
 
 

Thèse de DOCTORAT 

Présentée à l’Université de Reims Champagne-Ardenne 

Pour l'obtention du grade de 

DOCTEUR en Génie Civil et Mécanique 

par 

Monsieur Yangjun LUO 

ETUDE NUMERIQUE ET OPTIMISATION DE 
CONCEPTION DES POUTRES MIXTES 

ACIER-BETON ASSEMBLEES PAR COLLAGE 

 

Soutenue publiquement le 08 Juin 2009 

 

Devant la commission d'examen 

Prof. DELMAS Yves  Université de Reims Champagne-Ardenne Président 
Prof. BATOZ Jean-Louis  Université de Technologie de Compiègne Rapporteur 
Prof. ZHENG Changliang Dalian Maritime University Rapporteur 
Prof. GUO Ying-Qiao Université de Reims Champagne-Ardenne Examinateur 
Prof. LI Gang Dalian University of Technology Examinateur 
Prof. ZHANG Hongwu Dalian University of Technology Examinateur 
Prof. KANG Zhan Dalian University of Technology Co-directeur 
Prof. LI Alex Université de Reims Champagne-Ardenne Co-directeur 

Université de Reims 

Champagne Ardenne 

France - Chine Dalian University

 of Technology 



 

NUMERICAL STUDY AND DESIGN OPTIMIZATION 

OF BONDED STEEL-CONCRETE COMPOSITE BEAMS 

Yangjun LUO 

Laboratoire de Génie Civil, GRESPI EA n°4301 

Université de Reims Champagne-Ardenne, France 

State key Laboratory of Structural Analysis for Industrial Equipment 

Dalian University of Technology, China 



 
 
 
 
 
 
 
 
 

To my family 



 

- I - 

Acknowledgements 

First and foremost, I would like to express my deepest gratitude to my two advisors, Prof. 

Alex LI and Prof. Zhan KANG, for all their support and guidance. I have greatly benefited 

from frequent and inspiring discussions with them. It is extremely fortunate for me to have 

had an excellent co-supervision from them during the three years of this research. 

Prof. Yves DELMAS deserves a special appreciation for his willingness to be the jury 

president of my doctoral dissertation. Moerover, I would like to thank Prof. Jean-Louis 

BATOZ from Université de Technologie de Compiègne (France) and Prof. Changliang 

ZHENG from Dalian Maritime University (China) for their critical review and valuable 

suggestions for improving this dissertation. 

I would also like to thank teachers and schoolmates in the GRESPI, UFR Sciences, 

Université de Reims Champagne-Ardenne. The relaxed and genuine academic atmosphere in 

there has helped my studies and research intensely. I would especially like to thank Prof. 

Ying-Qiao GUO, Dr. Yuming LI, Alexandre GACOIN, Ismaïl YURTDAS, Jie SHEN and 

Ming DONG for their never-tiring help in my living and study in France.  

My thanks go to all teachers and my friends in the State Key Laboratory of Structural 

Analysis for Industrial Equipment, Dalian University of Technology (China), for all their 

suggestions and support during the course of this work. I am especially grateful to Prof. 

Hongwu ZHANG, Prof. Gang LI and Prof. Yuefang WANG as the thesis jury members. Dr. 

Guozhong ZHAO is also acknowledged for his help in this cooperative project. 

Financial support from the Science and Technology Service, Embassy of France in 

China, is also gratefully acknowledged. 

Last but not least, I would like to thank my family for all their support and especially my 

beautiful wife Lili QU for her show of unequalled patience, understanding and love during the 

long wait for the conclusion of this dissertation. 

 

Mai 2009, Reims, France 



 

- II - 

Abstract 

In this thesis, numerical study and design optimization problems for the bonded 

steel-concrete beam are addressed. The steel-concrete composite beam bonded by adhesive 

has its particular advantages over the traditional composite beam and is attracting increasing 

attentions. The aim of the present study is to provide a fundamental understanding as well as 

the computational framework of numerical simulation and design optimization of bonded 

composite beams. 

Firstly, as a prerequisite, an experimental push-out test is carried out to investigate the 

debonding failure mode and to determine the bonding shear strength between the concrete and 

the steel. The debonding failure takes place within the first 2-5 mm of the concrete from the 

adhesive/concrete interface and the epoxy adhesive bonding connection can provide a 

bonding shear strength of 6.36MPa. Then, a validated three-dimensional nonlinear finite 

element model was proposed to predict the parametric effects of bonded steel-concrete 

composite beams. From the simulating results, it is shown that the response of the bonded 

composites is influenced significantly by elastic modulus of adhesive, the bonding strength 

and the bonding area, rather than the adhesive layer thickness. 

Secondly, for determining a more reasonable initial topology configuration, a 

three-dimensional topology optimization methodology of the bonded composite beam is 

presented. Following Solid Isotropic Material with Penalization (SIMP) approach, an artificial 

material model with penalization for elastic constants is assumed and elemental density 

variables are used for describing the structural layout. The considered problem is thus 

formulated as to find the optimal material density distribution that minimizes the material 

volume under specified displacement constraints. By using the adjoint variable method for the 

sensitivity analysis, the optimization problem is efficiently solved by the gradient-based 

optimization algorithm. The proposed topology approach presented a new structural topology 

of bonded steel-concrete composite beam. 

Further, by using a probability and convex set mixed model, a reliability assessment 

strategy is presented for structures exhibiting both stochastic and bounded uncertainties in 

material properties, geometrical dimensions and loading conditions. The safety measure of a 
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structure is quantified by a reliability index defined by a nested minimization problem. An 

iterative procedure is developed for seeking the worst-case point and the most probable 

failure point in the standard uncertainty space. Numerical examples demonstrated illustrated 

the validity and effectiveness of the proposed method. The proposed reliability index is then 

employed to assess the reliability of a bonded steel and concrete composite beam. 

Finally, the method for the reliability-based optimization design of the bonded composite 

beam is developed. The optimization problem incorporating constraints of mixed reliability 

indices is mathematically formulated. By using the performance measure approach, the 

optimization problem is converted into more tractable one. Moreover, the double-loop 

optimization problem is transformed into an approximate single-loop minimization problem 

using the linearization-based technique, which further facilitates efficient solution of the 

design problem. Two examples regarding design optimization of a mathematical function and 

a truss structure demonstrated the validity of the proposed formulation as well as the 

efficiency of the presented numerical techniques. As a consequence, the comparisons of 

optimization results for the bonded composite beam showed the significant meaning of 

accounting for the uncertainties in the composite beam optimization design by a 

reliability-based approach. 
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Résumé 

La présente thèse consiste à effectuer une étude numérique et optimisation de conception 

des poutres mixtes acier-béton assemblées par collage. Ce type de poutre mixte dispose 

d’avantages particuliers par apport à la poutre mixte traditionnelle au niveau du transfert des 

efforts entre le béton et l'acier et la liaison béton-acier. Elle est devenue de plus en plus 

attractive dans le secteur industriel. L'objectif de ce travail est de fournir une compréhension 

fondamentale, de proposer un modèle numérique et de donner une optimisation de conception 

des poutres mixtes acier-béton assemblées par collage. 

Tout d’abord, comme une condition préalable, des essais de push out ont été effectués 

afin de connaître le mode de rupture et de déterminer la résistance au cisaillement de 

l’adhérence acier-béton. Les résultats montrent que la rupture de l'éprouvette acier-béton 

collée se trouve dans le béton, située à la position de 2-5mm par rapport à l’interface 

acier-béton. La connexion assurée par adhésive peut alors fournir une contrainte d’adhésion 

de 6.36MPa. Un modèle numérique non linéaire de trois dimensions a été également proposé 

et validé dans ce travail. Ce modèle permet de prédire les effets paramétriques sur le 

comportement mécanique de la poutre mixte acier-béton. A partir des résultats obtenus par 

simulation numérique, on trouve que le comportement mécanique de la poutre mixte collée 

est principalement influencé par le module élastique de l’adhésive, la résistance et la surface 

d’adhésion, et légèrement influencé par l’épaisseur du joint d'adhésive. 

Ensuite, pour déterminer une configuration topologique initiale plus raisonnable, une 

méthodologie d’optimisation de topologie de trois dimensions de poutre mixte collée est 

présentée. Suivant l’approche "Solid Isotropic Material with Penalization" (SIMP), un modèle 

de matériau artificiel avec pénalisation pour les constantes élastiques est adopté. Les variables 

de la densité élémentaire sont utilisées pour décrire le planning de structure. Le problème 

considéré est donc formulé afin de trouver la distribution de densité de matériau qui minimise 

le volume de matériau sous des conditions aux limites des déplacements spécifiques. En 

utilisant la méthode de variable adjoint pour l’analyse de sensibilité, le problème 

d’optimisation est résolu efficacement par l’algorithme d’optimisation fondé sur le gradient. 

L’approche de topologie a présenté une nouvelle topologie de poutre mixte acier-béton collée. 
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De plus, en utilisant un modèle mixte de la probabilité et d'ensembles convexes, une 

stratégie d’estimation de la fiabilité pour les structures est présentée pour montrer les 

incertitudes stochastique et non-stochastique dans les propriétés de matériau, les dimensions 

géométriques et les conditions de charges. Une mesure de sécurité de la structure est 

quantifiée par un index de fiabilité défini par un problème d’optimisation emboîtée. Une 

procédure itérative est également développée pour relocaliser le point le plus défavorable et le 

point de rupture le plus probable dans l’espace d’incertitude standard. Les exemples de calcul 

par la simulation numériques ont montré la validité et l’efficacité de la méthode proposée. 

L’index de fiabilité proposé a été employé pour estimer la fiabilité de poutre mixte 

acier-béton. 

Enfin, la méthode pour la conception des poutres mixtes collées fondée sur 

l’optimisation de fiabilité a été développée. Le problème d’optimisation comprenant les 

contraintes des indices mixtes de fiabilité est mathématiquement formulé. En utilisant 

l’approche de mesure de la performance, le problème d’optimisation est converti en un 

problème plus tractable. De plus, le problème d’optimisation de double-boucles est 

transformé en un problème d’optimisation d’une seule boucle approximative en utilisant la 

technique de linéarisation qui facilite alors la solution efficace du problème de conception et 

de dimension. Deux exemples concernant l’optimisation de conception et de dimension d’une 

fonction mathématique et une structure en treillis ont démontré la validité du modèle proposé 

ainsi que l’efficacité de la méthode numérique présentée. Les comparaisons des résultats 

d’optimisation sur les poutres mixtes ont montré les sens significatifs en prenant en compte 

des incertitudes dans la conception des poutres mixtes par une approche fondée sur la 

fiabilité. 
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1.1 BACKGROUND AND MOTIVATION 

Steel and concrete composite beams have been widely used in multi-storey buildings and 

bridges all over the world. Market investigation on bridges built in France [1] showed that the 

steel-concrete composite constructions have been growing steadily over the last two decades 

and the competitive span range is from 30m to 110m. This kind of structures has drawn 

intense attentions in both academic and practical communities because of their significant 

economic and structural advantages in comparison to conventional reinforced concrete 

structures [2]. Those advantages include: reduction in construction depth, increase in span 

length, savings in structural weight and the rapid construction procedure. 

The steel and concrete composite beams combine the high tensile strength of steel with 

the high stiffness and the compressive strength of concrete, and thus create a more effective 

integrated configuration. In general practice, a steel girder is used to support the reinforced 

concrete slab. When the top flange of the girder is effectively connected to the concrete slab 

by means of shear connectors, the composite or integral action will be achieved by preventing 

the relative slip. Therefore, a fundamental point for the structural behavior and design of 

composite beams is the level of connection and interaction between the steel beam and the 

concrete slab. Traditionally, the concrete slab and the steel beam were connected by means of 

a mechanical fasten method. In this method, metal connectors such as headed studs and hoops, 

usually welded to the upper flange of the steel girder, are placed in fresh concrete initially, 

and then acted as vertical or horizontal stops after the concrete hardens. The main advantages 

of the traditional method are its mature technique and simple procedure.  

However, the traditional mechanical fasten method has also its weaknesses, which may 

substantially reduce the durability of the steel-concrete composite structures. First, the metal 

shear connectors may induce the origin of cracking in concrete because of the stress 

concentration. Second, the traditional connection technique will reduce the fatigue life of the 

structure due to the welding between the connectors and the steel girder. For these reasons, 

adhesive bonding method has been developed as a new method in steel-concrete composite 

structures since the beginning of the 1960s and has been proved to be very efficient. In this 
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new technique, the concrete slab and the steel girder are connected by an adhesive joint. This 

adhesive joint can tightly combine the concrete slab and the steel girder together and ensure 

the continuity of the stress distribution over the composite beam sections. Therefore, the 

stress concentration caused by metal connectors is not a concern any more and the welding is 

also avoided. Furthermore, the adhesive bonding method makes it possible to directly use a 

prefabricated concrete slab, which will considerably simplify the manufacture procedure and 

reduce the construction cost. 

In fact, adhesive bonding method has already become one of the most accepted 

techniques for strengthening reinforced concrete structures with a steel plate or 

fiber-reinforced polymer (FRP) on the tensile side. However, the studies on extending the 

adhesive bonding method to the steel and concrete composite beams are still limited. The 

application of this alternative technique can introduce some particular issues such as the 

debonding mode and the adhesive failures. Although some investigations on this topic have 

been conducted, the fundamental debonding failure mechanism is yet not fully understood, 

and the effects of some relevant parameters still need to be explored. In addition, owing to the 

difference in mechanical behavior between the adhesive joint and the metal connector, and 

also the dissimilarity in structure design between the composite beams and the FRP 

strengthen beam, there is no much available guidance for the design of the bonded steel and 

concrete composite beam. Therefore, further studies on the mechanical behavior as well as the 

design optimization techniques, including topology optimization, sizing optimization and 

reliability-based optimization, of this new type of structures are necessary. It can be 

anticipated that the adhesive bonded steel and concrete composite beam may share an 

increasing market in the future when these crucial problems are solved. 

The first purpose of this dissertation is to propose an effective nonlinear finite element 

model for analyzing the bonded composite beam. It is well known that laboratory tests require 

a great amount of time, are very expensive and, in some cases, even impractical. On the other 

hand, the finite element method has become a powerful tool for the analysis of a wide range 

of engineering problems. Hence, numerical simulation is considered as a pre-requisite work in 

this treatise. 
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Secondly, this dissertation studies the topology optimization problem of the bonded steel 

and concrete composite beam. Structural topology optimization is used to find optimal 

topology layout characterized by lower cost while satisfying structural performance 

requirements and it has been successfully employed in a wide range of practical design 

problems. However, topology optimization work is lacking on the bonded composite beam. 

Further, by using a new probabilistic and convex set mixed model to describe inherently 

uncertainties, this dissertation presents a reliability-based design optimization problem of 

adhesive bonded composite beams. In a practical steel and concrete composite structure, the 

uncertain scatter of structural parameters, such as geometrical dimensions and material 

properties, about their nominal values is unavoidable. The reliability evaluation and 

optimization design of the bonded composite beam with uncertainty have not been addressed 

in the literature. 

1.2 STRUCTURE OF THE DISSERTATION 
This dissertation is organized as follows: 

In chapter 1, the research background and motivation of this work are briefly presented. 

Previous works on composite beams and optimization design is then reviewed. 

In chapter 2, based on the experimental results by push-out tests, a three-dimensional 

nonlinear finite element model to simulate the mechanical behavior of bonded steel and 

concrete beams is proposed. The comparisons of results by numerical simulation with 

experimental results of simply supported composite beams illustrate the applicability and the 

validity of the proposed numerical methods. Then the verified finite element model is 

employed to investigate the effects of some important parameters on the composite beam 

behavior.  

Chapter 3 presents a three-dimensional topology optimization of composite beams by 

using the Solid Isotropic Material with Penalization (SIMP) approach. The adjoint variable 

scheme for design sensitivity analysis is discussed. The structural optimization problem is 

then solved by a gradient-based algorithm using the obtained sensitivity. 
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Chapter 4 investigates the reliability assessment of bonded composite beams exhibiting 

both stochastic and bounded uncertainties by using a proposed probability and convex set 

mixed model. Numerical examples are given to demonstrate the applicability and 

effectiveness of the proposed mixed model. 

In chapter 5, based on the probability and convex set mixed model in chapter 4 and 

optimal topology layout in chapter 3, a reliability-based design optimization of the bonded 

steel and concrete composite beam incorporating reliability constraints is mathematically 

formulated. A linearization technique is developed to further facilitate efficient solution of the 

optimization problem. The methodology is applied to design the simply supported bonded 

composite beams with a concentrated load. 

In chapter 6, important conclusions are drawn and some future work in this area is 

suggested.  

1.3 REVIEW OF PREVIOUS WORK ON COMPOSITE BEAMS 

The objective of this section is to present a review of the previous work on the steel and 

concrete composite beams. Herein, studies on the traditional metal shear connector as well as 

the composite beam are first summarized. Then, the adhesive bonding method used in the 

steel and concrete composite beam is reviewed. 

1.3.1 The metal shear connector 

In a traditional steel and concrete composite beam, metal shear connectors are welded on 

the top flange of the steel beam before the concrete slab is cast. The role of metal shear 

connectors is of primary importance. Without them, there is no collaboration between the 

steel girder and the concrete slab. The function of the metal connector is to prevent, or at least 

to restrict the slip which can occur along the steel-concrete interface, and thus ensured the two 

different materials acting as a single unit. Since Newmark et al. [3] first used the studs with or 

without head into composite beams in 1950s, a variety of shapes and devices, such as bolt, 

channel, external bolt, friction grip bolt, have been developed as shear connectors [4]. Up to 
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now, economic considerations continue to motivate the development of new products in USA, 

Italy, Germany, Japan and France. However, among them the headed stud is the most largely 

used one in composite beams. 

1.3.1.1 Classification of the connectors 

According to the mechanical characterization (Fig.1.1), the metal connectors can be 

classed into three types, namely the rigid connector, the ductile connector and the 

semi-ductile connector [5, 6]. In general, the mechanical characterization of the connectors 

was obtained by carrying out a standardized test called push-out test. 

 

 
Fig. 1.1  Classification of the connectors and comparison of mechanical property [6] 

 

(1) Rigid connector 

A connector is rigid if it presents an ideally elastic behavior up to destroy. In the 

practical engineering, we rarely used the completely rigid connector because it is difficult to 

manufacture and can introduce brittle fractures. 

(2) Ductile connector 

A connector is considered as ductile when it has the ability of presenting sufficient 

plastic deformation under shearing. As prescribed in the section 10.2 of Eurocode 4 [5], a slip 
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of 6mm to the ultimate load in the standardized push-out test is competent to characterize a 

connector as ductile. 

(3) Semi-ductile connector 

As proposed by Rabih [6], a connector is referred to as “semi-ductile” or “semi-rigid” if 

it can exhibit an ideally elastic-plastic behavior. This means that an ideally elastic behavior is 

firstly exhibited and then a perfectly plastic behavior follows at a certain load point.  

In addition, according to the number of connectors, a connection can also be classed as 

full shear connection or partial shear connection. We can consider a composite beam to be full 

shear connection when an increase in the number of connectors does not involve any more 

increase of the flexural strength of the beam. The failure of the beam with a full shear 

connection is characterized by the plasticization (or the instability) of the steel girder or by the 

ruin of the concrete. Correspondingly, connection is partial shear connection when the 

number of connectors in a shearing zone is lower than the number necessary for obtaining a 

full shear connection. In this case, there is a slip in the steel-concrete interface. The failure of 

the composite beam with a partial connection will occur with the exhaustion of its flexural 

strength. 

1.3.1.2 Tests for the connectors 

In a composite beam, the metal connector is subjected to a bending moment M , a shear 

force V  and a normal tension force F  (Fig.1.2). Generally speaking, the connector mostly 

risks of destroying by shearing while the tensioning is relative small. Consequently, several 

testing approaches were developed to characterize the mechanical behavior of the connectors 

under shear loads. 

① Push-out test: A schematic representation of the push-out test is given in Fig.1.3. It is 

the standardized test proposed by Eurocode and makes possible to determine the ultimate 

load, the failure mode and the load-slip curve.  

② Push-in test: Compares to the push-out test, push-in test posits the concrete slab in 

the middle, and each face of the slab is connected to a steel girder. [7] (Fig.1.4). 
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③ Double push-out test: As shown in Fig.1.5, double push-out test is more complicated 

because it is a double symmetric shear test which consists of two steel girders and four 

groups of shear connectors [8]. 

 

 
Fig. 1.2  Forces applied to the connector in a composite beam 

 

 
Fig. 1.3  Push-out test 

 

Fig. 1.4  Push-in test Fig. 1.5  Double push-out test 
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Obviously, the basic principles of these different tests are in common. However, the 

comparison tests [9] have shown that the push-out test is the most representative and 

easily-implemented operation of characterizing the connectors in a composite beam. On the 

other hand, it should be noted that there are some crucial problems in the push-out test: 

① The size of the concrete slab and the quantity of the reinforcement may be different 

between the push-out test and the reality. 

② The numbers of connectors are usually different, only one or two in the case of the 

push-out test while more in the reality. This may raise the question of the group effect. 

③ The transverse inflection is not well represented in the push-out test. 

1.3.2 Traditional steel and concrete composite beams 

A traditional steel and concrete composite beam consists of a steel girder and a 

reinforced concrete slab, which are connected by metal shear connectors. It is common sense 

that concrete is strong in compression but weak under tension, while steel is strong in tension 

but susceptible to buckling under compressive forces. The fact that each material is used to 

take advantage of its positive attributes makes the composite construction very efficient and 

economical. 

1.3.2.1 Experimental research 

Experiments on traditional steel and concrete composite beams were first studied by 

Chapman and Balakrishnan [10] in 1960s. Since then, a significant amount of experimental 

research focusing on the behavior of the traditional composite beams has been reported in the 

literature.  

Under static loads, the ruin of the composite beam may occur because of the local 

dislocation in the concrete, the fracture of the shear connectors or the excessive plastic 

deformation of steel girder. The early research mainly studied the mechanical behavior of the 

traditional composite beams such as the flexural strength [11] and the ultimate strength [12]. 

Later, Johnson and Willmington [13] conducted experiments on continuous composite beams 
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in combined negative bending and vertical shearing. Their test results indicated that the 

longitudinal steel reinforcement in the concrete slab can also increase the strength and 

stiffness in vertical shearing. Roberts and Al-Amery [14] carried out a series of experimental 

tests of short-span composite plate girders, and the results showed that adequate connectors 

can significantly enhance the shear strength of the composite structure. Nie et al. [15] 

suggested an empirical equation for calculating the shear strength of steel-concrete composite 

beams by sixteen simply supported specimens. They indicated that the concrete flange itself 

can bear 33%-56% of the total ultimate shear in the composite beams. Allison et al. [16] 

tested five composite plate girders and one steel plate girder with slender vertically stiffened 

webs to study the action of the shear connection on tension field. 

Moreover, to investigate the impairment of the structural strength due to web openings, 

Clawson and Darwin [17] tested six composite beams with rectangular web openings, which 

were uniform in opening size while different in location of openings. Lebet and Ducret [18] 

explored the causes of transverse cracking in the concrete slab by in-situ measurements and 

laboratory tests, and they also studied the effect of concrete hydration in the steel and concrete 

composite bridges. Jurkiewiez and Braymand [19] investigated the influence of the initial 

transverse cracks by testing a pre-cracked steel-concrete composite beam. Measured data 

showed a strong discontinuity existing in the longitudinal distribution of the slip, which led to 

a noticeable deflection of studs. 

Recently, some experimental studies focus on the new strengthening methods for 

composite beam design. Chen [20] proposed a steel-concrete composite beam prestressed 

with external tendons in negative moment regions, which can effectively prevent the concrete 

cracking forming. Jurkiewiez and Hottier [21] presented an innovative horizontal connection 

equipped in steel-concrete composite beams to avoid welding. The push-out tests as well as 

the bending tests validated that the innovative connection did not fail during the test and 

allowed for efficient transmitting of shear forces from the slab to the girder. Al-Saidy et al. 

[22] suggested a strengthened steel-concrete composite beam by attaching Carbon Fiber 

Reinforced Polymers (CFRP) plates to the bottom flange and the web of the steel girder. The 

experimental results showed that using lightweight CFRP plates could enhance the strength 

and stiffness of steel-concrete composite girders by up to 45% of the original strength.  
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1.3.2.2 Numerical method research 

Because laboratory tests require a great amount of time and cost, many research efforts 

have also been devoted into the development of various analytical methods as well as the 

finite element method. It is well known that the finite element method is a very powerful 

numerical method for simulating complicated engineering problems. Since 1950s, the finite 

element method has been developed to solve a variety of structural and multi-physical 

problems [23-25]. 

In 1977, Wegmuller et al. [26] firstly applied the nonlinear finite element method into 

composite steel-concrete bridges. A layered model together with an incremental iterative 

procedure is employed to determine the response of the bridge in the post-elastic range. Then, 

by establishing the element shear stiffness properties with empirical force-shear deformation 

relationship, Razaqpur and Nofal [27] developed a three-dimensional bar element to model 

the nonlinear behavior of the shear connectors in composite concrete-steel structures. Salari et 

al. [28] developed a new composite beam element based on the governing equations of the 

composite beam with deformable shear connectors under small displacements. Therein, a 

distributed spring model is used to account for the shear deformation at the interface. 

Fabbrocino et al. [29] proposed a numerical procedure based on well-known kinematic 

models to analyze the behavior of composite beams under short term loads. An original 

moment-curvature generalized relationship for the cross section was introduced for analyzing 

the structural behavior easily. Faella et al. [30] used a displacement-based finite element 

model to solve steel-concrete composite beams with flexible shear connection. The stiffness 

matrix and the fixed-end nodal force vector are directly derived from the “exact” solution of 

Newmark’s differential equation. Sebastian and McConnel [31] developed a nonlinear finite 

element program for modeling composite beams. Concrete is represented as a nonlinear 

elastic isotropic material before cracking and nonlinear orthotropic thereafter, while steel is 

assumed to be initially elastic but with strain-hardening capabilities after yielding. A 

specialized stub element with empirical nonlinear shear force-slip relationships was used at 

the concrete slab-steel beam interface to model shear connector. Sapountzakis and 

Katsikadelis [32] presented a new model to analyze the reinforced concrete slabs stiffened by 

steel beams with deformable connection including creep and shrinkage effect. Moreover, this 
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model was used to solve the dynamic problem of the same composite structures [33]. In 

addition, Dall’Asta and Zona [34] introduced a new three-field mixed beam element and two 

displacement-based beam elements for the non-linear analysis of composite beams with 

deformable shear connection.  

The above works have implemented the proposed finite element models for particular 

problems of composite beams, which may be time-consuming and unfavorable in 

applicability. Advances in computation and software have brought the finite element method 

into software packages which will significantly simplify the modeling and analyzing process. 

Nowadays, more and more academic researchers and engineers used these finite element 

commercial software packages to solve practical engineering problems. 

As early as 1980, Hirst and Yeo [35] have used the standard finite element packages to 

analyze composite beams with partial and full shear connection, in which a quadrilateral 

element was employed to simulate discrete stud shear connectors. Recently, Thevendran et al. 

[36], Baskar et al. [37] and Liang et al. [38] utilized the commercial software ABAQUS to 

predict the ultimate load behavior of steel-concrete composite beams. In their approaches, the 

stud shear connectors were modeled by a three-dimensional beam element. Based on another 

commercial finite element software ANSYS, Queiroz et al. [39] proposed a three-dimensional 

finite element model to simulate the overall flexural behavior of simply supported composite 

beams subjected to either concentrated or uniformly distributed loads. In this model, 

elastic-plastic shell element (SHELL43) and solid element (SOLID65) were used for the steel 

girder and the concrete slab, respectively, while nonlinear spring element (COMBIN39) was 

used for the shear connectors. 

1.3.2.3 Effective width evaluation 

Due to the action of in-plane shear strain in the concrete flange, the normal stress 

distribution is not uniform along the slab width, which is termed as “shear lag” [40]. In a 

steel-concrete composite beam system, the concrete flange width may not be fully effective in 

resisting compression due to the shear lag phenomenon. The concept of effective width was 
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then introduced in the hypothesis of linear-elastic component materials as a simplification of 

the shear lag problem. As shown in Fig.1.6, the effective width is defined as 

 e e,1 e,2 0B a a d= + +  (1.1) 

where 0d  is the width of the connection zone, e,1a  and e,2a  are analytically expressed as 
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Fig. 1.6  The effective width definition of a composite beam 

 

Estimation of effective width had been a challenging research topic, because it requires 

solutions of partial differential equations governing plate in-plane and bending behaviors. The 

effective width depends not only on the relative dimensions of the structure, but also on the 

type of loading, the support conditions and the considered cross section. However, in most 

codes of practice, very simple formulae are given for the calculation of effective width, 

though this may lead to some loss of economy. For example, for simply-support beams in 

buildings, the Eurocode [5] and the BS5400 [41] proposed that the effective width is 1/8 of 

span length, but not greater than half the distance to the next adjacent web, nor greater than 

the projection of the cantilever slab for edge beams. These limits are different in AASHTO 

[42] and the Chinese code provision [43] for the design of steel-concrete composite beams, in 

which the effective width of 1/4 and 1/6 of the span length is suggested respectively. A detail 

comparison in these provisions has been carried out by Ahn et al. [44]. 
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Recently, Amadio and Fragiacomo [45] analyzed the effective width of steel-concrete 

composite beams by a parametric study carried out through the Abaqus code. Further, a 

experimental study by Amadio et al. [46] demonstrated that the effective width varies with 

loading conditions. By dividing the whole beam into the sagging bending moment zone and 

the hogging bending moment zone, a simple modification of Eurocode was then presented. 

Moreover, Chen and Zhang [47] evaluated the effective width of composite beams prestressed 

with external tendons by the finite element method. They concluded that the effective width 

of the beam prestressed with external tendons slightly greater than the effective width when 

the beam is not prestressed. The influences by creep, shrinkage and the shear connection 

degree can be neglected in evaluation of the effective width. 

1.3.3 Bonded steel and concrete composite beams 

During the last fifty years, the adhesive bonding method has been developed for various 

reasons. On the one hand, the chemistry of polymers (epoxy resin or polyurethane) made it 

possible to produce adhesives being much more powerful and more durable. On the other 

hand, the development of manufacture technique made it possible to bond the concrete 

material and some metal materials tightly by adhesives.  

Initially, the adhesive bonding method was used for repairing the damaged reinforced 

concrete beams and slabs by bonding many steel plates at the damage location. It was proven 

that the external bonding method is an efficient repair technique by virtue of its simplicity and 

facility in construction [48]. Afterwards, the adhesive bonding method was widely applied in 

both buildings and bridges to enhance the flexural capacity or the shear capacity by bonding 

steel plates to the tension face or side-faces of the structure [49-51]. In recent years, plate 

bonding to the concrete beam has gained new impetus with the use of lightweight 

fiber-reinforced polymer (FRP) composite materials [52-57]. Numerical simulations showed 

that the maximum shear stress increases with increases in the amount of fibers aligned in the 

beam’s longitudinal axis, the modulus of the adhesive material and the number of laminate 

layers. However, the maximum peel-off stress decreases with increasing thickness of the 

adhesive layer. 
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The first experimental attempt of using the adhesive bonding method to assembly a steel 

and concrete composite beam was implemented by Miklofsky et al. [58] at the beginning of 

the 1960s. Two composite beams, including one traditional beam and one beam bonded by an 

epoxy adhesive, were tested to study the applicability of the adhesive bonded composite beam. 

At the same time, other experimental works by Kriegh and Endebrock [59] explored the 

technological features of epoxy resins and testified the validity of using this technique in 

composite beams. The research works [60, 61] also showed the adhesive bonding method can 

restrict the risk of cracking and thus increase the durability of structures. To ensure a better 

connection, Hick and Baar [62] carried out ten push-out tests to choose the type of gravel and 

the quantity of adhesive. The results showed that the 8/16 crushed porphyry and a 2.5mm 

thickness layer of Araldite AW132 epoxy adhesive are preferable. Then, a two-stage 

manufacture procedure was proposed. First, the upper surface of the steel beam in contact 

with the concrete is sanded, degreased and coated by a layer of adhesive in which the 

aggregates are set up. Second, 24 hours later, the casting of the concrete slab is carried out. 

Following this procedure, the ruin usually occurs in the concrete slab near the adhesive under 

shearing. 

Nordin and Täljsten [63] compared the composite beams which connected in two ways: 

casting by steel shear connectors and bonding by epoxy adhesive. The results from the 

four-point bending tests showed that the adhesive bonding connection worked better than the 

steel shear connection in the laboratory. However, they also pointed out that this technique 

would be more complicated because there is still lack of the guidance available for the design 

of this technique used in composite beams. 

Si Larbi et al. [64] investigated the static and instantaneous behavior of the bonding 

connection in the context of composite beam by performing push-out tests under various 

conditions. Experimental results showed that the bonding connection exhibits a very high 

stiffness and nearly the same strength as mechanical connectors. The risk of cracking in the 

concrete slab is also significantly reduced, which may increase the durability of bonded 

steel-concrete composite structures compared with ones equipped with mechanical 

connectors. 
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Bouazaoui et al. [65] studied the mechanical behavior and the parameter effect of bonded 

steel-concrete composite beams. The experimental tests showed that the connection between 

the steel girder and the concrete slab ensured by epoxy adhesive is perfect. The results also 

revealed the influence of the variation in adhesive thickness on the mechanical behavior and 

ultimate force is negligible. 

Zhao and Li [66] used the finite element method to study the nonlinear mechanical 

behavior and failure process of bonded steel-concrete composite beams. Based on the 

numerical simulative results, the authors concluded three major reasons for the failure of the 

composite beam, namely cracking of the concrete caused by the local tensile stress, crushing 

of the concrete caused by the compressive stress, and extensive yielding of the steel beam 

under the global bending moment. 

The above literature investigation showed that using the adhesive bonding as connection 

in steel and concrete composite beams is quite efficient. The adhesive bonding technique can 

be considered as an alternative method to the traditional mechanical connection. In conclusion, 

the advantages of the adhesive bonding connection over the traditional metal shear connectors 

are listed as follows. 

① The adhesive bonded composite beam obtains a continuous transfer of the effort and 

thus decreases the appearance of shear stress concentration. 

② Reduction in the total weight of the composite structure. 

③ The adhesive bonding method makes it possible to eliminate the welding of the shear 

connectors which may deteriorate the mechanical performance of steel girder. 

④ The bonded adhesive layer is impermeable and thus protects the joint of steel girder 

against corrosion. 

⑤ The capacity of dissipation of the polymers which constitute the adhesives makes it 

possible to damp out the vibrations. 

⑥ The opportunity of employing prefabricated concrete slabs instead of fresh concrete 

running on the steel girder is very interesting for the mixed construction industry. The 

traditional methods of connection between the concrete slab and the steel girder are not 
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or little appropriate for fast implementation. 

However, it should also be noted that the tensile strength of the adhesive is rather low, 

and the adhesive bonding method is a relatively complex and expensive technique. Therefore, 

it is necessary to have good knowledge of the adhesive for efficiently using this method, 

which implies the solution of the following problems: 

① Preparation of the surface to be bonding. The treatments to the surface of steel girder 

and concrete by mechanical or physicochemical operations are in general expensive but 

essential to eliminate the impurities, to increase the energy of surface and the mechanical 

fixing by creating roughness, and to support damping in order to facilitate the spreading 

out of the adhesive. 

② The behavior of the adhesive bonding layer under constraints is different from that of 

the traditional assemblies, and it is also different from that of concrete beams 

strengthened by steel plate or FRP. The failure mechanisms are still not fully understood, 

and the influences of several parameters are not yet investigated very clearly. 

1.4 REVIEW OF STRUCTURAL OPTIMIZATION DESIGN 

In this section, a review to structural deterministic optimization, topology optimization 

and non-deterministic optimization under uncertainty is given. 

1.4.1 Structural optimization 

Since the advent of high speed computing in the 1950s, numerical techniques, such as 

the finite element method and the mathematical programming theory, provided an opportunity 

to improve existing designs and identify better designs early in the design process of 

machines and structures. The process of improvement of these designs basically forms the 

scope of structural optimization design. The application of the structural optimization has 

been extended to a wide range of design problems involving in the fields of civil construction, 

transportation, aerospace and national defense [67-69]. 
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A general structural optimization problem is usually stated as to minimize an objective 

function subject to inequality and equality constraints insuring the feasibility of the structural 

design: 
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where [ ]T
1 2, , , Nd d d= …d  denotes the vector of design variables. These design variables can 

be either continuous, for example dimensions of a beam, or discrete, for example number of 

strands in a cable, type of material, or a combination of the two. ( )f d  is the objective 

function, which typically is the structural cost or performance. ( ) 0ig ≤d  and ( ) 0ih =d  are 

the inequality constraints and equality constraints respectively, such as the requirements on 

stress, displacement or frequency. gN  and hN  are the constraint numbers.  

An optimization problem is said to be linear when both the objective function and the 

constraints are linear functions of the design variables, which can be solved by a linear 

programming method. Otherwise, the optimization is said to be nonlinear. For the nonlinear 

optimization, we need to search the optimum by moving the design point from one to another. 

While there are many numerical search techniques available, most of them proceed through 

four basic steps in performing the move. 

① The first step is the selection of the active constraint set discussed in the structural 

optimization model.  

② The second step is the calculation of a search direction based on the objective 

function and the active constraint set. Some methods (such as the gradient projection 

method) look for a direction which is tangent to the active constraint boundaries. Other 

methods, such as the feasible direction or the interior penalty function method, seek to 

move away form the constraint boundaries.  

③ The third step is to determine how far to go in the direction found in the previous step. 

This is often done by a process called a one dimensional line search because it seeks the 
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magnitude of a single scalar which is the distance to be travelled along the given search 

direction.  

④ The last step is the convergence criterion check which determines whether additional 

moves are required. 

1.4.2 Structural topology optimization 

Three types of structural optimization problems at the level of macroscopic design can 

be categorized: sizing optimization, shape optimization and topology optimization. The sizing 

optimization (Fig.1.7) provides the means to generate optimal designs by modifying structural 

dimensions, while shape optimization (Fig.1.8) achieves this goal by adjusting geometrical 

position. Therefore the topology of the structure is predefined and remains unchanged 

throughout sizing and shape optimization process. The topology optimization (Fig.1.9), 

however, does not pre-specify an initial topology as requirement. In a topology design process, 

by giving an arbitrary design domain, loads, and boundary conditions, the connectivity and 

solid material distribution of the structure are gradually emerged during the design process 

itself. In simple terms, the aim of topology design is to characterize the indicator function by 

determining the distribution of solid material (or multiple phases of material) within the 

available domain. Therefore, the topology optimization is most valuable as preprocessing 

tools for sizing and shape optimization [70]. 

 

  

Fig. 1.7  Sizing optimization Fig. 1.8  Shape optimization Fig. 1.9  Topology optimization

 

Depending on the type of a structure, there exist two types of topology optimization, 

namely discrete or continuous. For discrete structures, such as truss structures, the topology 
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design problem aims to determine the optimum number, positions and mutual connectivity of 

the structural members within a predefined ground structure (Fig.1.10). The earliest design 

theory for the topology of discrete structures can be traced back to 1904 by Michell [71]. 

Subsequently, this area of research has been active for several decades and the interested 

readers are referred to the comprehensive review papers by Ringertz [72], Kirsch [73] and 

Rozvany et al [74]. 

 

 
Fig. 1.10  Ground structure 

 

In the topology optimization of continuum structures, it is assumed that the loading is 

prescribed and that a given amount of structural material is specified within a given 2D or 3D 

design domain with given boundary conditions. Then by using certain solution strategy, the 

shape of external as well as internal boundaries and the number of inner holes are optimized 

simultaneously with respect to a predefined design objective. Since Bendsøe and Kikuchi [75] 

first introduced the homogenization method into the optimal material distribution problem in 

late 1980s, the topology optimization of continuum structures has become an extremely active 

research field in the structural optimization community during the last two decades. There are 

several research activities going on throughout the world, and many different practical 

numerical methods have been developed and applied successfully to a variety of structural 

and multidisciplinary topology design problems [76, 77]. 

(1) Homogenization-based optimization method 

In homogenization-based optimization (HBO) method, topology optimization is 

transformed to the problem of material redistribution within a design domain constructed by 
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composite material with microstructures. The effective material properties of the composite 

material are calculated using the theory of homogenization [75, 78, 79].  

 

 
Fig. 1.11  Schematic representation of material microstructure [79] 

 

The homogenization based optimization method first assumed that a periodic 

microstructure exists in the vicinity of an arbitrary point of a linearly elastic structure, and 

then introduced the concept of composite porous media. By introducing a material model with 

periodic, perforated microstructure, namely the hole-in-cell microstructure, the topology 

optimization problem is regularized via relaxation (extension) of the design space. The 

periodicity of the micro-structural model implies that the macroscopic mechanical properties 

of the structure can be determined by the microstructural parameters by means of the 

homogenization techniques. As shown in Fig.1.11, the design domain is composed of infinite 

micro-voids and then re-distributes a pre-specified amount of material by controlling the size 

and orientation of the voids. Two coordinate systems, X  and Y , are defined to describe the 

material on the macroscopic scale and on the microscopic scale, respectively. The design 

variables of the topology optimization model are the dimensions of these microstructures. If 

the hole is full of the entire cell, the cell is void. Contrarily, if the hole reduces to zero, the cell 

represents solid. 

(2) Density function method 



Chapter 1: Introduction 

  22

The density function approach proposed by Mlejnek and Schirrmacher [80], Yang and 

Chuang [81] has become a very popular approach for determining structural layout because of 

its simplicity and efficiency. In this approach, individual elements are considered to be of 

isotropic material. Unlike the homogenization method, in which the size and orientation of the 

voids are design variables, the material density of each finite element is selected as the design 

variable and the intermediate density is penalized (Fig.1.12). A comparison of the topology 

optimization based on the density and the homogenization is given in reference [82]. 

 

  
(a) (b) 

Fig. 1.12  Comparison of cell configurations for topology optimization 

 (a) Homogenization method; (b) Density function approach 

 

The effective material properties can be evaluated using the relationships between the 

material density and Young’s modulus, which is called material model. Some familiar 

material models including the Solid Isotropic Material with Penalization (SIMP) [83, 84] and 

Rational Approximation of Material Properties (RAMP) [85], have been applied to a wide 

range of structural as well as multidisciplinary design problems. Both SIMP and RAMP 

introduce the penalization power to force the topology design toward limiting values, 0 

denotes void and 1 denotes solid, and thereby prompt the creation of more distinctive 0-1 

topology designs. 

(3) Evolutionary Structural Optimization 

The evolutionary structural optimization (ESO) proposed by Xie and Steven [86] seeks 

the optimum design by removing the lowest stressed material from an oversized structure in 
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an evolutionary manner. Each time elements are removed, the structure is re-analyzed to 

obtain the new load paths. This is repeated until the result is a fully stressed design where all 

the members support the same maximum stress.  

The ESO method requires a very small structural modification per cycle, and thus the 

computational cost is expensive. The new technique developed was the bidirectional ESO 

(BESO) method [87, 88], which involves adding material where the structure is over-stressed 

and simultaneously removing material where the structure is under-stressed in an iterative 

manner until a fully stressed design in achieved.  

This kind of evolutionary optimization techniques is known as the hard kill optimization 

method. Without element elimination, Mattheck and Burkhardt [89], Baumgartner et al [90] 

suggested a soft kill option (SKO) method. In the SKO method, by setting the Young’s 

modulus equal to the effective stress of elements in an optimization process, the optimal 

topology that represents an efficient load-carrying mechanism in the design domain can be 

characterized by the variation in its modulus. 

(4) Level Set Method 

The level set method was proposed by Osher and Sethian [91] in 1988 for tracing the 

propagation of the interfaces by driving one or several higher dimensional level set functions. 

The level set method was firstly introduced into the structural topology optimization by 

Sethian and Wiegmann [92]. In essence, the method employs the implicit moving material 

interface models or the level set vectors to represent complex interfaces, and the movement of 

the material interfaces is governed by a Hamilton-Jacobi type partial differential equation, 

whose robust numerical algorithm can handle topology merging or breaking naturally during 

the topology optimization process. For an overview, see also references [93, 94]. 

Other approaches such as the bubble method [95], the genetic algorithm [96], the neural 

networks algorithm [97], the bionics method [98] and the independent continuous mapping 

method [99], also have been employed to solve a wide range of topology optimization 

problems. In this paper, the density function method associated with SIMP model is used to 

design the topology layout of the steel and concrete composite beam. 
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1.4.3 Structural optimization design under uncertainty 

Deterministic structural optimization searches for minimum cost without considering the 

uncertainties in design, manufacturing and operating processes. However, in a practical 

engineering design problem, as a rule, the uncertain scatter of structural parameters about 

their nominal values is unavoidable. For example, the applied loads may fluctuate 

dramatically during its service life-cycle, and the parameters defining the structure, such as 

geometrical dimensions and material properties, are also subject to inaccuracies or deviations. 

The structural performance always exhibits some degree of variations due to uncertainties of 

material properties, loading conditions, geometric dimensions, etc. Therefore, accounting for 

the inherent uncertainties of structures, non-deterministic structural optimization is attracting 

increasing attentions both in theoretical research and practical applications. 

1.4.3.1 Probabilistic reliability-based approach 

Conventionally, uncertainties in structures are inherently modeled as stochastic variables 

(or random fields/ processes) with certain probability distribution. Based on the classical 

probability theory, the probabilistic reliability theory provides a powerful methodology to 

take into account those uncertainties in the analysis and design of structures [100, 101]. The 

purpose of this methodology is to assess the structural reliability or the failure probability in 

presence of stochastic uncertainties. 

A fundamental problem in structural probabilistic reliability theory is the computation of 

a multi-fold probability integral, which led to the development of various approximation 

methods [102]. As widely accepted by the engineering community, the first order reliability 

method (FORM) [103, 104] is one of the most efficient computational methods for the 

probabilistic structural reliability. The FORM constructs an approximation to the limit-state 

surface by a linear function, accuracy problems occur when the performance function is 

strongly nonlinear. The second order reliability method (SORM) [105-107] was then 

proposed as an attempt to improve the accuracy of FORM by approximating the limit-state 

surface using a quadratic surface. In general, FORM and SORM are sufficiently accurate for 

engineering purposes. However, these gradient based methods, which require the derivatives 
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of limit-state function with respect to the uncertain variables, were hardly effective when 

direct or analytical differentiation is impossible. The response surface method [108, 109] 

emerged as an alternative. Since the response surface commonly presents a simple form even 

an explicit expression, the computational operation cost can be reduced. Moreover, many 

classical procedures, such as Monte Carlo method, gradient projection method, were easily 

applied to improve the efficiency of the response surface [110-113]. 

Based on the probabilistic reliability theory, non-deterministic structural optimization, 

including Reliability-Based Design Optimization (RBDO) [114, 115] and structural robust 

design optimization [116-118], is attracting increasing attentions both in theoretical research 

and practical applications. While robust design aims at minimizing variation of the objective 

performance, RBDO puts more emphasis on reliability of the constraints. Robust design and 

RBDO are highly desirable because they have huge implications in commercial applications 

such as gaining greater market share for higher profits in the long run. In particular, RBDO is 

an effective approach to avoid structural failure and to enhance safety in the presence of 

uncertain parameters.  

In the conventional RBDO method [119, 120], the probabilistic constraints are stated in 

terms of the reliability indices. This is the reliability index approach (RIA). At every iteration 

in the RIA, the reliability indices are calculated by determining the most probable point (MPP) 

from the FORM. The computational requirements are costly because numerous reliability 

analyses should be performed. Furthermore, the MPP search is very expensive for highly 

nonlinear constraints. Recently, a new approach, called the performance measure approach 

(PMA), has been introduced by Tu et al. [121]. To estimate the probabilistic constraints, the 

PMA employs probabilistic performance measures which satisfy target reliability indices. The 

PMA is reported to be more robust and efficient than the conventional RIA [122] and 

enhanced by techniques such as sequential optimization and reliability assessment [123] and 

the hybrid mean value method [124]. 

Some previous studies have shown that uncertain variations of both structural parameters 

[125] and material microstructures [126] may have considerable effects on the structural 

layout design. Thus, the Reliability-Based Topology Optimization (RBTO) [125], which 
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integrates the probabilistic reliability concept into the topology design of continuum 

structures, has been investigated by many authors for the conceptual design of large 

deformation structures [127], micro-electromechanical systems (MEMS) [128-131], heat 

transfer devices [132], and multi-physics coupled systems [133]. These studies showed that 

structures designed under specific reliability constraints may have different optimal 

topologies compared with conventional deterministic optimal designs. 

1.4.3.2 Non-probabilistic approach based on convex model 

The analysis of the probabilistic reliability requires precise information on the 

distribution of the uncertainties involved in the design. These data are hardly available in 

some practical engineering applications where there are only a limited number of samples or 

the uncertainties are inherently non-probabilistic. Studies on the construction of probabilistic 

models on the basis of incomplete information can be dated back to five decades ago. A long 

tradition in probability theory is to use the maximum entropy approach for setting up target 

distributions in the absence of sufficient sample data [134, 135]. The basic assumption of this 

approach is that the distribution of maximum entropy under constraints of first statistical 

moments matching is the least-biased estimation of the real distribution. The maximum 

entropy approach tends to produce a distribution that is closest to uniform. 

However, it is noticed that the probabilistic reliability may be sensitive to the description 

of the random parameters and thus just small errors in the inputs may yield misleading results 

[136]. These, to some extent, prevent the conventional probabilistic methods from wider 

applications in practical engineering designs. Consequently, the quantification of various 

uncertainties in realistic systems is still a challenge problem [137] and a number of attempts 

have been made to apply non-probabilistic models, such as convex model and fuzzy 

randomness model, for mathematical description of the uncertainty in non-deterministic 

structural analysis and optimization problems with limited uncertainty information [138, 139]. 

In many circumstances, the bounds of the uncertainties, compared with the precise 

probability distribution data, are more easily available. The convex model, which provides an 

objective description of the boundary of the parameter variations without considering the 
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inner distribution, is suitable to treat those uncertain-but-bounded parameters in the 

optimization of uncertain structures. In the 1990s, Ben-Haim [140, 141] and Elishakoff [142] 

first discussed the concept of non-probabilistic reliability based on the convex model theory. 

The principal assumption behind this concept is that: a structural system is considered to be 

more reliable when it allows for a greater extent of uncertainties, and vice versa. In this 

context, the reliability of a structural system is measured with the maximum extent of 

uncertainties it permits. Following this idea, researchers have developed a variety of 

formulations and numerical techniques for implementing the non-probabilistic design 

optimization, which serves as an alternative to the well-established RBDO approaches when 

complete information on the uncertainty distribution is not available. Qiu and Elishakoff [143, 

144], Elishakoff et al. [145] studied the optimal design of truss structures with 

uncertain-but-bounded parameters using the interval set modelling combined with a so-called 

anti-optimization technique. The interval set was also employed by Tabakov and Walker [146] 

to model the manufacturing tolerances in the ply angle optimization of a laminated composite 

shell using the GA algorithm. Lombardi and Haftka [147], Pantelides and Ganzerli [148] 

applied the anti-optimization technique to the optimization of structures with uncertain 

loading conditions. To avoid the expensive anti-optimization computations, Ganzerli and 

Pantelides [149] developed a convex model superposition technique. 

Among the existing studies, the frequently used convex models are the interval model 

and the ellipsoid model. A principle characteristic of the interval model is that all the 

uncertain-but-bounded variables vary independently and thus may reach their extreme values 

simultaneously. For this reason, a pure interval model is often criticized for providing an 

over-conservative description of the system variability. On the other hand, the ellipsoid model 

considers all the variables to be correlated with each other, which excludes extreme 

combination of uncertain parameters and thus avoids over-conservative designs. It should be 

noted that in most cases only part of these uncertain-but-bounded variables are actually 

correlated while some others vary independently. Therefore, a more realistic way is to divide 

all the uncertain-but-bounded quantities into groups and treat them with a multi-ellipsoid 

convex model. The optimal structural design based on the multi-ellipsoid convex model for 
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grouped uncertainties has been investigated by Ben-Tal and Nemirovski [150], Luo et al 

[151]. 

1.4.3.3 Probabilistic and non-probabilistic mixed approach 

In the risk assessment of engineering structures, a frequently encountered case is that: 

some of the uncertainties can be characterized with certain probability distributions and other 

uncertainties need to be treated as bounded ones due to their inherent natures or lack of 

sufficient sample data. A combination of stochastic variables and uncertain-but-bounded 

variables has been suggested for applications in such circumstances [152]. Penmetsa and 

Grandhi [153] presented a function approximation technique for the lower and upper bounds 

estimation of the structural reliability in the presence of both stochastic and interval variables. 

Similar problems have also been studied by Kreinovich et al. [154] and Qiu et al. [155]. 

Moreover, Du et al. [156] investigated the reliability-based design optimization of structures 

characterized by random and interval-valued parameters. In these studies, the upper bounds of 

the failure probability are determined numerically and used for measuring the structural 

reliability. Expensive interval arithmetic is usually involved for this task. Recently, the fuzzy 

set theory has also been combined with the probability theory for handling structural systems 

involving epistemic uncertainties arising from linguistic or subjective measures [157-159].  
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2.1 INTRODUCTION 

In comparison with laboratory tests which are highly time and cost demanding, the 

numerical simulation is cheaper, time-saving, not so dangerous and more information. As the 

computational power has intensely increased, numerical methods, in particular the finite 

element method (FEM), have also been resorted for analysis of many practical engineering 

problems. During the past three decades, numerous finite element programs have been 

developed which are able to solve linear, nonlinear, static, dynamic, elastic, plastic, steady 

state as well as transient problems. 

In bonded steel and concrete composite beams, the debonding of the adhesive layer is 

one of the principal causes for deterioration or damage and the steel/concrete interfacial 

bonding shear strength plays an important role. However, the bonding shear strength depends 

not only on the mechanical properties of the component materials, but also on the surface 

properties of the steel and the concrete. Therefore, to effectively simulate the mechanical 

behavior of bonded composite beams, the interfaces should be distinguishingly modelled and 

the bonding shear strength is needed to be tested in advance. 

In this chapter, the push-out test is first implemented to determine the shear strength of 

the adhesive bonding connection. Then, a three-dimensional nonlinear finite element model is 

proposed for analysis the bonded steel and concrete composite beams. This model takes into 

account the nonlinearity of the structure and also the effect of the concrete/adhesive interface. 

After being validated by existing experimental tests, this model is used to investigate the 

effects of some important parameters on the mechanical performance of the composite beams, 

including the elastic modulus of adhesive, the thickness of adhesive layer, the bonding 

strength and the bonding area. 

2.2 PUSH-OUT TEST 

The push-out test is a test for the mechanical connection of two different materials. It is 

widely used in the traditional steel and concrete composite structures for assessing the 
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interfacial shear strength of shear connectors. Herein, the push-out test has been implemented 

for studying the shear behavior of bonded composite beams. 

2.2.1 Push-out specimen 

A total of three uniform specimens were constructed. Each specimen consists of two 

concrete slabs and one steel girder. The geometry and the dimensions of the specimens have 

been chosen in reference to Bouazaoui et al. [65], as shown in Fig.2.1. The concrete parts 

contain some constructional reinforcement to strengthen concrete. The bonding area is 110 

mm×350 mm on each face of the steel girder and the required thickness of adhesive layer is 

5mm. 

 

 
Fig. 2.1  Dimensions of push-out specimen (unit: mm) 
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2.2.2 Materials 

The used concrete slabs were cast at the same time and stored in the same ambient 

conditions. The cement type was Portland Cement CEM I 52.5 and the compositions of the 

concrete were listed in Table 2.1. The compressive mechanical characteristics, strength and 

elastic modulus, of the concrete were determined after cure for 28 days by means of standard 

tests performed on two Ф16×32 cm cylindrical specimens. The value of the elastic modulus 

obtained was 36,600 MPa and the average compressive strength was 71 MPa. The tensile 

strength obtained by bending tests on a parallelepiped concrete specimen of dimensions 

10×10×40 cm was 5.0 MPa. 

 

Table 2.1  Composition proportion in one cubic meter concrete 

Composition Proportion (kg/m3)

Coarse aggregate 1050 

Sand 681 

Cement 400 

Silicafume 30 

Water 150.5 

Additives (sike viscosifier) 3.2 

 

The steel girder used in construction of the specimen was 400 mm in length cut from an 

IPE 220 rolled beam, having a depth of 220 mm, a flange width of 110 mm, and a linear 

weight of 26.2 kg/m. The steel’s material properties were tested by an MST 250 kN tensile 

testing machine. The average values obtained from the test for the elastic modulus and yield 

strength were 205,000 MPa and 470 MPa, respectively. The ultimate tensile strength was 570 

MPa. 

The adhesive layer was made of an epoxy resin which has a rigid behavior at the 

working temperature [-30 ºC, +60 ºC]. This epoxy resin can offer a good strength of adhesion 

but less flexibility. Its viscosity allows direct application on the steel surface. The measured 

mechanical properties of epoxy adhesive were listed in Table 2.2. 
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Table 2.2  Mechanical properties of epoxy adhesive 

Properties Value 

Young’s modulus (MPa) 12,300 

Poisson’s ratio 0.34 

Ultimate strength (MPa) 19.5 

Ultimate strain 0.0016 

 

2.2.3 Test preparation 

Before bonding the steel girder to concrete slabs, the surface treatment was necessary not 

only for removing any particles and impurities, but also for modifying the microcosmic nature 

of the surface and thus increasing its surface energy to improve the bonding quality. In this 

process, the concrete surface in contact with the adhesive was treated by means of corundum 

sandblasting to expose the coarse aggregates (Fig.2.2a), and then cleaned by an acetone 

solvent. The steel surface of the flanges was also sandblasted (Fig.2.2b). 

 

 

 

(a)  (b) 

Fig. 2.2  The surface treatment before bonding 

(a) The concrete slab; (b) The steel girder 

 

24 hours after the surface treatment, the epoxy adhesive was coated on the steel surfaces 

of the two flanges along the length of the steel girder. It should be ensured that the coated 
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thickness of the epoxy adhesive was about 2 mm more than the final required thickness. After 

setting the required thickness of the adhesive layer (5 mm), the concrete slabs were tightly put 

upon the two faces of the steel girder. The remaining adhesive should immediately cleaned by 

a spatula. 

Two days after the bonding operation, measuring instrumentations can be equipped on. 

During the test, the vertical displacement at loading point was continuously recorded by a 

Linear Variable Differential Transformers (LVDT). With the aim of measuring the evolution 

of the strains of the steel girder, a total of 3 strain gauges (G1, G2 and G3) were installed on 

the web of steel girder in the vertical direction. The location of these instrumentations was 

shown in Fig.2.3. Herein, the measuring data from the LVDT and strain gauges were recorded 

by using a data acquisition system connected to a computer. 

 

  
Fig. 2.3  Location of instrumentations (unit: mm) 

 

The prepared push-out specimen was loaded by using the loading equipment with a 

capacity of 800 kN (Fig.2.4). To ensure the specimen was properly seated and all the 

instruments were working well, a small preload of 20 kN was applied on the push-out 

specimen and removed gradually before the actual test. After this pre-operation, a 

continuously increasing load at a uniform rate was then applied to the specimen up to failure. 
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Fig. 2.4  Push-out loading equipment 

 

2.2.4 Push-out results 
 

Fig. 2.5  Failure mode of push-out specimen 
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Fig. 2.6  Load versus strain in the web of steel girder 
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Fig. 2.7  Average shear stress versus slip curve 

 

The failure mode of the push-out specimen is shown in Fig.2.5. It can be observed that 

the failure occurred within the first 2-5 mm of the concrete from the steel/concrete interface. 

Although the epoxy adhesive was subjected to a large shear force, no cracks were observed in 

the adhesive layer. This failure mode indicates a good bonding connection between the steel 
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and the concrete. The linear strain curves obtained by strain gauges showed that the steel 

girder is still in the stage of elastic deformation (Fig.2.6).  

Fig.2.7 shows the evolution of the relative slip according to the applied average shear 

stress. The behavior of the bonding connection is close to linear elastic until a brittle failure, 

with the ultimate shear strength of 6.36 MPa and a very small ultimate slip. The curve of 

shear stress versus slip shows the bonding connection by epoxy adhesive can be considered as 

rigid. 

2.3 FINITE ELEMENT MODEL OF BONDED COMPOSITE BEAMS 

Using the finite element package ANSYS [160], a three-dimensional finite element 

model was developed to simulate the nonlinear behaviour of the bonded steel and concrete 

composite beams. The concrete slab was modeled by the 8-node concrete solid element 

(SOLID65), which is capable of cracking in tension and crushing in compression. Reinforcing 

steel bars in concrete were represented by the 3D beam element (BEAM188). The adhesive 

layer and the steel girder were modeled by the 8-node solid element (SOLID45). 

 

X

Y

Z

 
Fig. 2.8  Finite element mesh for a quarter of the composite beam 
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When the steel and the concrete were bonded by the epoxy adhesive, the previous 

push-out test showed that the debonding failure occurs through a thin layer of concrete near to 

the adhesive layer, while the adhesive layer itself is not cracking since the shear strength of 

the adhesive are usually higher than that of concrete. In view of this special failure 

phenomenon, a nonlinear spring element (COMBIN39) was employed to simulate the shear 

debonding characteristic of concrete/adhesive interface, whereas the steel/adhesive interface 

was assumed to be perfectly bonded. Due to symmetry of the problem, only a quarter of the 

simply supported composite beam was modeled by imposing an appropriate boundary 

condition on the symmetric areas, as shown in Fig.2.8. 

2.3.1 Concrete/adhesive interface modeling 

For the bonded steel and concrete composite beam, the interface of concrete slab and 

adhesive layer, where the debonding failure may occur, must be modeled specially. As shown 

in Fig.2.9, the nonlinear springs were added between the adjacent concrete element and 

adhesive element to model the shear resistance of concrete/adhesive interface, which has zero 

thickness. In this model, the normal nodal displacements were considering as coincident in 

the interface. 

 

 
Fig. 2.9  Schematic illustration of concrete/adhesive interface modeling 

 

The element COMBIN39 is a one-dimensional element defined by two nodes and a 

generalized force-deflection curve. The two nodes may be anywhere in space (including the 



Chapter 2: Nonlinear finite element simulation of bonded composite beams 

  39

node-coincident case). The points on the force-deflection curve (denoted by D1, F1, etc.) 

represent force versus relative translation for structural analyses. Therefore, the shear 

behavior of the concrete/adhesive interface can be evaluated quantitatively by the 

force-deflection curve. Using the average shear stress versus slip curve in Fig.2.7 obtained 

from the available push-out test, a table of force values F and relative slip values D for the 

nonlinear springs can be defined as follows. 

 iF A
D s

τ= ×

=
 (2.1) 

where iA  is the bonding area corresponding to the ith nonlinear spring, τ  and s  are the 

average shear stress and slip, respectively. 

2.3.2 Concrete modeling 

The concrete slab was modeled by a smeared crack model using the von Mises yield 

criterion with an isotropic hardening assumption. The concrete element is capable of cracking 

in tension and crushing in compression. In this model, if cracking or crushing behavior is 

predicted, the stress-strain relation is then adjusted associated with the integration points 

according to conditions. 

(1) Compressive behaviour 

Concrete in compression is considered to be an elastic-plastic and strain-softening 

material. The elastic modulus and the compressive strength of concrete slab, measured at the 

28th day after concreting by means of standard cylindrical specimen tests, are denoted by cE  

and /
cf , respectively. The stress-strain curve is assumed to be linear up to /0.4 cf , and the 

nonlinear stress-strain relationship for concrete in uniaxial compression can be expressed as 

an equation which was proposed by Carreira and Chu [161]. 
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/ /
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where cσ  is the concrete compressive stress, cε  is the concrete strain, /
cε  is the strain 

corresponding with the compressive strength /
cf , and mγ  is a modified material parameter 

defined by 

 
( )/ /

1
1m

c c cf E
γ

ε
=

−
 (2.3) 

If the material at an integration point fails in compression, the material is assumed to be 

crushed at that point. In the concrete element, crushing is defined as the complete 

deterioration of all the strength characteristics of the material. In this paper, the crushing 

capability of the concrete element is disabled for improving convergence. 

(2) Tensile behaviour 

Concrete in tension was considered as a linear-elastic material up to the uniaxial tensile 

cracking stress, which is defined as the function of the compressive strength, that is 

/ /0.6225ct cf f= . In the model, the presence of a crack at an integration point is represented 

through modification of the stress-strain relations by introducing a plane of weakness in a 

direction normal to the cracking face. Thus, the tensile stress decreases to zero immediately 

after concrete cracking. A typical asymmetry between the compressive and the tensile 

behaviour for concrete is shown in Fig.2.10. 

 

 
Fig. 2.10  Concrete stress-strain curve for uniaxial loading 
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(3) Crack shear transfer 

The reduction in shear strength was taken into account as the crack opens. It is obvious 

that a considerable amount of shear stress can be transferred across the crack faces of concrete 

due to the surface nature of the crack face. Therefore, a “shear transfer coefficient” tγ  for an 

open crack is introduced which represents a shear strength reduction factor for shear sliding 

across the crack face. On the other hand, if the crack closes, then all compressive stresses 

normal to the crack plane are transmitted across the crack and a “shear transfer coefficient” 

cγ  for a closed crack is also introduced. The value of shear transfer coefficients is between 0 

and 1, where 0 represents a smooth crack (complete loss of shear transfer) and 1 represents a 

very rough crack (no loss of shear transfer). The coefficients considered herein are 0.35tγ =  

and 0.75cγ = . 

2.3.3 Adhesive and steel modeling 

The adhesive layer composed of epoxy resin or polyurethane was assumed to be linear 

elastic, isotropic material up to failure. The stress-strain relationship for the adhesive layer is 

expressed as 

 
0

a au

au

E ε ε ε
σ

ε ε
≤⎧

= ⎨ >⎩
 (2.4) 

where σ , ε , aE  and auε  are the actual stress, the actual strain, the elastic modulus and 

the ultimate strain in the adhesive, respectively. 

For the steel I-girder, an elastic-plastic isotropic hardening rule and the von Mises 

yielding criterion were considered. A piece-wise linear stress-strain curve was used for steel 

girder in both compression and tension. The von Mises yield criterion was also used for the 

internal reinforcing steel in the concrete slab, and an isotropically hardening material is 

assumed, with perfectly plastic after the elastic limit. 
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2.4 VALIDATION OF THE FINITE ELEMENT MODEL 

Two simply supported bonded steel-concrete composite beams (denoted by beam P1 and 

beam P2) tested to failure by Bouazaoui et al. [65], were analyzed by using the proposed 

nonlinear finite element model for the validation purpose. The span of the composite beams 

was 3486mm and the loads were applied to the mid-span of the beams. These two beams, 

with the only difference in the material properties of the adhesive layer (epoxy resin for beam 

P1 and polyurethane for beam P2, respectively), have the same dimensions as shown in 

Fig.2.11. The material properties for the composite beams are given in Table 2.3. In the FE 

model, a total of 24554 elements are used for modeling a quarter of the composite beam. 

 

Table 2.3  Material properties of the composite beams 

Material Properties Value 

Concrete slab Young’s modulus (MPa) 36,600 
 Poisson’s ratio 0.28 
 Compressive strength (MPa) 68 

 Strain in compressive strength 0.003 

Steel girder Young’s modulus (MPa) 205,000 
 Poisson’s ratio 0.3 
 Yield stress (MPa) 470 
 Ultimate strength (MPa) 570 

 Ultimate strain 0.1 

Reinforcing steel Young’s modulus (MPa) 205,000 
 Poisson’s ratio 0.3 

 Yield stress (MPa) 500 

Epoxy resin adhesive Young’s modulus (MPa) 12,300 
 Poisson’s ratio 0.34 
 Ultimate strength (MPa) 19.5 

 Ultimate strain 0.0016 

Polyurethane adhesive Young’s modulus (MPa) 38.3 
 Poisson’s ratio 0.38 
 Ultimate strength (MPa) 9.2 
 Ultimate strain 0.24 
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(a) (b) 
Fig. 2.11  Sketch of the composite beams  

(a) Overall dimensions; (b) Cross-section dimensions (mm)  
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Fig. 2.12  Load-deflection curves from finite element model and test results 

 

The curves of load versus mid-span deflection predicted by the proposed finite element 

model are compared with the corresponding test results in Fig.2.12. A good agreement 

between the numerical and experimental results was obtained not only in the initial stiffness 
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but also in the ultimate strength. The ultimate loads obtained by the present model are 

230.5kN for beam P1 and 197kN for beam P2, which are 3.2% lower and 6.5% higher than 

the experimental ultimate value, respectively. The nonlinear numerical simulation also 

confirmed the experimental observation that the failure of bonded composite beams is caused 

by the concrete slab cracking and the steel girder yielding, without the debonding of adhesive 

connection. Therefore, it can be concluded from these comparisons that the finite element 

model developed in this paper is capable of predicting the nonlinear behavior of bonded steel 

and concrete composite beams. 

2.5 EFFECTS OF PARAMETERS 

2.5.1 Effects of the elastic modulus of adhesive 
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Fig. 2.13  Load-deflection curves of composite beams for various elastic modulus of adhesive 

 

As can be observed in Fig.2.12, the initial stiffness and the ultimate strength of beam P2 

are much lower than those obtained in the beam P1. This shows that the mechanical behavior 
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of the bonded composites beam highly depends on the adhesive’s material properties. The 

proposed model was further used to investigate the behavior of bonded steel and concrete 

composite beams with various elastic modulus of adhesive, whereas other conditions 

remained unchanged. 
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Fig. 2.14  Relationship between the initial stiffness and elastic modulus of adhesive 

 

The load-deflection curves of composite beams with various elastic modulus are shown 

in Fig.2.13. It can be observed that the initial stiffness and the ultimate strength increase with 

the elastic modulus of the adhesive layer. Moreover, the nonlinear relationship between the 

initial stiffness of load-deflection curve and the elastic modulus of the adhesive layer is shown 

in Fig.2.14. According to the correlative level, three parts can be divided in this relation. In 

the first part ( 0 1 MPaaE< < ), the bonding effect by adhesive is much feeble because it 

cannot prevent the slip between the concrete slab and the steel girder at all. The mechanical 

behaviour of the bonded composite beam with adhesive property among this part is the same 

as the beam without any connection. In the second part (1 MPa 1,000 MPaaE≤ ≤ ), a strong 

interaction between the initial stiffness and the elastic modulus is observed. The performance 

of bonded connection depends strongly on the elastic modulus of the adhesive. However, in 
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the third part ( 1,000 MPaaE > ), the initial stiffness is almost not affected by the elastic 

modulus of adhesive. The adhesive bonding can effectively prevent the slip between the 

concrete slab and the steel girder in this part. Therefore, it is worth pointing out that the 

elastic modulus of adhesive material should be taken among the third part in order to ensure 

the desired performance of the bonded steel and concrete composite beams. Therefore, the 

advisable minimal value of the elastic modulus of the adhesive is 1000 MPa. 

2.5.2 Effects of the adhesive layer thickness 

In the practical operation condition, it is always difficult to control the thickness of the 

adhesive layer in a regular required thickness due to the complexity of construction in situ. In 

this section, a detailed investigation on the effects of adhesive thickness is carried out by the 

proposed nonlinear finite element analysis. The investigated composite beams have different 

adhesive layer thickness, whereas all other structural and material parameters are the same as 

beam P1. 
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Fig. 2.15  Load-deflection curves of composite beams for various adhesive thicknesses 
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The corresponding load-deflection curves of composite beams with the adhesive 

thickness of 3mm, 5mm, 7mm, 10mm and 15mm are shown in Fig.2.15. It appears from the 

figure that the initial stiffness of the bonded composite beam is barely influenced by the 

adhesive thickness and the ultimate load slightly increases with an increase of the adhesive 

thickness. When the adhesive thickness increases from 3mm to 15mm, the ultimate load only 

increases by 6.3%. 
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Fig. 2.16  Relationship between relative ultimate load and adhesive layer thickness 

 

The relationship between the relative ultimate load u u0F F  and the adhesive layer 

thickness t  is shown in Fig.2.16. A linear regression with a very low growth rate is then 

obtained as 

 ( ) ( )u

u0

0.0053 3 1, 3mmF t t
F

= − + ≥  (2.5) 

where t  is in mm, uF  is the ultimate load, u0F  is the ultimate load of beam P1 with 

3mmt = . It can be concluded that the effects of adhesive thickness on the performance of 

composite beams are relative small. 
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2.5.3 Effects of the bonding strength 

The debonding failure of the bonded steel and concrete composite beams depends on the 

bonding strength of concrete/adhesive interface, i.e. the ultimate shear stress uτ . In generally, 

the bonding strength is determined mainly by the strength of concrete, the properties of 

adhesive, the technology of surface treatment and the quality control in construction. In this 

section, we investigate the debonding behaviour of composite beams with various bonding 

strengths, ranging from 0.5 MPa to 6.0 MPa. The material properties given in Table 2.3 for 

beam P1 were used for all cases. 
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Fig. 2.17  Load-deflection curves of composite beams for various bonding strengths 

 

In Fig.2.17, the ultimate loads when the debonding failure occurs can be observed. The 

debonding failure is a typical brittle destroy process with a catastrophic failure of the 

composite beams when an ultimate load is reached. Thus, an important issue in the design of 

the bonded composite beams is to avoid the failure in debonding mode. Furthermore, a 

nonlinear relationship between the ultimate load and the bonding strength for those fully 

bonded composite beams is plotted in Fig.2.18. It can be observed that the debonding failure 
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will occur if the value of bonding strength locates in u 5.0 MPaτ ≤  and the ultimate load 

increases rapidly with the bonding strength. When u 5.0 MPaτ > , the adhesive bonding 

connection is sufficient and the debonding failure will not occur for this fully adhesive 

bonded composite beam. 
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Fig. 2.18  Relationship between ultimate load and bonding strength 

 

2.5.4 Effects of the bonding area 
 

 
Fig. 2.19  Distribution of the bonded region 

 

Another key factor that influences the debonding behavior of the bonded composite 

beam is the bonding area. In the present study, a relative bonding area χ , which is the 
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percent ratio of the actual adhesive bonding area to the maximal possible bonding area, was 

used. Here we assumed the actual bonded region is distributed evenly in subsection along the 

length of beam (see Fig.2.19). To quantify its effects, the simply supported composite beams 

similar as the beam P1 but with various relative bonding areas, ranging from 50% to 100%, 

were analyzed. 
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Fig. 2.20  Relationship curves between ultimate load and relative bonding area 

 

The curves of the ultimate load versus the relative bonding area are plotted in Fig.2.20. 

For the composite beam with the bonding strength 6.36MPa , the higher relative bonding 

area ( 80%χ ≥ ) resulted in a perfect connection without the debonding failure. However, 

when the relative bonding area 80%χ < , the composite beam will fail in debonding. For the 

case of the bonding strength u 5.5 MPaτ = , the critical value of the bonding area, χ,  is 90%. 

Below the critical bonding area, the ultimate load of the steel-concrete composite beam is 

influenced by the bonding area. 

It is worth noting here that the debonding failure is mainly determined by an average 

bonding strength, which equals to the relative bonding area multiplying the bonding strength, 

namely u uτ χτ= . Therefore, combining the effects of bonding strength and bonding area, an 
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approximate value of average bonding strength u 5.0MPaτ ≈  is needed to be ensured for this 

bonded composite beam in order to avoid the debonding failure. 

2.6 SUMMARY 

This chapter first carried out an experimental push-out test to study the debonding failure 

mode and determine the bonding strength. Then, a validated three-dimensional nonlinear 

finite element model based on the finite element package ANSYS was proposed to predict the 

parametric effect of bonded steel and concrete composite beams. From the experimental and 

numerical results, the following conclusions can be drawn: 

 The epoxy adhesive bonding connection between the steel girder and the concrete slab 

provided a bonding strength of 6.36MPa and a rather small ultimate slip. The debonding 

failure takes place within the first 2-5 mm of the concrete from the adhesive/concrete 

interface. 

 The mechanical behaviour of the bonded composite beam depended strongly on the 

adhesive’s material properties. The elastic modulus of adhesive material should exceed 

1,000MPa in order to ensure the desired performance of bonded steel and concrete 

composite beams. 

 The ultimate load of the bonded composite beam depends linearly on the thickness of the 

adhesive layer. However, this influence is relative small in practical engineering. 

 The debonding failure of the bonded steel and concrete composite beam mainly depends 

on the bonding strength and the bonding area. In view of their effects, an average 

bonding strength u 5.0MPaτ ≈  should be ensured in order to avoid the debonding 

failure. 
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3 CHAPTER 3: 

TOPOLOGY DESIGN OF THE BONDED COMPOSITE 

BEAM 
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3.1 INTRODUCTION 

During a typical sizing or shape design process, the shape and dimensions of an 

otherwise complete structure with fixed topology are adjusted. In the steel and concrete 

composite beam, this initial fixed topology is often chosen intuitively or based on previous 

experience. Therefore, before we carry out the sizing design optimization of the bonded 

composite beam, a more reasonable topology configuration should be firstly determined 

Topology optimization methods of continuum structure are the selection of the best 

configuration for the design of structures and thus are most valuable as preprocessing tools for 

sizing and shape optimization. In a topology design process, the connectivity and structural 

architecture is not pre-specified but emerges from the design process itself. It is widely 

accepted that topology optimization is of considerable practical importance because it 

achieves by far greater savings and design improvements than mere sizing or shape 

optimization. 

In this chapter, a three-dimensional topology optimization methodology is presented for 

the design of the bonded steel and concrete composite beam. Following the SIMP approach, 

an artificial material model with penalization for elastic constants is assumed and elemental 

density variables are used for describing the structural layout. The considered problem is thus 

formulated as to find the optimal structural topology that minimizes the structural cost 

(material volume) under specified displacement constraints. In this context, an adjoint 

variable method is used for the sensitivity analysis and the Method of Moving Asymptotes 

(MMA [162]) is employed to update the design variables. Finally, the optimal topology of the 

steel and concrete composite beam is obtained. 

3.2 TOPOLOGY DESIGN OF THE BONDED COMPOSITE BEAM 

By giving a design domain, loads, and boundary conditions, the connectivity and solid 

material distribution of the structure are gradually emerged during the topology design 

process. Denoting the whole design domain by Ω  and the body occupied by the structural 
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solid material by solidΩ , the concept of material topology optimization can be described using 

a discrete function φ  defined at each point s  as 

 solid

solid

1 ,
( )

0 \ .
φ

∀ ∈⎧
= ⎨ ∀ ∈⎩

s Ω
s

s Ω Ω
 (3.1) 

The structural topology optimization problem is mapped into a discrete material 

distribution problem finding the discrete indicator function ( )φ s  that minimizes an objective 

(or objectives) subject to constraints (see Fig.3.1). 

 

 
Fig. 3.1  Schematic illustration of material topology optimization 

 

In the considered topology optimization problem, the composite beam structure is 

designed to minimize the total material volume while still satisfying constraints on specified 

global behaviors such as structural displacements. Based on the material defining at each 

point of design domain, the topology optimization of continuum structures with displacement 

constraints is stated as 

 ( )
( )

max,

min ( )d

s.t. 0 1, 2,..., ,

( ) 0 or 1,
j j jg U U j m

φ
φ

φ

= − ≤ =

= ∀ ∈

∫Ωs
s Ω

s s Ω

 (3.2) 

where jU  is the displacement in the thj  constraint, and max, jU  is the maximum allowable 

value of the corresponding displacement. 
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For the topology optimization of the considered bonded steel and concrete composite 

beam, a linear elastic response is assumed in this preprocessing design. The design domain of 

the bonded composite beam is depicted in Fig.3.2. Herein, only the steel part undergoes 

topological optimization design, while the concrete part is regarded as a non-optimized region. 

For the purpose of simplification, the adhesive layer is ignored and the steel girder and the 

concrete slab are assumed to be connected perfectly. 

 

 

Fig. 3.2  Design domain of the bonded composite beam (Unit: mm)  

 

Herein, all the materials are assumed to be linear, elastic and isotropic. The Young’s 

modulus and the Poisson’s ratio of the steel and the concrete material selected from 

experimental values are the following: 205,000MPasE = , 0.3sν = , 36,600MPacE = , 

0.28cν = . The composite beam is simply supported and an external concentrated force F , 

with the magnitude of 200kN, is applied to the concrete slab at the mid-span of beam in 

downward direction. In this topology optimization design, a vertical displacement constraint 

mid 10mmU ≤  is imposed on the loading point. 
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3.3 SOLUTION STRATEGY 

3.3.1 SIMP approach 

The topology optimization problem (3.2) is by definition a discretized 0-1 programming 

one and in general cannot be solved analytically. A frequently used method to relax the 

formulation is the SIMP approach (Bendsøe [83]; Zhou and Rozvany [84]), which introduces 

an artificial isotropic material model and replaces the binary topology design variables with 

element-wise material density variables. The material density variable takes the value 1 in 

solid domain solidΩ  and 0 elsewhere. In the method, by dividing the whole design domain 

Ω  into finite elements, a penalized interpolation scheme between the material properties and 

the density variables is assumed for suppressing intermediate density values in the resulting 

optimal design. Using the SIMP approach, the optimization problem is rewritten as 

 
( ) ( ) ( )

1

max,

min

min

s.t. ,
0 1, 2,..., ,

,

N

e e
e

j j j

V V

g U U j m

ρ
=

=

=

= − ≤ =

< ≤ ≤

∑ρ

ρ ρ

ρ ρ

KU P

0 1

 (3.3) 

where [ ]T
1 2, ,..., Nρ ρ ρ=ρ  is the vector of elemental relative densities which are taking as 

design variables, V  is the total material volume, N  is the total number of elements, eρ  

and eV  are the relative density and the volume of the the element, respectively. K  is the 

global stiffness matrix, U  is the nodal displacement vector, P  is the external force vector 

and =KU P  defines the linear equilibrium state of the finite element model. In order to 

avoid numerical difficulties caused by zero densities, a lower-bound limit min0 1ρ< <<  is 

imposed on the density variables.  

In the artificial material model, the Young’s modulus for each element is expressed as a 

function of the relative density variable, namely 

 ( )0 1,2,..., ,p
e eE E e Nρ= =  (3.4) 
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where 1p >  is the penalization factor, 0E  is the elastic modulus for the fully solid material. 

Fig.3.3 shows the relative stiffness ratio 0eE E  versus relative density eρ  for different 

values of the penalization factor p , and illustrates that the nonlinearity of the SIMP model 

implicitly penalized intermediate densities toward limiting values 0ρ =  (void) and 1ρ =  

(solid) and thereby leads approximately to a “0-1” material distribution in the design domain. 

In this paper, the penalty factor is set to be 3p = , which is a usual value used by many 

topology optimization studies (Bendsøe and Sigmund [163]). 
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Fig. 3.3  The penalty effect with different penalization factors in SIMP model 

 

It is a drawback of the SIMP approach that the obtained topology results may not only 

exhibit checkerboard patterns, but also dependent on the orientation and refinement of the 

mesh. Many additional regularization methods, such as the perimeter method [164], the slope 

control approach [165], the higher-order finite element method [166] or the filtering method 

[167], were developed to augment the formulation of the optimization problem. In this study, 

the well-known sensitivity filtering technique [168], which restricts the discontinuity of the 
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optimized material distribution by smoothing the gradients of objective and constraints, is 

employed. The sensitivity filtering formula is expressed as 

 
m

( )' '
' 1 '

'
' 1

1 ˆ 1,2,..., ,
ˆ

e

e

N

e eN
ee e

e e
e

g gH e N
H

ρ
ρ ρρ =

=

∂ ∂
= =

∂ ∂∑
∑

 (3.5) 

where 'eg ρ∂ ∂  is the original sensitivity and m
eg ρ∂ ∂  is the modified or smoothed 

sensitivity. The weight factor '
ˆ

eH  is written as 

 
( ) ( )

( )
min min

'
min

, ' , , 'ˆ
0, , 'e

r d e e d e e r
H

d e e r
− ≤⎧⎪= ⎨ >⎪⎩

 (3.6) 

where ( ), 'd e e  is defined as the distance between centre of element e  and centre of 

element 'e , minr  is a given filter radius and is set as 1.5 times the length of element. Eq.(3.6) 

denotes that the weight factor decays linearly with the distance from element e  to 'e  and is 

zero outside the filter area. Instead of the original sensitivities, the modified sensitivities are 

used in the optimization update. It should be noticed that this sensitivity filtering technique 

has not yet been proven to ensure existence of solutions. However, numerous applications 

have shown that the filter improves the checkerboard pattern and produces mesh-independent 

design in practice. 

3.3.2 Solving algorithm of optimization problem 

The SIMP approach leads to a smooth constrained optimization problem, which can be 

efficiently solved by gradient-based optimization algorithms. For complex topology 

optimization problems, the number of optimization variables is typically large as the 

resolution of the structural geometry increases with the number of finite elements in the 

design domain. Several mathematical programming methods, such as sequential linear 

programming (SLP), sequential quadratic programming (SQP), sequential convex 

programming (SCP), have been advocated. In this study, the convex approximation-based 
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MMA algorithm [162], which is particularly applicable for large-scale topology optimization, 

was successfully employed. 

Based mainly on gradient information, MMA approximates the original implicit 

optimization problem into a series of strictly convex and explicit sub-problems, which implies 

that there is always a unique optimal solution. The process is expounded as follows. 

We first assumed a general form of the nonlinear constraint optimization problem 

 

( )

( ) ( )
( )
( )

2
0 0 0

1
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,min ,max

0

1min ( )
2
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∑
…
…
…

z

z
 (3.7) 

where [ ]T
1, , Lz z= …z  are the true optimization variables, [ ]T1, , Mr r=r …  and 0r  are the 

artificial optimization variables, 0 1, , , Mf f f…  are continuously differentiable real-valued 

functions, ,minjz  and ,maxjz  are the lower and upper limits of design variables, 0a , ia , ic  

and id  are given real numbers, which satisfy 0 0a > , 0ia ≥ , 0ic ≥ , 0id ≥  and 

0i ic d+ > . By chosen those real numbers appropriately, the general form (3.7) can be put into 

many particular optimization problems. For the ordinary nonlinear programming in this study, 

we chose 0 1a = , 0ia = , 0 0r = , 10000ic = , 0id = . 

In the k-th iteration, the current iteration point ( ) ( ) ( )( )0, ,k k krz r  is obtained. Based on the 

current iteration point, an approximating explicit sub-problem is then generated as 
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Obviously, in the above sub-problem, the functions ( )if z  are replaced by their 

first-order approximating convex functions, namely 

 i ( ) ( )
( )

( )

( )

( )
( ) ( )

1

0,1, , ,
k kNk ij ij k

ii k k
j j j j j

p q
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where 
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and 
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In Eqs.(3.10) and (3.11), ( )k
jl  and ( )k

ju  are the lower asymptotes and the upper 

asymptotes, respectively. The asymptotes are used to adjust the convex properties of 

sub-problems. The default rules for updating the asymptotes are as follows. 

When in the first two iterations ( 1, 2k = ), 
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,max ,min

0.5 ,

0.5 .

k k
j j j j

k k
j j j j

l z z z

u z z z

= − −

= + −
 (3.12) 
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When 3k ≥ , 
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where 

 ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 2

1 1 2

1 1 2

0.7 if 0,

1.2 if 0,

1 if 0.

k k k k
j j j j

k k k k k
j j j j j

k k k k
j j j j

z z z z

z z z z

z z z z

γ

− − −

− − −

− − −

⎧ − − <
⎪
⎪= − − >⎨
⎪
⎪ − − =⎩

 (3.14) 

According to the lower asymptotes ( )k
jl  and the upper asymptotes ( )k

ju , the lower limits 

( )
,L
k

jξ  and the upper limits ( )
,U
k

jξ  of the design variables in sup-problem (3.8), which satisfy 

( ) ( ) ( ) ( ) ( )
,L ,U

k k k k k
j j j j jl z uξ ξ< ≤ ≤ < , can be determined. 
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After solved the strictly convex sub-problem, a unique optimal solution ( )0, , r∗ ∗ ∗z r  can 

be obtained. Letting ( ) ( ) ( )( ) ( )1 1 1
0 0, , , ,k k kr r+ + + ∗ ∗ ∗=z r z r , then a new sub-problem is generated. 

This process will continue up to the convergent criteria is satisfied. 

3.3.3 Sensitivity analysis 

It is worth mentioning that, when the number of the design variables is less than that of 

the structural behaviour constraints, the direct variable method is suitable for calculating the 

derivatives of the constraint function with respect to the design variables. Otherwise, the 

adjoint variable sensitivity analysis method is computationally more efficient. In topology 

optimization of continuum structures, the number of design variables is typically much larger 

than that of structural behavior constraints. As a common practice in such circumstances, the 
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adjoint variable method is employed for an efficient sensitivity analysis. The associated 

computational scheme is given as follows. 

The linear equilibrium equation for a structure under static loads reads 

 =KU P  (3.16) 

where K  is the global stiffness matrix, U  is the nodal displacement vector and P  is the 

external force vector. 

Differentiating the equilibrium equation with respect to the the  elemental design 

variable eρ , it yields 
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One obtains the following relation from (3.17) 
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Introducing an adjoint vector λ , which is the solution to the equation 

 ,jg∂
=
∂

K
U

λ  (3.19) 

the sensitivity of the j-th constraint value can be given as 
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The derivative of the global stiffness matrix in (3.20) can be easily calculated at the 

elemental level in the considered topology optimization problem, thus (3.20) becomes 
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where eλ  and eU  are the elemental adjoint vector and the elemental displacement vector, 

respectively; eK  is the elemental stiffness matrix. Using the SIMP material interpolation 

relation in Eq.(3.4), the derivative of eK  with respect to the density design variables is given 

by 

 ( )1
0 1, 2, , ,

e
p e

e
e

p e Nρ
ρ

−∂
= =

∂
…K K  (3.22) 

where 0
eK  is the elemental stiffness matrix computed with unit density. If no 

topology-dependent loading conditions are considered, the first term on the right-hand side of 

(3.21) vanishes, otherwise it can be computed with special treatments [169], but this is 

beyond the scope of this study. 

3.4 OPTIMAL STRUCTURAL LAYOUT 

In view of the symmetry, one quarter of the whole composite beam is modeled with 

14400 eight-node 3-D solid elements, in which 9900 elements are occupied by the design 

domain. Accordingly the symmetry constraints were put on the symmetry areas. The topology 

optimization process starts with a homogeneous material density distribution 0.5eρ =  

( )1,2, ,9900e = … . 

The iteration history of the structural topology design problem plotted in Fig.3.4 shows a 

steady decrease of the objective function during the optimization process. The optimal 

structural layout obtained by the topology optimization approach is presented in Fig.3.5 and 

Fig.3.6. Herein, Fig.3.5(a,b) show the front view and the side view respectively. Both figures 

show the distribution of smoothed nodal densities, which are computed by averaging the 

density values of neighboring elements. In the figures, the black areas denote the solid regions 

in the resulting structural topology; the white areas indicate the void regions and the grey 

areas represent the regions with intermediate densities. The corresponding 3-D colorful 

distribution of the relative densities is presented in Fig.3.6(a). After deleted the low density 
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elements ( 0.8eρ < ), the optimal topology of the bonded steel and concrete composite beam is 

then revealed in Fig.3.6(b) distinctly. 
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Fig. 3.4  Iteration history of the topology optimization 

 

 

(a) 

 
(b) 

Fig. 3.5  Plan views of the optimal structural layout  

(a) The front view; (b) The side view 



Chapter 3: Topology design of the bonded composite beam 

  65

 
0

.111111

.222222

.333333

.444444

.555556

.666667

.777778

.888889

1

(a) 

(b) 
Fig. 3.6  3-D optimal layout of the bonded composite beam 

(a) Distribution of the relative densities; (b) Solution with relative densities less than 0.8 removed 

 

 

Compared with the conventional composite beam composed by concrete slab and 

I-girder, the topology optimization solution suggests a distinct different structural layout. It 

should be noted that it will be more economical in this specific problem to design the bonded 
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composite beam based on the optimal layout than merely to augment the dimension of the 

beam. 

3.5 SUMMARY 

In the design of bonded steel and concrete composite beam, a topology optimization in 

the early stage is of considerable practical importance. Based on the SIMP approach, this 

chapter presented a three-dimensional topology optimization methodology of the bonded 

composite beam. By using the adjoint variable method for the sensitivity analysis, the 

optimization problem is efficiently solved by the gradient-based optimization algorithm 

(MMA). The proposed topology approach presented a new structural topology of the bonded 

steel and concrete composite beam.  
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4.1 INTRODUCTION 

In a practical engineering problem, including the bonded steel and concrete composite 

beam, the structural performance may exhibit some degree of degradation due to inherent 

uncertainties in material properties, geometrical dimensions and loading conditions. 

Conventionally, uncertainties in structural systems are modeled as stochastic variables (or 

random fields/ processes) with certain probability distribution. Based on the classical 

probability theory, the probabilistic reliability theory provides a powerful methodology to 

take into account those uncertainties in the analysis and design of structures. The purpose of 

this methodology is to assess the structural reliability or the failure probability in presence of 

stochastic uncertainties.  

A probability-based reliability assessment requires precise probabilistic characteristics of 

the random inputs. These data, however, are sometimes practically difficult to obtain, 

especially when only a limited number of input samples are available or the uncertainties are 

inherently non-probabilistic. With the limited available information, it is relatively easy to 

construct a conservative set-valued model that is consistent with the uncertainties, even if an 

accurate probabilistic model cannot be set up. A typical example of such uncertainties is the 

geometrical dimensions of a manufactured product, the variation range of which is controlled 

by specified tolerance bounds. In such cases, the set theory-based convex model [170], which 

bounds all possible values of the uncertainties within a convex set without assuming any 

probability distributions, is attractive for representation of those uncertain-but-bounded 

variables. 

In the risk assessment of engineering structures, a frequently encountered case is that: 

some of the uncertainties can be characterized with certain probability distributions and other 

uncertainties need to be treated as bounded ones due to their inherent natures or lack of 

sufficient sample data. A combination of stochastic variables and uncertain-but-bounded 

variables has been suggested for applications in such circumstances. As the previous literature 

survey reveals, a number of attempts have been made for mixed uncertainty quantification. 

However, most of the existing papers focus on the combination of stochastic randomness and 
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interval set, which is the simplest instance of the convex model. Apparently, the reliability 

definition based on combination of probability and convex set models (in particular, 

multi-ellipsoid convex model), as well as systematic numerical techniques for associated 

reliability evaluation, has not been fully explored in the literature. 

In this chapter, we first present a brief introduction to the conventional probabilistic 

model and the multi-ellipsoid convex model as a prerequisite. Then, a definition of structural 

reliability under mixed model representation with stochastic variables and uncertain-but 

-bounded variables is proposed. Therein, the multi-ellipsoid model is employed for 

representing these bounded uncertainties. The calculation of the corresponding reliability 

index is mathematically stated as a constrained minimization problem. Two solution 

approaches, namely the mathematical programming method and a direct iterative approach, 

are presented for seeking the worst-case point and the most probable failure point (MPP). To 

demonstrate the applicability of the proposed mixed model and the efficiency of the 

numerical techniques for the associated reliability analysis, two simple examples are 

presented and the results obtained by different approaches are compared. To this end, the 

proposed mixed model is employed to assess the reliability of a forenamed bonded steel and 

concrete beam. 

4.2 GENERAL CONCEPTS OF PROBABILISTIC MODEL AND CONVEX 

MODEL 

4.2.1 Probabilistic model 

When considering a total number of m  stochastic variables denoted by a vector 

{ }T
1 2, , , mx x x=x … , the structural failure state is characterized by a limit-state function or 

performance function ( )G x , and ( ) 0G =x  denotes the limit-state surface. The 

m-dimensional uncertainty space is thus divided into a safe region ( ( ){ }s : 0GΩ = >x x ) and a 

failure region ( ( ){ }f : 0GΩ = ≤x x ).  
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In probabilistic reliability theory, the failure probability of a structure is expressed as the 

multi-variate integral 

 ( ){ } ( )
f

f Pr 0 d ,xP G fx x x
Ω

= ≤ = ∫  (4.1) 

where fP  is the structural failure probability, {}Pr ⋅  denotes a probability, ( )xf x  is the 

joint Probability Density Function (PDF) of the random variables x . (Fig.4.1) 

 

  
Fig. 4.1  Joint probability density function 

 

As mentioned previously, the multi-fold integration in Eq.(4.1) can be implemented with 

various numerical methods, among which the FORM is one of the most familiar approaches. 

For normal random variables x , the FORM requires a linear transformation of x  into 

standard normal random variables u  by 

 ( )1, 2, , ,i i
i

i

x xu i m
σ
−

= = …  (4.2) 

where ix  and iσ  are the mean value and the standard deviation of ix , respectively. 

For problems with non-Gaussian random variables, there are many available techniques, 

such as Rosenblatt’s transformation [171] and Rackwitz-Fiessler transformation [104], for 

transforming the distribution into approximately equivalent normal distribution. For instance, 

when the variables are mutually independent, the Rackwitz-Fiessler transformation can be 

expressed by 
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 ( )1 ,
ii x iu F x− ⎡ ⎤= Φ ⎣ ⎦  (4.3) 

where ( )
ix iF x  is the non-Gaussian cumulative distribution function for ix , 1( )−Φ ⋅  is the 

inverse of the standard normal cumulative distribution function. 

In the standard u-space, the limit-state function is symbolically expressed as ( )g u , 

where { }T
1 2, , , mu u u=u …  is the standard normal vector of x . Thus the probabilistic 

reliability index β  is defined as the shortest distance from the origin to the failure surface 

( ) 0g =u , namely 

 
Tmin

s.t. ( ) 0,g

β =

=
u

u u

u
 (4.4) 

and the structural failure probability fP  can be written as 

 ( ) 2
f

1 11 exp d .
22

P u u
β

β
π−∞

⎛ ⎞= Φ − = − −⎜ ⎟
⎝ ⎠∫  (4.5) 

4.2.2 Non-probabilistic convex model 

When a convex set is defined to describe the bounded uncertain variables, it is referred to 

as convex modeling of uncertainties. Many types of the convex sets such as the interval set 

and the ellipsoid set can be used to describe those so-called uncertain-but-bounded variables. 

In practical situations, some considered uncertainties arising from different sources (e.g. the 

imprecision of geometry, the scattering of material properties, the fluctuation of loading 

conditions, etc) may vary independently and thus it is more realistic to divide them into 

groups. For this realistic reason, the multi-ellipsoid convex model [151] is employed in this 

study. The mathematical definition of the multi-ellipsoid convex model is described in what 

follows. 

Supposing EN  groups of bounded uncertainties (the total number is n ) are considered, 

the vector of uncertain variables is expressed by 
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 { }E

T T T T
1 2, ,..., ,N=y y y y  (4.6) 

where E( 1, 2, , )in
i i N∈ =y \ …  represents the ith group of uncertainties and 

E

1

N

i
i

n n
=

=∑ . 

The multi-ellipsoid convex model treats each group of uncertain variables with an 

individual ellipsoid set, respectively, as 

 ( ) ( ){ }Tc c 2
E: , 1, 2, , ,i i i i i i i Nθ∈ = − − ≤ =y y y y W y y …E  (4.7) 

where c
iy  denotes the nominal values of iy , i in n

i
×∈W \  is a symmetric positive-definite 

real matrix defining the orientation and aspect ratio of the ith ellipsoid set and it is referred to 

as the characteristic matrix, iθ  is a positive real number defining the magnitude of the 

variability. These parameters of the ellipsoid sets can be determined from measurement 

results or the manufacturing tolerance specifications. 

 

 
(a) (b) (c) 
Fig. 4.2  Specific cases of convex models for three uncertain variables  

(a) Three-dimensional interval model. (b) Three-dimensional single-ellipsoid model. 

(c) Multi-ellipsoid convex model defined by an ellipsoid (for 1y  and 2y ) and an interval (for 3y ) 

 

It should be noted that the multi-ellipsoid set in (4.7) degenerates into a conventional 

interval model when each uncertainty group consists of only one uncertain variable. Hence, 

the multi-ellipsoid convex model provides a unified representation accommodating both 

conventional ellipsoid sets and interval sets that co-exist in the uncertainty model of a 

structural system. The interval model and the single-ellipsoid model can be regarded as two 
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specific instances of the multi-ellipsoid convex model. For illustrative purpose, three cases of 

convex models for a problem with three uncertain-but-bounded variables are shown in 

Fig.4.2. 

It is convenient to transform the vector y  into a dimensionless vector n∈δ R , of which 

the components are related by 

 ( ) ( )c c 1, 2, , .i i i iy y y i nδ = − = …  (4.8) 

Then the multi-ellipsoid set (4.7) can be denoted by a dimensionless form 

 { }T 2
E: , 1, 2, , ,i i i i i Nθ∈ = ≤ =δ δ δ Wδ

�
…E  (4.9) 

where iW
�

 is the dimensionless characteristic matrix. 

In Eq.(4.9), a linear transformation of uncertain variables into a normalized space would 

be beneficial. To achieve this, we first solve the following eigenvalue problems: 

 ( )E1,2, , ,i i i i i N= =WQ Q Λ
�

…  (4.10) 

where iQ  is an orthogonal matrix comprising the normalized eigenvectors and iΛ  is a 

diagonal matrix consisting of the eigenvalues of iW
�

. 

Introducing normalized vectors iv  defined by 

 ( ) ( )1/2 T
E1 1,2, , ,i i i i i i Nθ= =v Λ Q δ …  (4.11) 

the original multi-ellipsoid convex model becomes 

 ( ){ }T
E2

: 1 or 1 1,2, , ,i i i i N= ≤ ≤ = …v v v vE  (4.12) 

and it forms multiple spheres of unit radius in each individual sub-dimensional space spanned 

by iv . For example, three specific cases of multi-ellipsoid convex models in Fig.4.2 are then 

normalized as Fig.4.3. Here 
2
i  denotes the 2L −  norm. 

After the transformation of the original grouped bounded uncertain parameters 

{ }E

T T T T
1 2, ,..., ,N=y y y y  as expressed by Eq.(4.11), the limit-state function ( )G y  can be 

rewritten as ( )g v  in the normalized space. Fig.4.4 illustrates the 3-dimensional normalized 
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space for the case of two grouped ellipsoid set, in which one group consists of two uncertain 

parameters ( )1 2,v v  while the other one consists of only one parameter 3v . In the figure, the 

solid cylinder represents the normalized convex set of the uncertainties and the grey surface 

denotes the limit-state surface ( ) 0g =v . The normalized space is thus divided into a safe 

region ( ( ) 0g >v ) and a failure region ( ( ) 0g <v ). 

 

  
Fig. 4.3  Three specific normalized multi-ellipsoid convex model 

 

 

 
Fig. 4.4  Schematic illustration of the non-probabilistic reliability index in the normalized space 
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For simplicity in the following discussion, we define the length of a vector v  

( { }E

T T T T
1 2, ,..., N=v v v v ) in the normalized space as 

 ( )E E E E

T T T T T T
1 1 2 2 1 1 2 2, ,..., max , ,..., ,N N N N

∞
= =v v v v v v v v v v v v v  (4.13) 

where 
∞
i  denotes the L −∞  norm.  

Thus, the bounds of the normalized multi-ellipsoid convex set can be expressed as 

1=v . As shown in Fig.4.4, expanding the cylinder proportionally in all directions, the 

maximum allowable uncertain degree is reached when the enlarged cylinder becomes tangent 

to the limit-state surface at point D. Note that among all the points in the limit-state surface, 

point D has the minimal distance in the sense of the length measure defined in Eq.(4.13). 

According to the concept of non-probabilistic reliability proposed by Ben-haim [140] and 

Elishakoff [142], which is defined as the maximum degree of uncertainty a structure can 

tolerate before its failure, it is reasonable to choose the distance from the origin to point D as 

the measurement of non-probabilistic reliability. Therefore, for the multi-ellipsoid model, the 

non-probabilistic reliability index η  can be defined in the normalized space as the minimal 

distance from the origin to the limit-state surface, which can be expressed as 

 
( )( ) ( )( ) ( ){ }E E

T T T
1 1 2 2sgn min =sgn min max , ,...,

s.t. ( ) 0,

N Ng g

g

η = ⋅ ⋅

=
v v

0 v 0 v v v v v v

v
 (4.14) 

where the signum function ( )( )sgn g 0  is added to define a negative reliability index when 

the limit-state function is negative at the origin in the normalized space. 

Obviously, the greater the non-probabilistic reliability index η  is, the greater extent of 

parameter variation the structure will allow for. Particularly, 1η =  means that the structure 

is critical for the reference parameter uncertainties. For 1η > , all the possible values of the 

uncertainties lie within the safe region and therefore the structure has a safety margin. Though 

it might be argued that 1η =  is sufficient for a reliability requirement if the chosen ellipsoids 
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(or intervals) reflect well the actual variability of the structure, a greater value of η  offers a 

specified safety margin, which is usually desirable in the practical engineering. 

4.3 RELIABILITY ANALYSIS UNDER PROBABILITY AND CONVEX SET 

MIXED MODEL 

In many cases, all the uncertain variables associated with the parameters and the external 

loads of a structural system can be classified into stochastic variables (denoted by m∈x R ) 

and grouped uncertain-but-bounded variables (denoted by { }E

TT T T
1 2, ,..., n

N= ∈y y y y R ) as 

described in the previous section. To make better use of available information and avoid 

making any additional assumption, the stochastic variables are described by probability 

distribution functions while the uncertain-but-bounded variables are represented by a 

multi-ellipsoid convex model. 

The limit-state function defines the failure mode of the structural system and it plays an 

essential role in the reliability evaluation. After the normalization of the original uncertain 

variables x  and y  into u  and v  as explained in section 4.2, the limit-state function 

( ),G x y  is mapped into the corresponding normalized limit-state function ( ),g u v . In the 

conventional probabilistic model, the limit state ( ), 0g u v =  forms an m-dimensional surface 

(called limit-state surface) in the standard u-space and it divides the u-space into two parts, 

namely a safe region and a failure region. However, for the proposed mixed model 

representation, the limit state ( ), 0g =u v  presents a cluster of limit-state surfaces in the 

standard u-space. Each individual limit-state surface corresponds to a possible realization of 

parameter combination ∈v E . In other words, all the points that satisfying ( ), 0g =u v  

form a banded geometry in the u-space. The whole u-space Ω  is thus divided into a safe 

region ( ( ){ }s : min , 0g
∈

Ω = >
v

u u v
E

), a critical region ( ( ){ }c : , , 0gΩ = ∃ ∈ =u v u vE ) and a 

failure region ( ( )f s c\Ω =Ω Ω Ω∪ ). If FN  failure modes are considered, the safe region of 
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the problem becomes 
Fs s,1 s,2 s,... NΩ =Ω Ω Ω∩ ∩ ∩ . Fig.4.5 illustrates the 2-dimensional 

u-space for the case of two stochastic variables ( )1 2,u u  and n uncertain-but-bounded 

variables v . 

 

 
Fig. 4.5  Schematic representation of the reliability index under mixed model in the u-space 

 

The purpose of the reliability evaluation is to rationally quantify the degree of structural 

safety. It is recalled that the structural probability reliability is defined as the probability that 

the structure performs its desired functionality under given random system variations. By 

extending this concept, we define the reliability under probability and convex set mixed 

model as: the least probability that the structural behaviour satisfies the design requirements 

for all the possible values of the bounded uncertainties. This reliability measure provides a 

conservative assessment on the probability that a structure performs as designed in presence 

of bounded variations in addition to conventional randomness. Mathematically, by replacing 

the limit-state function in the conventional reliability function, we can express the structural 

reliability under mixed model as 

 ( ){ }m Pr 0 ,P g u= >  (4.15) 
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where ( ) ( )min ,g g
v

u u v
∈

=
E

 and ( ) 0g =u  indicates the failure of the structure. The 

subscript m  stands for the mixed model. 

From (4.15) and the illustration in Fig.4.5, it is easily seen that the corresponding 

reliability index mβ  can be defined as 

 ( )( ) ( )TMPP MPP
m sgn ,gβ ∗= ⋅0 v u u  (4.16) 

where the signum function sgn( )⋅  is included here to yield a negative value when 

( ), 0g ∗ <0 v , which indicates that the design violates the design requirement for the mean 

values of the probabilistic uncertainties under the worst-case combination of the bounded 

parameters. MPPu  is the most probable failure point (MPP) of the limit-state surface 

( ) 0g =u , and it is the solution to 

 
{ }Tmin

s.t. ( , ) 0,g ∗ =
u

u u

u v
 (4.17) 

and ∗v  is referred to as the worst-case point which is found by solving the following 

minimization problem 

 
( )

( )T
E

min ,

s.t. 1 1,2, , .i i

g

i N
v

u v

v v …≤ =
 (4.18) 

Geometrically, the proposed reliability index mβ  is the shortest distance from the origin 

to the critical region in u-space. Obviously, when all the uncertainties can be provided with 

precise probabilistic distributions, this reliability index degenerates into a conventional 

probability reliability index. It is also worth mentioning that the signum function is added in 

(4.16) to yield a negative reliability index when the limit-state function takes a negative value 

for the mean values of the stochastic variables and the worst-case combination of the 

uncertain-but-bounded variables. 
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After the reliability index is calculated, the structural failure probability can be expressed 

by 

 ( ) m 2
f m

1 11 exp d .
22

P u u
β

β
π−∞

⎛ ⎞= Φ − = − −⎜ ⎟
⎝ ⎠∫  (4.19) 

4.4 SOLUTION STRATEGY FOR STRUCTURAL RELIABILITY INDEX 

In this section, two computational procedures, respectively based on the mathematical 

programming method and a direct iterative scheme, for evaluating the proposed reliability 

index under mixed model are elaborated. 

4.4.1 Mathematical programming method 

The reliability analysis expressed by (4.17) and (4.18) appears as a nested optimization 

problem. The outer loop aims to seek the MPP MPPu  while the inner loop focuses on 

searching for the worst-case point ∗v . By combining the two sub-problems in (4.17) and 

(4.18), MPPu  and ∗v  in (4.16) can be found by solving the following single-loop 

minimization problem 

 

{ }

( )

T

,

T
E

min

s.t. ( , ) 0,
1 1,2, , .i i

g
i N

=

≤ = …

u v
u u

u v
v v

 (4.20) 

It is noted that the normalized stochastic variables u  and the normalized uncertain-but- 

bounded variables v  are treated as the design variables simultaneously in the above problem. 

The single-loop optimization (4.20) can be solved by many existing gradient-based 

mathematical programming algorithms. It is also worth mentioning here that a global 

optimum cannot be ensured when a standard mathematical programming algorithm such as 

the SQP method is employed. However, by using sequential linear approximations of the 

limit-state function, problem (4.20) can be treated by solving a sequence of approximate 

convex optimization problems. This would substantially raise the chance of finding the global 
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optimum and improve the convergence behaviour in the solution of problem (4.20). In the 

present study, the optimization package CFSQP [172], which is an implementation of the 

Sequential Quadratic Programming (SQP) algorithm, is used for solving this minimization 

problem. 

4.4.2 Direct iterative approach 

For the double-loop optimization problems (4.17) and (4.18), the outer loop and the inner 

loop can also be solved sequentially in an iterative manner until convergence is achieved. 

This procedure is described as follows. 

Assume after the k-th iteration we get ( )ku  and ( )kv . By approximating the limit-state 

function with the first-order Taylor expansion about ( )kv , we can write the inner problem 

(4.18) as 

 
( ) ( )( ) ( ) ( )

( )

E T( ) ( )

1
T

E

min ,

s.t. 1 1,2, , .

i

N
k k k k

i i
i

i i

g

i N
=

+ −

≤ =

∑
…

vv
u v G v v

v v
 (4.21) 

where ( )
( )( ) ( )

( )

,

,
i

k k

k

i

g∂
=

∂v
u v

u v
G

v
. 

In most practical engineering problems, the variability of the uncertain-but-bounded 

variables is small or moderate, so that the limit-state function can be assumed monotonic with 

respect to these quantities within their variation bounds. Hence, all the constraints in (4.21) 

will be active at the optimum. By applying the Karush-Kuhn-Tucker optimality conditions at 
∗v , it yields 

 ( )
( )

ET

2 0
1, 2, , ,

1
i

k
i i

i i

i N
λ⎧ + =⎪ =⎨

=⎪⎩

vG v

v v
…  (4.22) 

where 0iλ >  is the Lagrangian multiplier for the ith constraint. From above equations, we 

have 
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( )

( )
( )

T( ) ( )

E
T( ) ( ) ( )

2
1,2, , .

i i

i i i

k k
i

k k k
i

i N
λ⎧ =⎪

=⎨
⎪ = −⎩

v v

v v v

G G

v G G G
…  (4.23) 

Based on this observation, an intuitional scheme for updating ( )1k+v  is suggested: 

 

( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )

E

1 2 E

1 1 2 2 E E

TT T T1 1 1 1
1 2

TTT T
( )( ) ( )

T T T( ) ( ) ( ) ( ) ( ) ( )

, , ,

, , , N

N N

k k k k
N

kk k

k k k k k k

+ + + +⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

vv v

v v v v v v

v v v v

GG G

G G G G G G

…

…
 (4.24) 

Further, analogously as in the familiar HL-RF algorithm, which was originally 

developed for evaluating the probabilistic reliability index, the following updating scheme for 

the MPP search in the u-space is employed: 

 ( ) ( ) ( )
( )

( )

T( ) ( ) ( ) ( 1)
1

T( ) ( )

,
,k

k k k k
k

k k

g +
+ −
= u

u
u u

G u u v
u G

G G
 (4.25) 

where ( )
( )( ) ( 1)

( )

,

,
k k

k g
+

∂
=

∂u
u v

u v
G

u
. 

The updating procedures in (4.24) and (4.25) are repeated until a convergence criterion 

is satisfied. The flowchart of the direct iteration process is given in Fig.4.6. 

It should be noted that the standard HL-RF algorithm may suffer a poor convergence due 

to the zigzagging movement of iteration points in case of high nonlinearity of the limit-state 

function. In this case, some modifications suggested in references [122, 173, 174] can be 

embedded into the present iteration procedures for improving the convergence behaviour. 

Compared with the mathematical programming method, the direct iteration algorithm 

approach is straightforward and convenient from computational point of view. However, 

similarly as in the HL-RF algorithm for the probabilistic reliability problem, the proposed 

iteration algorithm cannot guarantee obtaining the correct reliability index if the limit-state 
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function is non-convex or not smooth. In such a case, mathematical programming methods 

enhanced with special techniques such as multiple initial guesses and convex approximations 

should be resorted to. 

 

 
Fig. 4.6  Flowchart of the iteration process 

 

4.5 NUMERICAL EXAMPLES 

4.5.1 Example with explicit performance function 

A relatively simple mathematical problem with three uncertain variables is treated in this 

example. Two performance functions 1G  and 2G  are considered respectively, which are 

given as 

Starting

( ) ( )0, ,k kk = = =u 0 v 0

Updating variables ( )1k+u  
by Eq.(4.25) 

1k k= +  

End

, converge ?u v

Updating variables ( )1k+v  
by Eq.(4.24) 

Y. 

N. 
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 1 1 2
2

2 1 23

G y x x

G y x x

= −

= −
 (4.26) 

where 1x  and 2x  are normally distributed variables with the mean values of 1 3.0x =  and 

2 2.0x = , and the standard deviations 1 0.3σ =  and 2 0.2σ = , respectively. The variable y  

represents a bounded quantity and its value is restricted by 10.0 2.0y − ≤  or [8,12]y∈ . 

Obviously, 8y∗ =  is the worst-case point in this specific problem. 

The reliability indices mβ , obtained using the standard mathematical programming (MP) 

approach and the proposed direct iteration method, are both shown in Table 4.1. Both 

approaches produce identical results: m 2.1878β = , MPP
1 3.464x = , MPP

2 2.309x = , 8y∗ =  

for the limit-state function 1G  and m 1.3550β = , MPP
1 3.360x = , MPP

2 2.126x = , 8y∗ =  for 

the limit-state function 2G . 

 

 
 

Fig. 4.7  Three assumed probabilistic distributions for uncertain variable y 

 

For comparison purpose, a Monte Carlo simulation-based probabilistic reliability 

analysis is also run for three cases with assumed probabilistic distributions of y  (lognormal 

distribution, normal distribution and uniform distribution). The lognormal distribution has a 
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mean of 8.55 and a standard deviation of 0.72, the normal distribution has a mean of 10 and a 

standard deviation of 2/3, while the uniform distribution is on the specified interval from 8 to 

12. These distributions are schematically illustrated in Fig.4.7. In each case, a Monte Carlo 

simulation with 200,000 realizations is implemented for extracting the failure probability. 

These results, as well as the corresponding probabilistic reliability indices, are also listed in 

Table 4.1. As can be noted, the results for these three cases are quite different. This is natural 

since that the conventional probabilistic reliability analysis relies on the distribution 

characteristics of the inputs. 

 

Table 4.1  Comparison of reliability results under mixed model and assumed distribution of y  

Reliability index mβ  under mixed model

(Failure probability) 

Probabilistic reliability index β   

under assumed distribution 
(Failure probability) 

Limit-state 
function 

By MP By iteration Lognormal Normal Uniform

1G  2.1878 
(0.0143) 

2.1878 
(0.0143) 

2.54 
(0.0055) 

3.40 
(0.0003) 

3.03 
(0.0012) 

2G  1.3550 
(0.0877) 

1.3550 
(0.0877) 

1.63 
(0.0515) 

2.37 
(0.0089) 

2.13 
(0.0166) 

 

It is also noted that for both limit-state functions the reliability indices predicted by the 

mixed model are less than those by pure probabilistic models, regardless the distribution type 

assumed in the reliability analysis. This confirms that the mix model provides a more 

conservative measure of the system safety without introducing subjective assumptions on the 

uncertainty distribution. 

4.5.2 Reliability analysis of a cantilever beam 

A cantilever beam subjected to a concentrated force P  is shown in Fig.4.8. The beam 

has a length of L , a width of b  and a height of h . The Young’s modulus of the material is 

E . The structure becomes unsafe when the tip displacement is greater than 0.15 in. Thus the 

limit-state function is defined as 
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3

3

40.15 PLG
Ebh

= −  (4.27) 

In this example, E  and P  are considered as normal random variables, whereas L , b  

and h  are represented by uncertain-but-bounded variables reflecting manufacturing errors. 

The uncertainty characteristics are summarized in Table 4.2. 

 

 
Fig. 4.8  A cantilever beam 

 
 
 

Table 4.2  Uncertainty characteristics of the cantilever beam 

Uncertain 
variable 

Mean (nominal) value COV Convex model description 

E  (psi.) 107 0.05 -- 
P  (lb.) 100 0.1 -- 
L  (in.) 30 -- 0 05 0 05L. .δ− ≤ ≤  

b  (in.) 0.8359 -- 

h  (in.) 2.5093 -- 
[ ] 21 0

0 05
0 1

b
b h

h

.
δ

δ δ
δ
⎡ ⎤⎡ ⎤

≤⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

The reliability evaluation has been performed by the mathematical programming 

approach and the direct iteration method, respectively. The obtained results are listed in Table 

4.3 and the iteration histories for both approaches are plotted in Fig.4.9. For both approaches, 

the initial guesses of the MPP and the worst-case point are the mean values or nominal values 

of the uncertainties, and the stopping criteria is that the relative difference between the 

objective function values of two adjacent iterations is less than 10-4. The same reliability 

index m 2.8853β =  is achieved, though the number of iteration steps involved in the 
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proposed direct iteration method is much less than that in the mathematical programming 

approach. 

 
Table 4.3  Summary of results for the cantilever beam example 

MPP and the worst-case point 
 

Reliability index 

mβ  
Total number
of iterations 

MPPE  
(106psi.)

MPPP  
(lb.) 

L∗  
(in.) 

b∗  
(in.) 

h∗  
(in.)

By MP 2.8853 25 9.194 123.926 31.5 0.823 2.390
By iteration 2.8853 5 9.194 123.930 31.5 0.823 2.390
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Fig. 4.9  Iteration histories of reliability evaluation for the cantilever beam 

4.6 RELIABILITY ASSESSMENT OF THE BONDED COMPOSITE BEAM 

In this section, the bonded steel and concrete composite beam, named P1 in Chapter 2, is 

considered. As shown in Fig.4.10, the composite beam consists of a concrete slab, an adhesive 

layer and a steel girder. It is simply supported and a concentrated load is applied to the 

mid-span of the beam. The Young’s modulus and the permissible stresses of these materials 

are normally distributed random variables with the mean values given in Table 4.4 and the 
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coefficients of variation 0.08. The Possion’s ratios for the constituent materials of the concrete 

slab, the adhesive layer and the steel girder are 0.28, 0.34 and 0.30, respectively. The load 

magnitude F  is also a normal random variable with the mean value of 150kN  and the 

coefficient of variation of 0.1. Hence, there are six stochastic variables for material properties 

and one stochastic variable for load magnitude. In addition, nine cross-sectional dimensions 

( 1 2 9, , ,y y y… ) presented in Fig.4.10b are treated as interval-valued variables with the relative 

variation of 5% about their nominal values. Thus, a total number of 16 uncertain variables, 

including the aforementioned 7 stochastic variables and 9 interval variables, are considered in 

this problem. The structural failure is defined by mid15 0G U= − ≤ , where midU  is the 

vertical displacement at the mid-span. 

 

(a) (b) 
Fig. 4.10  The composite beam P1 

 (a) Overall dimensions; (b) Cross-section dimensions (Unit: mm)  

 
 
 

Table 4.4  Mean values of the material properties for the composite beam P1 

Material 
Young’s modulus

(MPa) 
Permissible von Mises stress 

(MPa) 

Concrete 36,600 68.0 

Adhesive 12,300 19.5 

Steel 205,000 470 
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Fig. 4.11  Iteration histories of reliability evaluation for the composite beam P1 

 

Making use of the symmetry, one fourth of the composite beam is discretized by using 

the nonlinear finite element model proposed in chapter 2. The mathematical programming 

approach and the proposed iteration method have been both applied to this problem. In the 

latter approach, a technique proposed by Lee et al. [122] is adapted for detecting and 

eliminating excessive zigzagging iterations. The reliability indices obtained by both 

approaches are m 1.652β =  (failure probability 4.93%) and m 1.647β = (failure probability 

4.98%), respectively. This insignificant difference may be due to a premature convergence of 

the mathematical programming solution. The iteration histories of the reliability evaluation 

are plotted in Fig.4.11. Again, it can be observed that the present iteration method is more 

efficient than the mathematical programming approach. This seems to confirm that the 

proposed iteration scheme behalves better than standard optimizers, especially for engineering 

problems involving a large number of uncertain parameters. 
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4.7 SUMMARY 

In many real-life structural safety assessment problems, a pure probabilistic description 

for all the uncertain parameters is hardly obtainable due to lack of sufficient sample data, 

while the bounds of some uncertain parameters can be easily determined in consistence with 

available information. For structures exhibiting both probabilistic and bounded uncertainties, 

unjustified assumptions on distribution characteristics may give rise to misleading results, 

which makes a pure probabilistic reliability analysis questionable. In this chapter, based on 

the multi-ellipsoid convex model description for grouped uncertain-but-bounded variables, a 

combined probabilistic and set-valued description is presented. The reliability index is defined 

as the shortest distance from the origin to the critical region in the standard u-space. 

Mathematically, the evaluation of the reliability index is formulated as a nested optimization 

problem. The original nested problem is then transformed into an equivalent single-loop 

constraint optimization problem, with the purpose to improve the computational efficiency in 

seeking the MPP and the worst-case point. In conjunction with the linear approximation of the 

limit-state function, a direct iteration algorithm is suggested for solving the minimization 

problem. The numerical examples confirm that both approaches are applicable but the direct 

iteration algorithm seems to be more efficient. It can be also seen that the mixed model tends 

to present a relatively conservative assessment of structural reliability. To this end, the 

proposed mixed model is employed to assess the reliability of a bonded steel and concrete 

beam. The assessed result showed that the failure probability of this bonded composite beam 

is about 5%. 

There is no doubt that the reliability evaluation should be implemented in the 

conventional probabilistic framework when sufficient data are available for constructing 

accurate probabilistic models of the uncertainties. Nevertheless, the present formulation and 

numerical techniques provide an alternative approach for the reliability evaluation of 

structures subject to both stochastic and bounded variations. 
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5.1 INTRODUCTION 

Along with the ever increasing computational power, the past two decades had seen a 

rapid development of structural optimization in both theories and industrial applications. In 

particular, the design optimization problem incorporating various uncertainties has been 

intensively studied. Among other non-deterministic optimal design formulations, the 

reliability-based design optimization provides an effective tool for seeking the best designs 

against structural failures in presence of system variations. Basically, the uncertainty models 

employed by a typical structural reliability analysis can be classified into two categories: the 

probabilistic model and non-probabilistic models. As the most mature uncertainty model, the 

probabilistic model describes the stochastic parameters and structural responses with random 

fields or discrete random variables that have certain statistical distribution characteristics. The 

probabilistic model has been successfully used in many real-life engineering applications for 

structural reliability-based design optimization as well as robust design optimization. In 

practical applications, the probabilistic distribution type and corresponding statistical 

parameters of inputs are usually attracted from a sufficient amount of measured data or 

assumed on the basis of engineering experiences. 

In the bonded steel and concrete composite beam, some of the concerned uncertainties 

are probabilistic variables with precise probability distribution information, while others are 

only uncertain-but-bounded due to their inherent characteristic or lacking sufficient sample 

data. Therefore, it would be desirable to select the proposed probability and convex set mixed 

model to quantify these different types of uncertainties. Based on the structural reliability 

assessment method in chapter 4, it is useful to fully explore the reliability-based design 

optimization formulation using the probability and convex set mixed model. 

This chapter aims to provide a systematic method to incorporate simultaneously 

randomness and uncertain-but-bounded uncertainties into the design optimization problem. 

Using the mathematical definition of structural mixed reliability index based on probabilistic 

model and convex set, a nested optimization model for reliability-based structural design 

problems with constraints on such mixed reliability indices is presented. To improve the 
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convergence of the inner loop, the performance measure approach (PMA) [121] is employed. 

Two approaches, namely the nested double-loop approach and the linearization-based approach, 

are employed to solve the optimization formula. Then, two mathematical and engineering 

design examples are presented to demonstrate the applicability of the proposed model and the 

efficiency of the numerical techniques. Finally, based on the optimal topology layout in 

chapter 3, a sizing design optimization of the bonded steel and concrete composite beam 

incorporating reliability constraints is mathematically formulated.  

5.2 RELIABILITY-BASED STRUCTURAL OPTIMIZATION WITH 

PROBABILITY AND CONVEX SET MIXED MODEL 

5.2.1 Optimization problem and performance measure approach 

A structural optimization problem usually aims to seek the least cost for satisfying 

certain structural behaviour requirements. Under the mixed model, the structural behaviours 

can be expressed as the performance functions of the design variables d , the normalized 

probabilistic variables u  and the normalized uncertain-but-bounded variables v , namely 

( ) ( )g, , 1, 2, ,jg j N=d u v … . It should be noted that the design variables can be also defined 

as the mean values or the nominal values of the uncertain variables. In the present paper, the 

reliability-based design optimization problem under the probability and convex set mixed 

model is mathematically formulated as 

 

( )

( ) ( )m m, g

L U

min

s.t. , , 1, 2, ,j j

f

g j Nβ β⎡ ⎤ ≥ =⎣ ⎦
≤ ≤

d
d

d u v

d d d

…  (5.1) 

and 

 
( ) ( )( ) { }
( )

T
m , , sgn , , min

s.t. , , 0

j

j

g g

g

β ∗

∗

⎡ ⎤ = ⋅⎣ ⎦

=

u
d u v d 0 v u u

d u v
 (5.2) 
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where ( )f d  is the objective function to be minimized; ( )m , ,jgβ ⎡ ⎤⎣ ⎦d u v  is the mixed 

reliability index corresponding to the thj  performance function; m, jβ  is the prescribed 

target value of the reliability index; gN  is the number of constraints; Ld  and Ud  are the 

lower and upper bounds of the design variables, respectively. ∗v  is the worst-case point and 

is defined by (4.18). 

In the above reliability-based optimum design problem, the outer loop aims to minimize 

the cost function of the structural design, while the inner loop represents the reliability 

analysis. In the direct approach, the reliability-index-based approach, these two loops can be 

sequentially treated and the solution of the inner loop is used to determine whether or not the 

reliability constraints in the outer loop are satisfied. However, the design sensitivity analysis 

of the reliability index presents an optimum sensitivity problem, which is extremely difficult 

to be solved, especially when a large number of design variables are involved. In addition, the 

strong coupling between the outer and inner loop as well as the high nonlinearity of the 

problem may lead to iteration instability and poor convergence. In order to circumvent these 

difficulties, a recently introduced performance measure approach (PMA), which was 

proposed by Tu et al. [121] and enhanced by Youn et al. [124], is employed in this chapter. 

In contrast to the direct method relying on the comparison between the current reliability 

index value and its prescribed target value, the performance measure approach checks the 

satisfaction of a reliability constraint according to the target performance value at a target 

point in the uncertain parameter space. The primary idea of the performance measure 

approach is to transform the design problem (5.1) into an equivalent optimization problem 

expressed by 

 

( )

( ) ( )g

L U

min

s.t. 0 1,2, ,j

f

j Nα ≥ =

≤ ≤

d
d

d

d d d

…   (5.3) 

where ( )jα d  is the target performance value and defined as the minimal value of 

( ), ,jg ∗d u v  that yields the prescribed target reliability index m, jβ , namely 
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( ) ( ){ }

T 2
m,

min , ,

s.t.

j j

j

gα

β

∗=

=
u

d d u v

u u
 (5.4) 

where the worst-case point ∗v  can be rewrote as 

 
( )

( )T
E

min , ,

s.t. 1 1,2,...,
j

i i

g

i N
v

d u v

v v ≤ =
 (5.5) 

Here, Eqs. (5.4) and (5.5) can also be combined into a single-loop procedure as follows: 

 
( ) ( ){ }

( )

,

T 2
m,

T
E

min , ,

s.t.
1 1, 2,...,

j j

j

i i

g

i N

α

β

=

=
≤ =

u v
d d u v

u u
v v

 (5.6) 

Notice that the reliability-based optimization formulae (5.3) and (5.6) are very similar to 

those in the conventional RBDO under the situation where only random variables are 

involved. However, unlike the case using PMA in the conventional RBDO, where the 

performance function is minimized with a single equality constraint, the Eq.(5.6) exhibits a 

minimization problem with multiple constraints. 

 

 
Fig. 5.1  Schematic representation of the performance measure approach 
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Taking the case with two probabilistic variables { }1 2,u u=u  and uncertain-but-bounded 

variables v  as an example, Fig.5.1 schematically illustrates the basic idea of the 

performance measure approach mentioned above. In the u-space plotted in the figure, the 

solid circle represents the boundary of the probabilistic variables characterized by a radius of 

the desired reliability index mβ . Among all the points lying on the solid circle, the point at 

which the limit-state function ( , )g ∗u v  takes its minimum value is denoted by B . Here the 

target performance ( , )gα ∗ ∗= u v  is defined as the limit-state function value at this point. 

Obviously, the feasibility of the design is satisfied if and only if α  is positive. If 0α = , the 

reliability index equals to mβ  and therefore the structure is in a critical state, while 0α <  

means that there exists within the solid circle certain parameter combinations that will result 

in a performance failure. Consequently, the constraint 0α ≥  is equivalent to the reliability 

index constraint m mβ β≥  as appeared in the original optimization problem (5.1). 

Note that the position of the target point varies with the design point during the entire 

optimization. In general, the computational costs involved in seeking the target point and in 

calculating the reliability index are different. The former minimization problem has the 

simpler expression of the cost function and the constraints, whereas the latter could result in 

solution instability due to the implicit and design variable-dependent constraint condition. 

Researches showed that the performance measure approach is inherently robust and superior 

in view of both computational efficiency and numerical stability (Lee et al. [122]).  

5.2.2 Design sensitivity analysis of the target performance 

When a gradient-based optimization algorithm is employed in solving the design 

optimization problem (5.3), the computation of the design sensitivity of the objective function 

and the constraints is necessitated. In the context of the proposed method, the derivative of the 

target performance jα  with respect to the design variable is expressed by 

 
( )d , ,d

,
d d

jj gα ∗ ∗

=
d u v

d d
 (5.7) 
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where ∗u  is the target point in the u-space, ∗v  is the worst-case point. ∗u  and ∗v  are the 

optimum of the minimization problem (5.6) and are thus implicitly dependent upon the design 

variable d . In fact, calculation of the derivative d djα d  is an optimum sensitivity problem. 

However, as can be seen from what follows, it can be easily evaluated in this particular 

circumstance. 

For the sake of convenience in the subsequent derivation, the concerned performance 

problem can be rewritten as following  

 

( )

( )

,

T 2
m

T
E

min , ,

s.t.
1 1,2,...,i i

g

i N
β=
≤ =

u v
d u v

u u
v v

 (5.8) 

Using the Karush-Kuhn-Tucker optimality conditions, the following relations at point ( ),∗ ∗u v  

can be obtained 

 ( )T
, 2 0 1, 2,..., ,

lu
l

g l m
u

λ ∂
+ = =

∂
uu  (5.9) 

 ( )T
, 2 0 1, 2,..., ,

l

i
v i i

i I l

g l n
v

λ
∈

∂
+ = =

∂∑ vv  (5.10) 

 ( )0, 0 ,i i Iλ λ ∗≥ ≥ ∈ v  (5.11) 

 T 2
m 0β− =u u  (5.12) 

 ( )T 1 0, ,i i i I ∗− = ∈v v v  (5.13) 

where , lu lg g u= ∂ ∂  and , lv lg g v= ∂ ∂  denote the partial derivative of the limit-state 

function with respect to the uncertainty lu  and lv , λ  and iλ  are the Lagrange multiplier, 

( )I ∗v  is the index set of active constraints. 

Using (5.7), (5.9) and (5.10), the derivative d dα d  can be given as 
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The differentiation of (5.12) and (5.13) with respect to the design variables yields  

 T

1

d 0 for ,
d

m
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l l
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∂
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Therefore, the last two terms in (5.14) vanish and the derivative d dα d  further reduces 

to 

 ( ), ,d
d

gα
∗ ∗∂

=
∂

d u v
d d

 (5.17) 

In the optimization problem (5.1), the design sensitivity analysis of the constraint 

function is extremely difficult. Nevertheless, using (5.17), the sensitivity of the target 

performance can be easily evaluated. In computer implementations, the semi-analytical 

method using either direct variables or adjoint variables can be employed for such a 

computation. 

5.2.3 Solution strategy 

The structural optimization problem incorporating reliability constraints under mixed 

modeling of probabilistic randomness and convex models presents a challenging problem 

with nested optimization. While a direct double-loop approach available, we proposed a 

single-loop approach based on linearization of limit-state function to reduce the 

computational cost. 

(1) Nested double-loop approach 

In the reliability-based optimization problem under mixed model, the inner-loop of the 

target performance evaluation is embedded in the overall outer-loop optimization. A 
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double-loop procedure, as depicted in Fig.5.2, is competent for solving the above nested 

problem (5.3) and (5.6). Herein, a modified programming scheme based on the optimization 

package CFSQP (Lawrence et al. [172]), which is an implementation of the Sequential 

Quadratic Programming (SQP) algorithm, is used to solve the problem. 

Though the nested double-loop approach can be employed, this still requires 

prohibitively lengthy calculations. Since the inner loop evaluation of target performance 

needs many function evaluations of performance functions, and each iteration in the 

outer-loop optimization consists of a fulfillment of the inner-loop, the total number of 

function evaluations is usually very high. 

 

 
Fig. 5.2  Flow chart of the traditional nested double-loop approach 

 

(2) Linearization-based approach 

Various techniques have been developed to decouple the nested optimization problem 

involved in the conventional RBDO. In a sequential optimization strategy (Royset et al. [175]; 

Du and Chen [123]; Cheng et al. [176]), the inner-loop and outer-loop are implemented 
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sequentially and thus the optimum design is obtained by solving a sequence of 

sub-programming problems. In addition, a single-loop strategy (Chen et al. [177]; Kuschel 

and Rackwitz [178]; Liang et al. [179]), which allows the solution to be infeasible before 

convergence and satisfies the constraints only at the optimum, has also been developed. 

Numerical investigations suggested that those methods could considerably improve the 

efficiency in solving the RBDO problem. In this section, based a similar decoupling strategy 

as the single-loop method, a linearization-based approach is proposed to solve the specific 

reliability-based optimization problem under mixed model.  

In most practical circumstances, the variability of the uncertain-but-bounded variables is 

relatively small or moderate. Therefore, it is reasonable to assume that the performance 

functions are monotonic with respect to these quantities within their variation bounds. In 

virtue of this, all the inequality constraints in (5.6) will be active at the optimum. Thus, an 

iteration scheme for solving the optimum ( ), ,,j j
∗ ∗u v  is derived based on the optimality 

conditions in the following. 

Denoting the approximate solution of Eq.(5.6) in the k-th iteration by ( ) ( )( ), ,,k k
j ju v , by 

approximating the limit-state function jg  with the first-order Taylor expansion about 

( ) ( )( ), ,,k k
j ju v , we rewrite Eq.(5.6) as 
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where ( )kd  denotes the k-th (current) iteration design variables, the subscript ( ), j  stands 

for the j-th performance function. ( )
,
k
ju

G  and ( )
,
k
jv

G  are partial derivatives of the performance 

function, which are expressed by 

 ( )
( ) ( ) ( )

( )
( ) ( ) ( ), ,

, , , ,, , , ,

, ,k k
j jk k k kk k

j j j j

j jg g∂ ∂
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∂ ∂u v
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G G
u v

 (5.19) 
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Both derivatives can be either explicitly obtained or evaluated by using classical 

approaches such as the semi-analytical method. 

Before deriving the iteration scheme for solving the above constrained minimization 

problem, a Lagrangian function is first constructed: 

 

( ) ( ) ( )( ) ( )
( )( ) ( )

( )( )
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N

j i i i
i

L g

λ β λ
=

= + − + −

+ − + −∑

u v
d u v G u u G v v

u u v v
 (5.20) 

where λ  and iλ  are the Lagrangian multiplier for the corresponding constraints. 

Applying the Karush-Kuhn-Tucker optimality condition at the optimum ( ), ,,j j
∗ ∗u v , we 

have 
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 (5.21) 

After some manipulations, Eq.(5.21) leads to 
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Thus, a heuristic scheme for updating ( ), ,,j j
∗ ∗u v  corresponding to the jth reliability 

constraint would be 
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The flowchart of the optimization process using the linearization-based approach is 

given in Fig.5.3. The optimum structural design is searched in the design space by the 

optimizer, while , j
∗u  and , j

∗v  are updated simultaneously by Eq.(5.23). This process 

continues until the objective function becomes stable and all the target performance 

constraints are satisfied. With this procedure, the computational efficiency will be much 

higher than that of the nested double-loop approach because the expensive inner iterations are 

avoided. 

 

 
Fig. 5.3  Flowchart of the optimization process using the linearization-based approach 
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However, it should be noted that the suggested linearization-based approach relies on the 

assumption of the local monotonicity of performance function with respect to uncertainties. In 

addition, the global optimality cannot be guaranteed if the performance function is 

non-convex or not smooth. In such a case, the nested double-loop approach enhanced with 

special techniques such as multiple initial guesses and convex approximations can be resorted 

to. 

5.2.4 Validation by numerical examples 

To demonstrate the validity and effectiveness of the reliability-based optimization 

approach under mixed model, two examples regarding design optimization of a mathematical 

function and a truss structure are given in this section. We will also make comparisons 

between the computing efficiency of the nested double-loop approach and that of the 

linearization-based approach.  

(1) Minimization of a mathematical function under reliability constraints 

The first example considers minimization of an explicit performance function under 

reliability constraints. Two normally distributed random variables (denoted by 1x  and 2x ) 

and two uncertain parameters (denoted by 1y  and 2y ) bounded by an ellipsoid model are 

taken into account in the problem. The optimization problem is expressed as 

 

( ) ( ) ( )
( )
( )

2 2
1 2

m 1 m

m 2 m

1 1

min 3 3

s.t. , 0 ,

, 0 ,

0.01 10, 0.01 10,

f d d

g

g

d d

β β

β β

= + + +

≥ ≥⎡ ⎤⎣ ⎦
≥ ≥⎡ ⎤⎣ ⎦

≤ ≤ ≤ ≤

d
d

x y

x y
 (5.24) 

in which 

 
( ) ( )
( ) ( )

1 1 2 1 2

2
2 1 2 1 2

, ,

, ,

g x x y y

g x x y y

= + −

= − +

x y

x y
 (5.25) 

where the design variables are { }T
1 2,d d=d , with 1d  and 2d  representing the mean values 

of 1x  and 2x , respectively. The Coefficients of Variation (COV) for 1x  and 2x  are both 
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0.03. Another two variables 1y  and 2y  are described by an ellipsoid model expressed by 

{ } ( ) ( ){ }TT c c 2
1 2 y, 0.5 ,y y= ∈ ≡ − − ≤y y y y W y yΕ where the nominal values { }Tc c c

1 2,y y=y  

{ }T0.25, 2=  and y

4 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

W .  

 

Table 5.1  Solutions for the mathematical example 

 Linearization-based approach Nested double-loop approach 

Objective 55.9733 55.9733 

Solution 1 2( , )d d  (3.5045, 0.6966) (3.5045, 0.6966) 

Nominal value c c
1 2 1 2( , , , )x x y y  (3.5045, 0.6966. 0.25, 2) (3.5045, 0.6966. 0.25, 2) 

1 2 1 2( , , , )x x y y∗ ∗ ∗ ∗  for 1g  (3.2750, 0.6536, 0.0366, 2.2606) (3.2752, 0.6536, 0.0365, 2.2600)

1 2 1 2( , , , )x x y y∗ ∗ ∗ ∗  for 2g  (3.2901, 0.7426, 0.4699, 2.2380) (3.2892, 0.7425, 0.4699, 2.2377)

Number of iterations 
for outer-loop 32 31 

Average number of iteration 
for each inner-loop 1 9 

Total number of performance 
function evaluations 

64 558 

 

The target reliability index of the constraints is m 3.0β = , which means the failure 

probability of the structure must be less than 0.135%.  

When using the CFSQP to solve the minimization problems, the stop criterion of 

iterations is: the relative difference between the objective function values of two adjacent 

iterations is less than 10-4, or the number of iteration steps exceeds 500. For initial values of 

the design variables (0) (0)
1 2 5d d= = , the obtained optimal solutions are listed in Table 5.1. The 

proposed linearization-based approach results in the identical optimal solutions as the nested 

double-loop approach. However, the former approach is much more efficient since it involves 

only one time of the limit-state function evaluation for each inner-loop. For testing the 
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dependency of the optimal solutions upon the initial guesses, three different initial values of 

design variables (0) 1,3,8id =  ( )1,2i =  are also fed into the optimizer. From the iteration 

histories shown in Fig.5.4, it can be seen that the iterations converge to the same optimum, 

though the efficiency of the linearization-based approach is dependent on the initial design 

point. 
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Fig. 5.4  Iteration histories of the optimization with different initial design points 

 

(2) Reliability-based optimization of a ten-bar truss structure 

Fig.5.5 shows a frequently studied planar ten-bar truss structure, which is to be 

optimized for minimum weight. The horizontal and vertical bar members have a length of 

360L = . The mass density of the material is 0.1ρ = . Two external loads P  are applied at 

node 2 and node 4. A constraint 2.0U ≤  is imposed on the vertical displacement of node 2. 

The bar cross-sectional areas ( )1,2, ,10iA i = …  and the Young’s modulus E  of the material 

are Gaussian normal random variables, whereas the external load P  is an 

uncertain-but-bounded variable. The uncertainty properties are summarized in Table 5.2. 
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Fig. 5.5  The ten-bar truss structure 

 

 

Table 5.2  Uncertainty properties for the ten-bar truss structure 

Uncertainty 
Section area 
( 1,2, ,10)iA i = …  

Young’s modulus 
E  

External load 
P  

Distribution Normal distribution Normal distribution Uncertain-but-bounded 

Nominal value iA  107 105 

COV 0.05 0.05 -- 

Variation range -- -- 15% 

 

The mean values of the member sections ( )1,2, ,10iA i = …  are taken as design 

variables, with lower bounds 0.1id =  and initial values ( )(0) 40.0 1,2, ,10id i= = … . The 

target reliability index is set as m 3.0β = . 

The obtained optimal design by the proposed method based on the mixed model is listed 

in the second column of Table 5.3. Therein, a reliability index m 2.996β =  is achieved. The 

iteration history plotted in Fig.5.6 shows a steady decrease of the objective function as well as 

a stable convergence during the optimization process. 

For comparison purpose, the deterministic optimization based on nominal values, the 

reliability-based optimization in the probabilistic framework (Conventional RBDO) and the 

worst-case scenario approach using pure non-probabilistic description were also run. The 
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well-known PMA approach is employed for solving the conventional RBDO problem, where 

all the uncertainties are assumed to have a Gaussian normal distribution with the Coefficient 

of Variation being 0.05 and the probabilistic reliability is required to be 3.0. In the worst-case 

scenario approach, all the uncertain parameters are described by interval variables. Therein, 

the variation ranges of ( )1,2, ,10iA i = …  and E  about their nominal values are assumed to 

be 15%, i.e. three times that of the corresponding Coefficient of Variation. 

 

Table 5.3  Optimal solutions using different approaches 

Optimal cross-sectional area iA  Member 

number Proposed method 
using mixed model 

Deterministic 
optimization 

Conventional 
RBDO 

Worst-case 
scenario approach

1 42.91 31.37 39.23 49.83 

2 0.10 0.10 0.10 0.10 

3 29.32 21.48 26.81 34.16 

4 21.01 15.46 19.23 24.57 

5 0.10 0.10 0.10 0.10 

6 0.10 0.10 0.10 0.10 

7 3.38 2.83 3.21 4.19 

8 30.81 22.56 28.18 35.81 

9 29.94 21.86 27.36 34.75 

10 0.10 0.10 0.10 0.10 

Total 
weight 6638.0 4880.4 6076.9 7729.8 

mβ  2.996 <0 1.502 5.332 

 

The optimal solutions using the above three methods are also listed in Table 5.3. For 

these optimal designs, the corresponding reliability indices evaluated under the mixed model 

parameters are given in the last row of the table. The deterministic optimization presents a 

design with the least structural weight, though the reliability requirement is not accounted for. 

The conventional RBDO solution has a reliability index of m 1.502β =  and therefore also 

violates the reliability constraint. The design obtained by the worst-case scenario approach 
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demands for the most volume of material. With a corresponding reliability index m 5.332β = , 

it turns out to be an over-conservative design. It is also noted that there are considerable 

differences between the optimal solutions by RBDO and by the worst-case scenario approach. 

This implies that it may be dangerous to treat probabilistic uncertainties with 

non-probabilistic models, and vice versa. The importance of the proposed method based on 

the mixed model is thus highlighted. 
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Fig. 5.6  Iteration histories of the optimization 

 

5.3 OPTIMIZATION OF THE BONDED COMPOSITE BEAM 

In this section, we considered the reliability-based design optimization of a simply 

supported bonded steel and concrete composite beam. The span of the beam is 3486mmL =  

and a concentrated load F  is applied to the mid-span of the beam. The optimization 

parameter model is shown in Fig.5.7. The material properties for the composite beam are 

similar to the beam P1 in Chapter 2 (given in Table 2.3).  
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(a) 

     

(b) 

Fig. 5.7  Optimization parameter model of the bonded composite beam 

 (a) Middle cross-section; (b) Overall view (Unit: mm) 

 

Table 5.4  Uncertainty properties for the bonded composite beam 

Uncertainty 

Young’s modulus 
and yield stress 

of steel 
( , )s sE f  

Young’s modulus 
and ultimate stress 

of adhesive 
( , )a aE f  

Young’s modulus and 
compressive strength 

of concrete 
( , )c cE f  

External load 
( )F  

Distribution Normal distribution Normal distribution Uncertain-but-bounded Uncertain-but-
bounded 

Nominal value (205GPa,470MPa)  (12.3GPa,19.5MPa) (36.6GPa,68MPa)  (200kN)  

Probability model 
(COV) 

0.08 0.08 -- -- 

Convex model -- -- 21 0
0 1

0 1
c

c c

c

E
E f

f

.
δ

δ δ
δ
⎡ ⎤⎡ ⎤⎡ ⎤ ≤⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 [ ]180kN,220kN
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The Young’s modulus, the permissible stress and the applied load are considered as 

uncertain variables. This aggregately resulted in four probabilistic variables, including the 

Young’s modulus and the permissible stresses of adhesive and steel girder. However, the 

Young’s modulus and the permissible stress of concrete are assumed to be two 

non-probabilistic uncertain variables and bounded by an ellipsoid model. In addition, the load 

magnitude F  is also a non-probabilistic uncertain variable and bounded by an interval. The 

uncertainty properties are given in Table 5.4. 

5.3.1 Optimization modeling 

(1) Design variables 

The parameters shown in Fig.5.7 are taken as 10 design variables 

 { }T
1 2 3 4 5 6 7 8 9 10d d d d d d d d d d=d  (5.26) 

The lower bounds mind , the upper bounds maxd  and the initial values 0d  of design 

variables are listed as follows. 

 

{ }
{ }
{ }

T
min

T
max

T
0

50 4.1 50 5.7 100 5.7 5.7 5.7 5.7 5.7

200 12 200 16 500 16 16 16 16 16

110 5.9 110 9.2 201.6 9.2 9.2 9.2 9.2 9.2

=

=

=

d

d

d

 (5.27) 

where the unit is mm. 

(2) Objective function 

The design objective is to minimize the total structural price with satisfying the 

performance constraints. Herein, we only considered the price of steel girder which is 

controlled by the design variables. The objective function ( )C d  is defined as 

 
( )

( ) ( )( )1 4 2 5 6 3 2 6 7 8 9 10 5
s s

s

C P V

P L d d d d d d d d d d d d

= ⋅

= ⋅ ⋅ + + + − + + + +⎡ ⎤⎣ ⎦

d
 (5.28) 

where sP  is the unit price of steel, sV  is the total volume of steel. In this paper, for 

simplification purpose, we set 21/ mmsP L⋅ =  and thus ( )C d  is non-dimensional. 
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(3) Constraint condition 

The considered constraints include displacement constraint, stress constraints, local 

stability constraints and geometrically constraints. 

① Displacement constraint: 

mid 12mmU ≤ , where midU  is the vertical deformation of the mid-span. 

② Stress constraints: 

,maxs sfσ ≤ , where ,maxsσ  is the maximum normal stress of steel girder, sf  is the design 

value of flexural strength of steel; 

,max ,s s vfτ ≤ , where ,maxsτ  is the maximum shear stress of steel girder, ,s vf  is the design 

value of shear strength of steel; 

,maxc cfσ ≤ , where ,maxcσ  is the maximum compressive stress of concrete slab, cf  is 

the design value of compressive strength of concrete; 

,maxt tfσ ≤ , where ,maxtσ  is the maximum tensile stress in 3/4 height of concrete slab, 

tf  is the limit value of concrete tensile strength. This constraint is applied for 

controlling the range of cracks in concrete slab. 

③ Local stability constraints: 

1 2

4

23515
2uf c

s

d d
d f

ξ −
= ≤ , in which ufξ  is the width-thickness ratio of upper flange of the 

steel girder; 

3 2

6

23515
2lf c

s

d d
d f

ξ −
= ≤ , in which lfξ  is the width-thickness ratio of lower flange of the 

steel girder; 

5

2

23580
2w c

s

d
d f

ξ = ≤ , in which wξ  is the width-thickness ratio of web of the steel girder. 

where c
sf  is the nominal value of the steel yield strength and the unit is MPa. 

④ Geometry constraints: 
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beam 1
15

h
L

≤ ; 

( )beam 4 5 61.5h d d d≤ + + . 

where beamh  is the total height of the composite beam, namely beam 4 5 673h d d d= + + + . 

(4) Reliability-based optimization mathematic model 

Based on the nonlinear finite element model proposed in Chapter 2, the reliability-based 

optimization under mixed uncertain variables was carried out. The design objective is to 

minimize the total price of steel. The target reliability indices of displacement and stress 

constraints is required to be m 3.0β = . The reliability-based optimization problem is 

expressed as 

 

( )
[ ]m 1 mid m

m 2 ,max m
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⎡ ⎤= − ≥ ≥⎣ ⎦
⎡ ⎤= − ≥ ≥⎣ ⎦
−

≤

−
≤

≤

≤
≤ +

d
d

( )5 6

min max

,d+
≤ ≤d d d

 (5.29) 

It should be noted that, for simplicity of expression, the uncertain variables and design 

variables enter the reliability index constraints in the optimization problem (5.29) as intrinsic 

variables rather than explicit ones.  



Chapter 5: Reliability-based design optimization of the bonded composite beam 

  112

5.3.2 Solutions and comparisons 

The iteration history of the structural design problem plotted in Fig.5.8 show a steady 

convergence process in the structural design optimization problem. The achieved optimal 

solutions are summarized in Table 5.5. For comparison purpose, the deterministic 

optimization results are also presented, which are obtained using nominal values of the 

uncertain variables. As can be seen from the table, remarkable economic benefit is gained 

from the optimization approaches. The optimal solution obtained by the reliability-based 

optimization uses more material or price, which leads to more reliable design than the 

deterministic one. When the uncertainties are considered, the initial design and the 

deterministic optimal design result in a severe violation of the reliability constraints. In the 

final reliability-based design obtained by the present optimization method, the reliability 

requirements of the performance constraints are all met.  

 

Table 5.5  Optimal solutions for the bonded composite beam 

Optimal solutions Design variables 
(mm) Initial design 

Deterministic optimization Reliability-based optimization 
using mixed model 

1d  110 89.06 107.12 

2d  5.9 4.10 4.18 

3d  110 94.82 117.47 

4d  9.2 6.97 5.7 

5d  201.6 221.08 223.47 

6d  9.2 12.14 16.00 

7d  9.2 12.33 16.00 

8d  9.2 8.60 13.07 

9d  9.2 5.70 5.70 

10d  9.2 5.70 7.00 

Objective function 3467 2384 2919 

Reliability index mβ  
(for constraint 

mid 12mmU ≤ ) 
-7.73 -4.14 2.98 
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A comparison of the shapes of the initial design, the deterministic optimization design 

and the reliability-based optimization design is presented in Fig.5.10 and Fig.5.11. Based on 

the three different designs, nonlinear finite element analyses are carried out using the nominal 

values of uncertain inputs. The load versus mid-span deflection curves of the three designs are 

compared in Fig.5.9. The ultimate loads are 271.2kN for the deterministic optimization design 

and 340.3kN for the reliability-based optimization design. It showed a better mechanical 

performance of optimization designs, especially the reliability-based optimization design, 

than the initial design (in which the ultimate load is 230.5 kN). Therefore, from comparisons, 

it can be concluded that it is meaningful to accounting for the uncertainties in the optimization 

design of the bonded composite beam by a reliability-based approach. 

 

20

25

30

35

40

45

50

0 10 20 30 40
Number of iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
   C

(d
)  

(×
10

0)

Deterministic optimization
Reliability-based optimization

 
Fig. 5.8  Iteration histories of the optimization 
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Fig. 5.9  Load-deflection curves at nominal values of uncertain inputs for three different designs 

 
 
 
 

  
(a) (b) (c) 

Fig. 5.10  A comparison of the middle cross-section  

(a) Initial design; (b) Deterministic optimization design; (c) Reliability-based optimization design 
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(a) 

 

(b) 

 

(c) 

 

Fig. 5.11  A comparison of the steel girder 

(a) Initial design; (b) Deterministic optimization design; (c) Reliability-based optimization design 

 

5.4 SUMMARY 

While the probabilistic randomness is a natural model for the stochastic parameter 

scatters exhibited by a structure, the multi-ellipsoid convex model provides an appealing 

non-probabilistic description method for the uncertain-but-bounded system variations. This 

chapter explores the reliability-based optimization design of non-deterministic structures with 

randomness and uncertain-but-bounded uncertainties. Based on the defined reliability index 



Chapter 5: Reliability-based design optimization of the bonded composite beam 

  116

under probability and convex set mixed model, the reliability-based optimization with 

constraints on such mixed reliability indices is formulated as a nested optimization problem. 

By employing the performance measure approach, the original optimization problem is 

reformulated into an inherently robust and superior one, in which the outer-loop aims to 

minimize the cost function while the inner-loop evaluates the target performance value. Two 

approaches, namely the nested double-loop approach and the linearization-based approach, are 

employed to solve the optimization problem. Two numerical examples confirm that both 

approaches are applicable but the linearization-based approach is more efficient since it avoids 

expensive iterations for inner-loop solution. The proposed optimization method is proven to be 

effective in ensuring the structural reliability requirements in presence of probabilistic and 

bounded uncertainties. In addition, the comparison of numerical examples also reveals that it 

may be dangerous to treat the inherently probabilistic variations with non-probabilistic 

models, and vice versa. This again implies the importance of the present study. 

The proposed reliability-based optimization approach is then applied for the design of 

the bonded steel and concrete composite beam. Based on the optimal topology layout in 

Chapter 3, a sizing optimization model of the bonded composite beam with reliability 

constraints is presented. The comparisons of results revealed it is meaningful to accounting 

for the uncertainties in the optimization design of the bonded composite beam by a 

reliability-based approach. 

 
 



Chapter 6: Conclusions 

  117

CHAPTER 6: 

CONCLUSIONS 



Chapter 6: Conclusions 

  118

6.1 SUMMARY 

The steel and concrete composite beam was widely used in practical engineering. 

However, the traditional mechanical fasten method has its weaknesses which may 

substantially reduce the durability of the composite beam. In particular, the steel and concrete 

composite beam bonded by adhesive has its particular advantages over the traditional 

composite beam. Therefore, adhesive bonding method has been developed as an alternative 

technique and the bonded steel and concrete composite beam is attracting increasing 

attentions recently.  

In this dissertation, the previous work on the steel and concrete composite beams is first 

reviewed. The steel and concrete composite beam using the adhesive bonding technique 

makes it possible to decrease the appearance of stress concentration, to obtain a continuous 

transfer of the force and to use a prefabricated concrete slab. Experimental studies have 

testified the efficiency of the bonded composite beam. Then, the current state of research on 

structural optimization, structural topology optimization and structural optimization 

considering uncertainty is revealed.  

In the second part of the dissertation, as a prerequisite, an experimental push-out test is 

carried out to study the debonding failure mode and determine the bonding strength. The 

debonding failure takes place within the first 2-5 mm of the concrete from the 

adhesive/concrete interface and the epoxy adhesive bonding connection can provide a 

bonding strength of 6.36MPa. Then, a validated three-dimensional nonlinear finite element 

model was proposed to predict the parametric effects of bonded steel and concrete composite 

beams. From the simulating results, it is shown that the response of the bonded composites is 

influenced significantly by elastic modulus of adhesive, the bonding strength and the bonding 

area, rather than the adhesive layer thickness. 

For determining a more reasonable initial topology configuration, a three-dimensional 

topology optimization methodology of the bonded composite beam is presented. Following 

the SIMP approach, an artificial material model with penalization for elastic constants is 

assumed and elemental density variables are used for describing the structural layout. The 
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considered problem is thus formulated as to find the optimal structural topology that 

minimizes the structural cost (material volume) under specified displacement constraints. By 

using the adjoint variable method for the sensitivity analysis, the optimization problem is 

efficiently solved by the gradient-based optimization algorithm (MMA). The proposed 

topology approach presented a new structural topology of bonded steel and concrete 

composite beam. 

In a practical bonded composite beam, the structural performance may exhibit some 

degree of degradation due to inherent uncertainties in material properties, geometrical 

dimensions and loading conditions. As the fourth part of the dissertation, we proposed a 

reliability assessment strategy of structures exhibiting both stochastic and bounded 

uncertainties by using a probability and convex set mixed model. The safety measure of a 

structure is quantified by a reliability index defined by a nested minimization problem. An 

iterative procedure is developed for seeking the worst-case point and the most probable 

failure point in the standard uncertainty space. Numerical examples demonstrated illustrated 

the validity and effectiveness of the proposed method. The proposed mixed model is then 

employed to assess the reliability of a bonded steel and concrete composite beam. 

In the last part of the dissertation, the method for the reliability-based optimization 

design of the bonded composite beam is developed. The optimization problem incorporating 

constraints of mixed reliability indices is mathematically formulated. By using the 

performance measure approach, the optimization problem is converted into more tractable one. 

Moreover, the double-loop optimization problem is transformed into an approximate 

single-loop minimization problem using the linearization technique, which further facilitates 

efficient solution of the design problem. Two examples regarding design optimization of a 

mathematical function and a truss structure demonstrated the validity of the proposed 

formulation as well as the efficiency of the presented numerical techniques. Finally, the 

comparisons of optimization results for the bonded composite beam showed the significant 

meaning of accounting for the uncertainties in the composite beam optimization design by a 

reliability-based approach. 

Though the reliability-based optimization design is meaningful in the design of bonded 
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steel and concrete composite beams, it is worth noting that the importance of the conventional 

deterministic design optimization should not be underestimated. The deterministic design of 

the bonded composite beam is also more economical and better in the mechanical 

performance than the initial design. In fact, the reliability-based optimization was developed 

to extend the applicability of the techniques used in conventional deterministic optimization 

by incorporating uncertainties. 

6.2 OUTLOOK 

In the present stage of this work, we have studied the numerical simulation and the 

reliability-based optimization design of the bonded steel and concrete composite beam. To 

better understand and validate the optimization design, the following remarks are considered 

for the continuation of our work. 

 The present reliability-based optimization design cannot guarantee solving the target 

performance problem to global optimum if the limit-state function is non-convex. 

Difficulties also arise when the limit-state function is not smooth. Nevertheless, it can be 

expected that the convergence behaviour and the chance of finding the global optimum 

could be greatly improved by enhancing the standard mathematical programming 

algorithms with techniques such as multiple initial guesses and sequential linearization or 

other convex approximations of the limit-state function. 

 In order to effectively validate the optimization results, it is necessary to carry out further 

experimental tests on a bonded composite beam with the optimal design dimensions. A 

comparison of the mechanical behaviour by experimental results may be particularly 

important and convictive. 

 It may be very useful to analyze and design the bonded composite beams under other 

loading types and constraint conditions. 

 For applying the bonded composite beams in the practical engineering, it is necessary to 

test and simulate the durability and the fatigue life of this type of structures. 
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