7052.8668	1		2.9	26	8	19	7210.2556	2	0.9	9.7
22	6	17	7068.1128	3	1.1	4.2	27	8	19	7228.9440	2	1.0	12.8
23	6	17	7084.0542	2	0.4	6.7	10	9	2	7050.3907	1		1.4
24	6	19	7100.6879	1		7.7	11	9	2	7058.0010	2	1.5	0.6
25	6	19	7118.0127	2	0.9	5.4	12	9	4	7066.3034	1		0.2
26	6	21	7136.0347	2	2.8	6.4	13	9	4	7075.2941	3	0.9	-3.9
27	6	21	7154.7527	2	0.0	8.6	14	9	6	7084.9844	1		-0.2
29	6	23	7194.2691	2	3.4	10.7	15	9	6	7095.3620	2	1.5	-1.1
8	7	2	6952.4047	1		-3.2	17	9	8	7118.1934	2	1.0	-2.0
9	7	2	6958.6362	3	0.7	-2.0	18	9	10	7130.6453	2	0.1	-3.9
10	7	4	6965.5608	2	0.0	-0.1	19	9	10	7143.7916	2	0.3	-3.1
11	7	4	6973.1773	2	1.5	1.2	20	9	12	7157.6272	2	3.3	-4.5
12	7	6	6981.4868	2	0.8	3.1	21	9	12	7172.1591	2	1.7	-1.3
14	7	8	7000.1843	3	2.0	7.8	22	9	14	7187.3808	1		0.3
15	7	8	7010.5721	2	0.6	10.3	23	9	14	7203.2838	1		-8.4
16	7	10	7021.6540	2	1.1	14.2							

			(431)							(431)			
J	K_a	K_c	$E(\mathrm{cm}^{-1})$	Nb	ΔE	0 - C	J	K_a	K_c	$E(\mathrm{cm}^{-1})$	Nb	ΔE	0 - C
1	0	1	6826.2126	2	0.6	-1.8	3	3	0	6854.7218	1		16.9
3	0	3	6829.7192	2	1.6	-2.5	4	3	2	6857.5297	2	0.0	15.6
5	0	5	6836.0215	2	2.6	-1.7	5	3	2	6861.0431	1		16.7
7	0	7	6845.0956	2	2.0	-2.9	6	3	4	6865.2547	1		13.2
9	0	9	6856.9160	2	1.3	-4.0	7	3	4	6870.1715	1		10.6
11	0	11	6871.4496	2	0.3	-4.8	8	3	6	6875.7933	2	0.7	11.0
13	0	13	6888.6646	2	1.3	-2.9	9	3	6	6882.1204	1		8.0
15	0	15	6908.5279	2	0.1	-1.0	10	3	8	6889.1374	2	5.5	-2.0
17	0	17	6931.0187	2	1.6	2.4	11	3	8	6896.8918	2	1.6	4.6
19	0	19	6956.1133	2	4.2	-2.7	12	3	10	6905.3192	2	1.7	3.9
21	0	21	6983.8234	2	1.7	0.7	13	3	10	6914.4964	1		2.8
23	0	23	7014.1360	2	1.3	0.3	14	3	12	6924.3168	2	0.7	5.2
25	0	25	7047.0554	2	2.6	-1.8	15	3	12	6934.9405	2	2.2	-3.1
2	1	2	6830.3288	2	0.5	1.7	16	3	14	6946.1335	1		4.5
3	1	2	6832.6370	2	1.9	-1.1	17	3	14	6958.2396	2	5.1	-12.6
4	1	4	6835.0789	2	0.3	-1.5	18	3	16	6970.7673	2	1.2	0.9
5	1	4	6839.1532	2	0.1	-4.7	19	3	16	6984.4302	2	2.6	-8.3
6	1	6	6842.5452	2	0.3	-0.1	20	3	18	6998.2195	2	2.6	-1.1
7	1	6	6848.5658	1		-2.0	22	3	20	7028.4892	1		2.7
8	1	8	6852.7151	1		-0.8	5	4	1	6880.4199	1		-14.7
9	1	8	6860.8581	2	1.0	-1.1	6	4	3	6884.6347	2	0.1	-15.6
10	1	10	6865.5854	2	1.8	0.6	7	4	3	6889.5585	3	0.2	-10.5
11	1	10	6876.0162	2	0.3	-3.9	8	4	5	6895.1828	2	0.3	-8.5
12	1	12	6881.1428	2	1.6	-0.8	9	4	5	6901.5090	3	0.2	-8.1
13	1	12	6894.0352	2	0.4	0.6	10	4	/	6908.5469	2	1./	0.1
14	1	14	0899.3814	2	2.0	-1.9	11	4	/	0910.2837	3	3.5	2.7
15	1	14	6914.8812	2	0.2	-1.1	12	4	9	6924.7294	1		9.0
10	1	10	6028 5280	1	0.2	-0.1	10	4	9	6000 2086	1	2.2	2.4
17	1	10	6042 8688	2 1	0.2	0.5	10	4	15	7002 6084	2	2.2	-0.5
10	1	18	6964 9740	2	11	-0.2	21	4	17	7003.0084	1		-3.0
20	1	20	6970 1006	2	0.0	2.1	5	-+ -5	0	6905 3491	1		-9.0
20	1	20	6998 9705	1	0.7	-5.1	6	5	2	6909 5679	1		-5.2
23	1	22	7026 0260	1		-5.1	7	5	2	6914 4868	1		-49
23	1	22	7020.0200	1		-5.0	8	5	4	6920 1142	2	51	14
2	2	1	6838 7300	1		5.5	9	5	4	6926 4349	2	0.8	-2.1
4	2	3	6843 6417	2	05	3.2	10	5	6	6933 4651	2	1.2	0.8
5	2	3	6847 1694	2	3.8	2.3	11	5	6	6941 1959	3	5.0	0.0
6	$\frac{1}{2}$	5	6851.3591	$\frac{1}{2}$	1.6	1.9	12	5	8	6949.6330	1	5.0	3.8
7	2	5	6856.3420	2	0.2	4.8	13	5	8	6958.7748	1		7.6
8	2	7	6861.8732	2	6.2	-3.0	14	5	10	6968.6125	2	6.6	3.5
9	2	7	6868.3650	2	2.5	-0.9	15	5	10	6979.1681	1		13.0
10	2	9	6875.1916	2	0.4	2.1	16	5	12	6990.4062	1		0.6
11	2	9	6883.2766	2	1.5	-2.7	22	5	18	7072.7126	1		-4.6
12	2	11	6891.2920	2	0.6	2.4	6	6	1	6940.0025	1		7.2
13	2	11	6901.1021	1		0.1	7	6	1	6944.9184	1		4.7
14	2	13	6910.1664	2	2.1	-1.2	8	6	3	6950.5388	1		3.8
15	2	13	6921.8526	2	0.7	-1.2	9	6	3	6956.8617	2	0.7	2.5
16	2	15	6931.8134	2	0.3	0.3	10	6	5	6963.8872	2	1.3	1.0
17	2	15	6945.5417	2	0.0	-2.1	11	6	5	6971.6178	3	4.1	1.4
18	2	17	6956.2174	1		2.6	13	6	7	6989.1800	1		-6.1
19	2	17	6972.1714	2	0.3	0.9	14	6	9	6999.0162	1		-9.8
20	2	19	6983.3588	2	0.4	-1.2	15	6	9	7009.5659	1		-3.5
21	2	19	7001.7225	1		1.8							
22	2	21	7013.2305	1		-5.3							
24	2	23	7045.8301	1		1.2							

Приложение 3.9 Колебательно-вращательные уровни энергии молекулы $^{18}O_3$, полученные из наблюдаемых переходов для состояния (431) типа симметрии B_1